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Abstraci— Robot audition is a critical technology in cre-
ating an intelligent robot operating in daily environments.
We have developed such a robot audition system by using a
new interface between sound source separation and antomatic
speech recognition (ASR). A mixture of speeches captured
with a pair of microphones installed in the ear positions
of a humanoid is separated into each speech by using
active direction-pass filter (ADPF). The ADPF extracts a
sound source originating from a specific direction in real-
time by using interaural phase and intensity differences. The
separated speech is recognized by a speech recognizer based
on the missing feature theory (MFT). By using a missing
feature mask, the MFT based ASR neglects distorted and
missing features caused during the speech separation. A
missing feature mask for each separated speech is generated
in speech separation and is sent to the ASR with the separated
speech, Thus, this new integration improves the performance
of ASR. However, the generality of this robot audition system
has not been assessed so far. In this paper, we assess its general
applicability by implementing it on the three humanoids, i.e.,
ASIMOQ of Honda, SIG2, and Replie of Kyoto University. By
using three simuitaneous speeches as benchmarks, the robot
audilion system improved the performance of ASR over 50%
in every humanoid, and thus its general applicability was
confirmed.

I. INTRODUCTION

Robot audition is one of the most important technologies
in order to interact with people as human partners in the
near feature. A robot shonld have the capability of social
interaction with people. One of the most jmportant func-
tions to achieve this is verbal communication. In addition,
the robot should have the capability to pay atiention to
specific sound events such as environmental sounds, spoken
language, and music.

To achieve such robot audition, the robot should handle a
mixture of sounds, because humans and robots usually hear
a mixture of sounds, not sounds of a single sonrce. Some
human-robot communication systems use a microphone
attached close to each talker’s mouth in order to aveid
handling a mixture of sounds {1], [2]. However, in real
environments, a robot should handle a mixture of sounds
captured by its own microphones. The three basic functions
to handle a mixture of sounds are sound source localization,
separation and recognition. In robot audition, Nakadat et al.
used psychological clues for binaural hearing [3]. Several
siudies on a microphone array have been reported; for
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example, Asano et al. used beamforming techniques for
the “Jijo-2" robot [4],

Since robot audition ranges from signal to conceptual
level, a hierarchical structure of auditory processing is
required. At the signal level, three basic functions, that
is, sound source localization, separation, and recognition,
are needed. To climb up to the conceptual level, signal-
to-symbol transformation is required. Symbols may be
represented by text or ontologies. Speech is recognized as
text by automatic speech recognition (ASR}. Environmen-
1al sounds may be recognized as either names of auditory
events or sound-imitation words, i.e., onomatopoeia [5].

Since human communication is performed mainly by
spoken languages, we focus on the interface between sound
source separation and ASR. Usually, the ASR community
focuses on robust ASR, assuming that one person speaks
under noisy environments. For example, ASIMO of Honda
[6], QRIO of Sony [7], Kismet of the MIT AI Lab [8],
and ROBITA of Waseda University [2] can interact with
people by recognizing speech and gestures, All four robots
can localize a sound source, but assume there is one talker
for ASR. The latter two robots use a separate microphone
attached near the mouth of each speaker.

In this paper, we focus on a noise-robust automatic
speech recognition to achieve robot audition for the robot.
We adopt the Missing Feature Theory (MFT) to design
the interface between sound source separation and ASR
to improve the robustness against dynamic noises and
simultaneous speeches [9]. Since robot audition is usually
dedicated to a particular robot, its general applicability
to other robots is not assessed. We have been assessed
the generality of our robot audition system to apply it
to two different humanoid robots, i.e., SIG2, and Replie
of Kyoto University. However, these robets are similar
in many characteristics. They have soft skin, the human-
shaped silicon ears located at human’s ear positions, and a
pair of microphones installed at external anditory meatuses
in the ears. In addition, the shapes of these robots” head
are similar to that of human. Therefore, we will assess the
generality of our auditory system by applying it to a robot
whose characteristics are quite different from those of S1G2
and Replie. We use ASIMO of Honda which has hard skin,
a angular face, and microphones at different positions.
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II. SPEECH RECOGNITION FOR ROBOT AUDITION

To have the capability of robot audition, a robot would
need to cope with the following difficult situations.

« A robot needs to be able to listen to a specific
sound source in noisy environments. This capability
in humans is known as the “cocktail party effect”,

« A robot should be able to listen to several speeches
simultaneously. This is required to cope with the case
that someone or something playing sounds interrupts
a conversation. It is known as “barge-in” in spoken
dialog systems.

