1-4244-0200-X/06/$20.00 © 2006 IEEE

Real-Time Self Collision Avoidance for Humanoids
by means of Nullspace Criteria and Task Intervals

Hisashi Sugiura, Michael Gienger, Herbert Janssen, Christian Goerick
Honda Research Institute Europe GmbH
Carl-Legien Strasse 30
D-63073 Offenbach/Main, Germany
Email: hisashi.sugiura@honda-ri.de

Abstract— We describe a new method for real-time collision
avoidance for humanoid robots. Instead of explicitly modifying
the commands, our method influences the control system by
means of a nullspace criteria and a task interval. The nullspace
criteria is driven by a virtual force acting on a joint center vector
that defines the minimum of a potential function in joint space.
The task interval defines the target constraints in task coordinates
and allows the avoidance system to specify deviations from the
given target position. The advantages of this indirect method
are that smooth trajectories can be achieved and the underlying
motion control may use any trajectory generation method that is
able to satisfy the constraints given by the collision avoidance. It
is most useful for highly redundant robots like typical humanoids.
The method is able to assure smooth collision free movement on
the humanoid robot ASIMO in real time interaction even in cases
where the dynamical constraints of legged walking apply.

I. INTRODUCTION

For humanoid robots recently requirements such as au-
tonomy, interactivity and robustness become more and more
important. In the real world and especially in interaction with
humans, movements targets cannot be predicted in advance
and planning methods generally become less attractive. Nev-
ertheless, it is very important to detect and avoid self-collision
and obstacles both predictively and interactively. In order not
to break the robot, some traditional systems freeze the robot
in a so called “emergency stop” which means a discontinuous
stop of all movements. But if dynamical constraints apply like
e.g. in case of legged robots that have to keep dynamical bal-
ance, both the robot and its environment including interacting
humans may be in danger.

The purpose of the work presented in this paper is real-
time self-collision avoidance between the body and both arms
of our humanoid robot ASIMO, i.e. allow any command to
be given interactively without breaking the robot by collisions
of its link segments and smooth robot’s motions unless the
target or at least a collision free posture close to the target is
reached.

There have been many papers presented about collision
avoidance. Collision avoidance methods can be roughly dis-
tinguished into two categories. The first type of methods
uses planning Popular methods are for instance Potential field
methods [7] and Rapidly-exploring Random Trees (RRTs) [8].
However these methods take a lot of computation time because
they use configuration space [9]. The second type of methods

575

are reactive ones which usually operate in task space [1], [6],
[10]. This type of method is attractive because it requires
less computation time and is less dependent on the overall
complexity of the scene. One of the most important points for
this method is how to deal with target reaching motions and
avoidance motions. Hanafusa and Nakamura et al. [5], [11]
proposed the task priority method. Seto et al. [12] applied
an instantaneous inverse kinematics solution [13] for collision
avoidance. The collision avoidance method we propose here
is in the latter category since we want to deal with highly
dynamic environments and for safety reasons use only onboard
computation resources. We use task interval in order to switch
the priority.

II. DISTANCE COMPUTATION

For the collision avoidance method we need to compute the
closest points and thus the distance between the segments of
the robot which are the physical links separated by joints.
All segments are modeled by SSLs (sphere swept line) or
spheres since computation based on the real shape of the
segments is computationaly too expensive within our real-time
and hardware constraints [2], [14]. The segment model of the
robot is shown in Fig. 1. The closest points and distances are
computed between all possible segment pairs.

Since the computational complexity of pairwise distance
computation is O(N?) the robot’s collision model has two
layers. One is a coarse model consisting of one primitive per
segment and the other is a fine model which can use up to 10
primitives in case of the upper body. All segment pairs are first
computed based on the coarse model. The fine model is only
used when a pair of coarse model primitives is close enough
to each other (warning zone).

III. COLLISION AVOIDANCE

We define the requirements for collision avoidance as fol-
lows.

« The segments should not come closer to each other than a
certain minimum distance (red zone), otherwise the robot
will freeze and all (arm and upper body) motion will be
stopped. This is an emergency situation and should never
happen during normal operation.

HUMANOIDS’ 06

Fig. 1. Asimo’s collision model is composed of sphere-swept-lines and
spheres. Differing colors were used for visibility.

o If segments come closer to each other than another
specific distance (yellow zone) they should be “pushed
away” from each other.

« The motion should not be terminated unless the target or
at least a position close to the target is reached.

e A target should always be reached exactly if at all
possible, i.e. if the target is outside the yellow zone.