The improvement of robustness against noises in ASR
has been studied extensively, in particular, in the AURORA
project (10]. One method for noise-robust ASR is muelri-
condition training, that is, training on a mixture of clean
speech and noises [11], [12]. This is currently the most
common method for car and telephone applications. Since
an acoustic model obtained by multi-condition training
reflects all expected noises in specific conditions, ASR
using the acoustic model is effective as long as trained
and static noises are dominant. This is also effective in
robots.

Nakadai et al. developed the interface between a sound
source separation system and ASR, and demonstrated that
their system can recognize three simultaneous speakers
with high accuracy [13]. The sound source separation
system called active direction-pass filter (ADPF)[14] sepa-
rated sound sources by using directional information given
by visval and or auditory processing. Since the spectral
features of a separated sound are severely distorted, they
use direction- and speaker-dependent acoustic models for
ASR at the same time, and choose the most appropriate
recognition result. This is a brute-force approach and
expensive in computational resources. For the moment,
no other system that can recognize three simultaneous
speakers has been reported in the literature.

The issues with their interface between sound source
separation and ASR in realizing robot audition are sum-
marized as follows.

1) Assessment of general applicability to other hu-

manoids.

2) Requirement of direction- and speaker-dependent
acoustic models.

3) Expensive computing resources and slow processing

time.

For the first issue, since they use only the upper-torso
humanoid $JG, the generality of their methodology has not
been evaluated so far. In this paper, we will assess the
generality of our MFT-based ASR by using three different
humanoid test-beds.

The second issue indicates that the system has difficulties
in coping with an unknown speaker or sounds originat-
ing from an unexpected direction. The performance is
low under dynamically changing noisy environments and
different acoustic environments, since each direction- and
speaker-dependent acoustic model is tuned for a particular
environment by multi-condition training.

The last issue is related to the second one. When three
speakers may place one of 10-degree wise position, their
system needs to exploit 5! combinations of direction- and
speaker-dependent acoustic models. In other words, 51
ASRs with each combination of acoustic model runs in
parallel against each separated speech. This requires a lot
of computational resources, and thus is not suitable for
autonomous robots whose physical body size is limited.

Our idea is to adopt the MFT to design the interface
between ADPF and ASR to cope with the above issues
and achieve robot audition under daily environments where
noises change dynamically. The proposed ASR will run
with a single-direction- and speaker-independent acoustic
model with clean-condition training. Therefore, its compu-
tational resource is the same as normal ASR’s.

III. MFT-BASED INTERFACE

An MFT-based ASR has been studied as a promising
way to improve the robustness of ASR [15], [16], although
most studies have been done in off-line and simulated en-
vironments. In this method, spectral subbands distorted by
noises are detected from input speech as missing features.
The detected missing features are masked on recognition
50 as not to affect the system badly. Therefore, this method
is more flexible when noises change dynamically and
drastically. In this paper, we use the MFT to interface

Missing Feature
Theory based
New hnterface

Automatic Speech:
P, Recognition

Recognition with
Missing Feature Mask

Missing Feature Mask
Generation

Fig. 1. New Interface based on Missing Featurc Theory

sound source separation with ASR. A model of the MFT-
based interface is illustrated in Figure 1. This interface uses
a missing feature mask to avoid deterioration of speech
recognition caused by the missing features. To introduce
the missing feature mask, modifications in sound source
separation and ASR are necessary as shown in the dark
areas in Figure 1. In sound source separation, the missing
feature mask is generated from missing features that are
detected by comparing a separated speech with a target
speech. In ASR, a speech recognizer is modified to make
use of the missing featwre mask. The following sections
describe these modifications in detail.

A. ASR with Missing Features

MFT-based ASR is based on the Hidden Markov Model
(HMM) by using Mel-Frequency Cepstrum Coefficients
(MFCC) and the Hidden Markov Model (HMM), which
is a common feature vector in normal ASR systems. Since
the missing feature mask is introduced in MFT-based ASR,
the speech recognizer is modified to have one more input
of missing feature mask input (as is shown in Figure 2
in the section Robot Audition System with MFT-Based
Interface). The missing feature mask is generated in sound
source separation as described in the next section. The
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input feature vectors are masked by the missing feature
mask in a speech recognizer. In normal ASR systems,
estimation of a path with maximum likelihood is based
on state transition probabilitics and output probability in
the Viterbi algorithm. MFT-based ASR uses a different
estimation of the output probability, which is specified as
follows.

Let o{2]S) be the output probability of feature vector =
in state S. The output prebability is defined by

K L
o(z]8) = Y P(k|S)exp { > mlog flailk, S)} ,
k=1 i=1

where K is the number of Gaussian mixture, f(z|k, S) is
the probability density function of Gaussian distribution,
L is the size of vector £ = (#1,%2, -+, ), and vector
m = (my,ms,---,my) is mask vector. The mask vector
is defined in the next section.

This equation means that only reliable features are used
in the probability calculation. Therefore, the recognizer
can avoid severe degradation of performance caused by
unreliable features.

B. Missing Feature Mask Generation in Sound Source
Separation

For sound source separation, we use an ADPF, which
extracts sound originating from the specified direction, by
using a pair of microphones. The detailed algorithm of
ADPF is described in [13]. ADPF first extracts an infer-
aural phase difference (IPD) and an interaural intensity
difference (HID) for each subband. Then, it estimates the
sound source direction from IPD and IID by scattering
theory [17]. Since scattering theory provides an accurate
estimation of IPD and I for a spherical robot head with
two microphones, we need not measure the head-related
transfer function for each acoustic environment [14].

After estimation of IPD and HD, ADPF selects the
pass range according to the pass range function. The pass
range function specifies a narrow pass range for the front
direction due to ADPF’s high sensitivity, while it specifies a
wider one for the peripherals due to ADPF’s low sensitivity.
Practically, the pass range is :£10° for the sound source
direction of 30°, and £5° for that of 0°. Finally, ADPF
collects subbands of input whose IPD and [ID» are within
the pass range. This collection is treated as a separated
speech.

MFCC of separated speech are calculated directly from
the collected subbands. A missing feature mask is gener-
ated by comparing MFCC of the separated speech with that
of the corresponding clean speech. This kind of mask is
called an a priori mask, because mask generation heuristics
use information about corresponding clean speech [18].

Finally, the missing feature mask is obtained as a ma-
trix of an MFCC vector and time frame. Each value in
the matrix is a belief factor that represents whether the
corresponding value in the MFCC vectors obtained by the
input signal is reliable or not. The belief factor can be a
continuous value from 0 te 1, or can be a discrete value
of 0 or 1. The latter is used in this paper.

MFT-based ASR
Separated
Sound Source Speech

] Missing Feature
Based Speech
Recegnition

Missing Mask
Hssing M

[ 3
Sound Localization MFCC

of clean

Speech caprurcd by
8 pajr of microphonss

Fig. 2. Robot Audition System with MFT-based Interface

The detailed algorithm is specified as follows:

1) Let X and ¥ be feature vectors of captured speech
and the corresponding clean speech, respectively.
The feature vector consists of 26 features with 12
MFCCs, power of signal, 12 A MFCCs, and A
power. In recognition, the feature of power is not
vsed,

2) Let M () be the mask value of the {th feature in the
kth frame. M, () is obtained by

]\Jk(i):{l if k(i) - V(i) < T,

0 otherwise.
where T is an experimentally obtained threshold.
3) AM(7) is defined by

AM(E) = Mi_a (0 My () My (1) My 12 (0).

4) Thus, the mask vector m of the kth frame is
(AMe(1), -, Me(13), AM(1),- -, AML(13)).

1V, ROBOT AUDITION SYSTEM WITH MFT-BASED
INTERFACE

We implemented a robot audition system by using the
new interface between sound source separation and ASR
based on the MFT. The architecture of the system is shown
in Figure 2. It consists of sound source localization and
MFT-based speech recognition subsystems.

A. Sound Source Localization Subsystem

The sound source localization subsystem localizes multi-
ple sound sources captured by microphones embedded in a
robot. The detailed algorithm of sound source localization
is described in [14]. The sound source localization module
extracts local peaks from the left and right power spectrums
and clusters a harmonic sound according to harmonic
relationships. Then it calculates IPD and IID of the peaks
included in the extracted harmonic sound and calculates
distances between the results and IPD and D hypotheses
created by the scattering theory for each sound direction.
The calculated distances are transferred to belief factors
on IPD and IID. The belief factors on IID and IPD are
integrated based on the Dempster-Shafer theory [19] to get
robust sound localization in the real world. As a result of
the integration, a direction with maximum value is regarded
as that of the sound source. The sound source is localized in
a horizontal plane by using a pair of microphones that are
installed in the left and right ear positions of a humanoid.