A. Whole Body Motion Control

To control a robot with redundant degrees of freedom,
we use a whole body motion control system with nullspace
optimization criteria. This means that the task space target is
always tracked while the nullspace criteria is used to derive a
unique solution for the redundant kinematics.

In this control method, each joint velocity is computed as

4 = J# %4051, + NE (1)

N=I1-J#J . 2)

The matrix IN maps an arbitarary joint velocity vector &
into the nullspace, ¢ is the joint velocity vector, J# the
pseudo inverse Jacobian, X;,s; the task space velocity and
I the identity matrix.

The nullspace optimization criteria can be expressed as a
vector cost function H(q). Its gradient is mapped into the
null space.
9H(q)

‘:J#-as -N
q Xtask (3

)F 3)

In our case we chose the cost function to penalize deviations
from an arbitrary joint center vector q. A joint limit avoidance
cost function is used.

H() = 3(a -4 W(a) @

The matrix W is a weighting matrix.

In the easiest case by choosing q accordingly, this cost
function allows to keep simply away from the joint limits [3].
Additionally by using q as an input parameter to our control
system we can easily shift the null space potential to favor any
externally given posture while simultaneously obeying the task
space target velocity.

B. Virtual Force

To compute the joint center vector we use a virtual force
which is projected on the joint center q. It generates a force
f proportional to the distance a joint moves from its center.

In our collision avoidance method we call p the smallest
of all segment pair closest point vectors. If the length of this
vector p is smaller than the yellow zone distance d,. a non-
zero Ax is the result.

0 if > dy,
Ax = . Ipl>d,)
(dyzm —1)p else
The virtual force fy;;tyq; 1S given as
fvirtual = kAx (6)

where k is the spring constant.
By means of the Jacobian transform and the virtual work
principle we get
T=J,"f 7

where 7 is the joint torque vector and J,” is identified as the
transpose of the Jacobian of p. This equation relates forces in
cartesian space and torques in joint space.

The torque Tyirtuql 1S given by

Tyirtual = CAq (8)

where C is a compliance matrix for the virtual springs of the
joints and Aq is used to describe the deviation between the
actual joint vector and the joint center vector q.

Then we get following equation for Aq:

Aq=C '3, TkAx . 9)

The Jacobian is used for position control by the distance
computation. e.g. control of the hand segment position with
respect to the body.

This equation converts deviations of positions to deviations
of joints without singularities since it doesn’t use a pseudo
inverse Jacobian but the transpose Jacobian. Thus the method
is able to change the posture of the robot by applying a virtual
force in task space and transforming it to a movement in joint
space.

576

Xdisp

4

.

Xref

Fig. 2. Virtual displacement cuboid
Y

Ymax

Xdisp

H ' . x®X

Xmin i Xmax

Ymin

Fig. 3. Task interval in 2-dimensional case

C. Task Interval

For many robot tasks, movement targets do not necessarily
need to be specific cartesian points and orientations, e.g. for
dancing or making gestures. Thus for some tasks, it is useful
to specify the robot’s movement targets as volumes in space,
orientation intervals or generally speaking task intervals [4].
In Fig. 2, a task interval for the hand position is depicted. The
cuboid can be conceived as a virtual box around the reference
point, in which the effector is allowed to move.

If the effector reference point is within the task interval,
a cost function gradient is mapped into the task space. An
arbitarary cost fuction can be used. Fig. 3 illustrates the 2-
dimensional case. When the displacement is outside of the
task interval, it is clipped to the boundary of the interval. The
displacement is computed by a cost function gradient and the
pseudo inverse Jacobian as follows,

9H(q)
“ox
9H(aq) dq
Joq Ox
= aVH(q)" J#
where « is a convergence step width.

We choose the joint limit cost function. Therefore the
displacement is computed by the joint center by means of

5Xdisp =

(10)

=

577

behavior | | virtual force _ joint center | task interval
control target computation |F_virtual | computation | q computation
position
p, dyz
task
interval
Distance computation
Whole Body Motion
Control System
Fig. 4. Architecture of the collision avoidance and its interaction with the

underlying whole body motion control system.

the equation (4), (9) and (10). The size of the task interval is
determined by the displacement. Accordingly the joint limit
avoidance is always mapped into task space. €.g. Xmax and
Ymax are determined by the displacement x4;4,in Fig.3. The
actual target position is changed from X;qs1 t0 X¢qsk+Xdisp
by task interval. As far as the respective segment of the robot
stays within the task interval, the robot follows the joint center
which is determined by the virtual force.