The temporal integration module forms a sound stream
as a temporal sequence of sound localization events by
using a Kalman filter. The sound stream provides accurate
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and robust sound direction information for sound source
separation because the Kalman filter reduces measurement
and process noises in localization,

B. MFT-based Speech Recognition Subsystem

The MFT-based speech recognition subsystem is based
on the new interface described in the previous section, and
recognizes noisy speech such as simultaneous speeches.
We use the CASA Toolkit (CTK) [15] based on MFT as
a speech recognizer. The CTK can use monophones and
triphones for an acoustic model, while CTK cuirently does
not support use of statistical language models. The ADPF
separates multiple sound sources by using a stream direc-
tion obtained by a sound source localization subsystem and
a captured sound mixture, and estimates a missing feature
mask by comparing a speech separated by the ADPF
with a target clean speech. The CTK performs isolated
word recognition against the separated speech by using
an acoustic model, a word dictionary, grammar, and the
missing feature mask.

V. EVALUATION

We performed three experiments to confirm the general
capabilities and improvements by introducing the MFT.
The three different humanoids ASIMO, SIG2, and Replie
are used for experiments. The humanocids ASIMO, SIG2,
and Replie are shown in Figures 3a) — ¢}, respectively. In
these experiments, our systern works on Pentium 4 2.53
GHz PC running Linux, and binaural sounds captured by
each humanoid are processed off-line.

A. Humanoids for Test-beds

w T

a) ASIMO b) SIG2 ¢) Replie
(Honda) {Kyoto Univ))  (Kyoto Univ.}
Fig. 3. Humanoid Robots

Leudspeaker C

Microphene
SI1G2 & Rephie
Loudspeaker B
Fig. 4. Ears in Hu- uespeater
manoid Test-beds
Fig. 5. Experiment

S5IG2 and Replie have soft skin and human-shaped ears
made of silicon shown in Figure 4. Their microphones are
installed in external auditory meatuses in the ears locaied
at human ear positions. The pinnae in the ears improves
the front directivity of 10 dB. The appearances of these
two humanoids have some differences, because SIG2 was
designed by a professional designer in consideration of
aesthetic appearance, while Replie was made by molding a
Japanese woman and has a full body although only the
upper half of the body is shown in Figure 3b). Thus,
the acoustics of these humanoids have some differences
although many features between the two humanoids are
common.

On the other hand, ASIMO has a hard cover, an angular
face and a pair of microphones at the different positions
from SIG2 and Replie’s ones. Therefore the acoustics are
quite different from the other two humanoids.

B. Acoustic Model for Speech Recognition

Only one HMM-based acoustic model trained on clean
speech is used for recognition of separated speech. The
training data includes a total of 25 male and female
speakers’ utterance sets. Each utterance set consists of 216
phonemically-balanced Japanese words. The feature vector
of the acoustic model has a dimension of 25 (12 MFCC
+ 12 A MFCC + A power). The number of states and
mixtures in HMM are 3 and 8§, respectively.

C. Experiments

The robot avdition system is evaluated by recognizing
three simultaneous speeches, as shown in Figure 5. Three
loudspeakers located at fixed directions of 0° and *30°
are used for sound sources. The distance between the
Joudspeakers and the robots is 1 m. The rooms are 7.5 m x
9m with 0.5 sec of reverberation time for ASIMO, and
5m x4 m with 0.35 sec of reverberation time for $/G2 and
Replie. The loudspeakers play 200 combinations of three
different words selected from a set of 216 phonemically-
balanced Japanese words. The humanoids capture the mix-
ture of acoustic signals of these three words and omnidirec-
tional background noises. The acoustic signal of each word
is extracted by the ADPF and recognized by isolated word
recognition. ADPF is given the radias of spherical robot
head, and the left and right ear positions as parameters for
scattering theory.

The isotated word recognition is evaluated by using two
metrics: a2 word recognition rate whereby target words
are categorized into the target category correctly, and a
mis-categorized rate whereby non-target words are mis-
categorized into the target category. Several conditions are
changed in the experiments, which are as follows:

« word dictionary size — 10, 50, 100, and 200 words,

« type of acoustic model - morophone and triphone,

o missing feature mask — used and unused, and

« robots — ASIMO, SIG2, and Replie.