The advantage of a collision avoidance using these methods
is that the target command is not modified explicitly, but it
indirectly influences the control system by means of the joint
center and the task interval.

Fig. 5 exemplifies the system on Asimo. Fig. 5(a) shows the
robot in a resting position which is determined exclusively by
the joint center since there is no target and thus no task space.
In Fig. 5(b) targets are assigned to both arms. While the right
arm has reached its target, the left arm did not because an arm
segment violates the yellow zone and the collision avoidance
is activated. Fig. 5(c) is a closeup of Fig. 5(b). The forearm
violates the yellow zone and a virtual force is generated based
on the smallest closest point vector p. This force pushes the
arm back to the limit of the task interval. Note that the target
position is not modified but the actual position stays within
the task interval. If the target position moves out of the yellow
zone, the task interval becomes zero and the arm moves to the
target position accordingly.

IV. SYSTEM

ASIMO is a humanoid robot which has 5 degrees of
freedom in each arm, 2 degrees of freedom in the head and
6 degrees of freedom in each leg. Our whole body motion
control system uses 21 degrees of freedom including virtual
degrees of freedom that describe the robot’s legs. The system
of collision avoidance and its interaction with the control
system is shown in Fig. 4. Distance computation and avoidance
are computed on ASIMO’s internal computers because they
are fundamental safety functions. Arm trajectories are gener-
ated by low pass filtering the difference between the target and
the actual position. The task interval output from the collision
avoidance is also low pass filtered before it is used in the
control system to avoid jumping task space conditions.

When a target is given, the robot moves to the target without
walking. But if the target cannot be reached and the position

left arm
joint center
position

right arm
joint center
position

(a) Resting position

Fig. 5. Asimo and its control and avoidance system in some typical equilibr
criteria apply. (b) the left arm target is inside the yellow zone, but virtual force
of (b), the blue line indicates the relevant part of the task interval

error exceeds a threshold , the robot starts to walk to the target.
The threshold is 50mm in case of our experiments.

V. RESULTS

We tested our method by using both kinematics-only and
dynamical simulations of Asimo. We ran extensive tests with
over 100 randomly generated arm targets in our dynamics
simulator but found no cases of red zone violation (emergency
stop) or targets that could not be reached.

In our experiments we set the zones as follows:

o The warning zone distance is set to 100mm; entering it
switches the distance computation from coarse to fine
models.

e The yellow zone distance is set to 50mm; entering it
activates collision avoidance.

e The red zone distance is set to 3mm; entering it triggers
the emergency stop.

We will discuss two typical cases of our experiments below.
Fig. 6 shows an example of a left hand trajectory crossing the
yellow zone. The walking is not activated in this example
because the walking threshold is not exceeded. The start
posture and the target posture do not violate the yellow zone,
but between time tl and t2, the arm limb violates the yellow
zone as shown in Fig. 6(a). Therefore the virtual force depicted
in the center of Fig. 6(b) is generated between t1 and t2. The
task interval is depicted in the bottom of Fig. 6(b). It is also
generated from tl but after t2 it does not immediately become
zero because of the filtering discussed above. At time t3, the
closest point model pair is switched as shown in top of Fig.
6(b). At time t4, the actual position reaches the limit of the task
interval as can be seen in the bottom of Fig. 6(a). From there
on the arm moves directly to the target. The arm trajectory

578

(b) Collision avoidance active

smallest closest
point vector

left arm
target
position

right arm
target
position

task interval

@ closest point (forearm - body)
O target position = center of task interval

® joint center position = limit of task interval

(c) Closeup

ium states. (a) resting position, no targets given, only the default nullspace
and task interval ensure that the hand does not hit the upper leg. (c) closeup

is modified by the collision avoidance. The arm moves to the
final target even if it partially violates the yellow zone and
finally reaches the target without stopping.

A second example - this time including walking - is given
in Fig. 7.

The yellow spheres denote the given target positions. The
image sequence shows the following steps:

(a) The target for the left arm is set. The target posture
would violate the yellow zone.
The robot tries to reach the target but fails, because
the arm violates the yellow zone of the body. Thus
the robot starts walking when the deviation threshold
is reached.
The robot continues to reach for the target. The
yellow sphere close to the right hand is the target
for the right arm.
The robot stops walking and finally reaches the
target.
In this example the collision avoidance initally prohibits reach-
ing the target but by means of causing a difference between
the actual position and trajectory indirectly triggers walking
so that the target can finally be reached.

(b)

(©

(d)

VI. CONCLUSION AND OUTLOOK

We described a collision avoidance method which uses
virtual forces and task intervals. According to the results of
our simulations, our robot moves smoothly without colliding
when given various targets interactively.