The word recognition rates by using these humanoids are
shown in Figures 6 and 7. The isolated word recognition
rates without using the missing feature mask in ASIMO,
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SIG2 and Replie, are shown in Figures 6a), b), and c)
respectively. Those using the missing feature mask in these
humanoids are shown in Figures 7a) — ¢). When the missing
feature mask is not used, a separated speech is recognized
by assuming that every feature is reliable. This means that
the result is the same as the recognition of separated speech
by normal ASR systems. Each figure includes results of
left (30°), center {0°) and right (—30°) speakers by using
the monophone (thin lines) and triphone (thick lines) as
acoustic models. The x and y axes indicate the number
of words included in the word dictionary and the isolated
word recognition rate, respectively.

" Generally, as the number of words in the word dictionary
increases , word recognition rates decrease. This tendency
is remarkable in the results obtained without using the
missing feature mask, On the other hand, the results
obtained using the missing feature mask show robustness
against the increase in the number of words. The word
recognition rates improve over 80% in the case of a 200-
word dictionary as well. In this case, the mis-categorized
rates are less than 5 % in every robot when a triphone
are used as an acoustic model. The mis-categorized rates
with the missing feature mask is shown in Table 1. This
demonstrates that the MFT-based approach is efficient for
speech recognition in robots.

robots. When both the triphone and the missing feature
mask are used, the recognition rate reaches about 90% even
in the case of a 200 word dictionary. The performance
exceeds that of another approach that integrates multiple
speech recognition results obtained by using multple di-
rection and speaker-dependent acoustic models [13]. This
demonstrates the efficiency of the proposed robot audition
system in terms of performance as well as processing
speed, because onfy a single acoustic model is used for
speech recognition.

The MFT-based ASR works well in all three humanoids
— ASIMO, SIG2 and Replie as shown in Figure 7. These
humanoids have different heads and bodies. Considering
that auditory processing is sensitive to a small change in
the acoustic environment, their performances are expected
to be different, but they have similar performance. This
indicates the generality of the robot audition system, espe-
cially, the new interface between sound source separation
and ASR.

VI. D1sCcussioN aND FUTURE WORK

The auditory awareness system based on the proposed
interface between sound source separation and ASR im-
" proves the performance of the system and processing speed
in the recognition of three simultaneous speeches. The
works that reported on simultaneous speech recognition
[20], [21], [13] treated sound source separation and ASR
independently. In other words, sound source separation
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is treated as a simple preprocessor of ASR, and thus,
the performance was not so good. Because the MFT-
based interface takes such characteristics into account, the
performance is better. Therefore, we can say that the MFT-
based interface is more suitable for robot audition. To
improve the performance of the system, a combination of
multi-condition training and the MFT could be effective.

We demonstrated the generality of the robot audition
system through the application of the three humanoids
in the rooms with different acoustic conditions. Usually,
in robotic research, methodologies applied to a robot are
dedicated to the robot and a specific environment. Becanse
of this, the generality of the methodologies have not been
evaluated so much, aithough it is frequently considered.
Thus, the evaluation of generality is one of the most
important issues from the viewpoint of applicability of the
method.

In this paper. the system uses the a priori missing feature
mask that is obtained from clean speech as a template.
This is good for recognition of a specific word. Taking
a more general sjtuation into consideration, detection of
missing feature without using clean speech as a template
is necessary. This is a challenging future work.

In this experiment our system recognized three simul-
taneocus speech well. The number of simultaneously rec-
ognizable speakers depends on the performance of sound
source separation. The quality of separated speech is good
when the number of simultaneous speakers is less than or
equal three. In another experiment the performance of our
system is lower than in this experiment when speakers are
located at intervals of less than 30°. Therefore 30° is the
limitation of our method.

The system performs well in isolated word recognition.
This is good for simple dialog systems, but it is not enough
to recognize longer sentences in conversation, complex
dialog and dictation. On the other hand, we consider
that complete recognition of sentences such as dictation
is difficult. Keyword recognition by using word spotting
techniques will be the first step to solve this problem.

VII, CONCLUSION

Robot audition is a critical technology in creating an
intelligent robot that operates in daily environments. To
achieve such robot audition, we reported the MFT-based
interface between sound source separation and ASR in this
paper. The robot andition system based on the interface
exhibited high performance in the recognition of three
simultaneous speeches. This means that the MFT is a
promising method to improve the performance in systems
that treat sound source separation and ASR separately. In
addition, the generality of the interface is assessed through
application to the more different humanoid robot, ASIMO
as well as $SIG2, and Replie.
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