We are currently working on extending the system to include
external objects as detected by the vision system as obstacles.

Also we will adjust the robot segment model in real-time
to increase the precision of the distance computation without
increasing the computational load.

H ! ! ! T
Start position !
A1 :

028

0275
e e
Enzes
0.26

0.255

i

i target popition

035 ; ; i i i ;
015 016 017 018 019 0.2 021 0.22 0.23
[m]

(a) Trajectory in XY-plane

[zec]

015 T T T T
Fr LT R 4
= ;
o =T T T P TR 4
. i a i
1 15 2 25
[&c]
T T T
e N N |
2 ; ; ; ;
0 ns 1 15 2 25

[&c]
(b) Top: closest distance, Center: virtual force, Bottom: task interval

Fig. 6. Typical example of a trajectory crossing the yellow zone. tl is the
time of entering the yellow zone, (2 is the time of leaving the yellow zone,
t3 is the time of switching between the closest point model pairs and t4
is time of the actual wrist position reaching the limits of the task interval.
(a) XY-Plot of the left wrist position with (blue) and without (red) collision
avoidance. (b) top: distance between closest points of the two closest model
pairs hand - bodyl (blue) and hand - body2 (red). (b) center: virtual force
(b) bottom: actual Y position of the left wrist (red) and task interval borders
(blue)

REFERENCES

[1] Oliver Brock, Oussama Khatib, and Sriram Viji. Task consistent obstacle
avoidance and motion behavior for mobile manipulation. In proceedings
of the IEEE International Conference of Robotics and Automation, 2002.
Christer Ericson. Real-time collision detection. The Morgan Kaufman
Publishers, 2005.

Michael Gienger, Herbert Janssen, and Christian Goerick. Task-oriented
whole body motion for humanoid robots. In proceedings of the IEEE-
RAS International Conference on Humanoid Robots, 2005.

Michael Gienger, Herbert Janssen, and Christian Goerick. Exploiting
task intervals for whole body robot control. In proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2006.

[5] Hideo Hanafusa, Tsuneo Yoshikawa, and Yoshihiko Nakamura. Redun-

[2

—

[3

=

[4

=

579

(c) Second step

(d) Stop: target reached

Fig. 7. Simple example of a target that is inside the body and requires
walking. The yellow spheres are the target positions.

dancy analysis of articulated robot arms and its utilization for task with
priority. In SICE, volume 19, pages 421-426, 1983.

[6] Ioannis Iossifidis and Gregor Schoener. Autonomous reaching and

obstacle avoidance with the anthropomorphic arm of a robotic assistant

using the attractor dynamics approach. In proceedings of the IEEE

International Conference on Robotics and Automation, 2004.

Oussama Khatib. Real-time obstacle avoidance for manipulations and

mobile robots. In The international Journal of Robotics Research,

volume 5, pages 90-98, 1986.

James Kuffner, Koichi Nishiwaki, Satoshi Kagami, Yasuo Kuniyoshi,

Masayuki, Inaba, and Hirochika Inoue. Self-collision detection and pre-

vention for humanoid robots. In proceedings of the IEEE International

Conference on Robotics and Automation, 2002.

[9] Tomds Lozano-Pérez and Michael A. Wesly. An algorithm for planning
collision-free paths among polyhedral obstacles. In Communications of
the ACM, volume 22, pages 560-570, 1979.

[10] Anthony A. Maciejewski and Charles A. Klein. Obstacle avoidance for
kinematically redundant manipulators in dynamically varying environ-
ments. In The international Journal of Robotics Research, volume 4,
pages 109-117, 1985.

[7

—

[8

—

[11] Yoshihiko Nakamura. Advanced Robotics: Redundancy and Optimiza-
tion. Addison Wesley Publishing Company, 1991.

[12] Fumi Seto, Kazuhiro Kosuge, and Yasuhisa Hirata. Self-collision
avoidance motion control for human robot cooperation system using
robe. In proceedings of the IEEE/RSJ Internatiional Conference on
Intelligent Robots and Systems, 2005.

[13] Toshio Tsuji, Seiya Nakayama, Atsushi Araki, and Koji Ito. Instan-
taneous inverse kinematic solution for redundant manipulators based
on virtual arms and its application to winding control. In JSME
International Journal, volume 38, pages 87-93, 1995.

[14] Gino van den Bergen. Collision Detection in Interactive 3D Environ-
ments. The Morgan Kaufman Publishers, 2004.

580

