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Abstract— Automatic speech recognition (ASR) is essential for
a human-humanoid communication. One of the main problems
with ASR is that a humanoid inevitably generates motor noises.
These noises are easily captured by the humanoid’s microphones
because the noise sources are closer to the microphones than
the target speech source. Thus, the signal-to-noise ratio (SNR)
of input speech becomes quite low (sometimes less than 0 dB).
However, it is possible to estimate these noises by using infor-
mation about the humanoid’s own motions and gestures. In this
paper we propose a method to improve ASR for a humanoid with
motor noises by utilizing the information about the humanoid’s
motions/gestures. The method consists of psychologically-inspired
noise suppression and missing-feature-theory-based ASR (MFT-
ASR). The proposed noise suppression technique adds white
noise after noise suppression which does not improve SNR, but
it is suitable for MFT-ASR. This is inspired by the fact that
noise addition sometimes helps human perception as described
in Gestalt psychology. MFT-ASR improves ASR by masking
unreliable acoustic features in the input sound. The information
obtained on motion/gesture is used for estimating reliability
of acoustic features in MFT-ASR. We evaluated the proposed
method with noisy speech recorded by Honda ASIMO in a room
with reverberation. The noise data contained 32 kinds of noises:
motor noises without motions, gesture noises, walking noises, and
so on. The experimental results show that the proposed method
outperforms the conventional multi-condition training technique.

I. INTRODUCTION

In the future humanoids are expeted to be partners with

humans. To facilitate this partnership the humanoid should be

able to listen to the user’s speech by using its own micro-

phones. It is not realistic to assume that the user always wears

a headset. As we develop such a humanoid, “noise” generated

by its actuators is a real problem. The humanoid is basically a

highly redundant system, so it includes a lot of motors as well

as cooling fans for humanoid-embedded processors required

to achieve human-like behaviors autonomously. These human-

like behaviors are effective in making rich human-humanoid

interactions. For example, a humanoid’s gesture is considered

to play a crucial role in natural human-humanoid communi-

cation [1], [2]. It is helpful in communicating with people

for the humanoid to perform tasks and make presentations [3]

accompanied by physical actions [4]. These motions, however,

require high torque and high power motors, and fans which are

capable of high rpms to cool the powerful CPUs. This naturally

leads to loud noises. Furthermore, the actuators are closer to

microphones embedded in the humanoid than the target speech

source. Because of the close proximity of these noises sound

signals captured with the microphones have a low signal-to-
noise ratio (SNR) which can be less than 0 dB. In addition, the

motor noises are not constant, resulting in an input SNR that

changes dynamically. These factors make it difficult for the

humanoid to recognize human speech while in motion. Most

researchers working on human-humanoid communication tend

to avoid this problem by wearing a headset to input a voice

command instead of using the humanoid’s own microphones

[1]. Some researchers are trying to use humanoid-embedded

microphones for speech recognition [5], [6]. However, they

deal with stationary noises, that is, they assume that the

humanoid is stationary with respect to speech recognition. One

of the important differences between environmental noises and

humanoid motor noises is that the humanoid can estimate its

motor noises because it knows what type of motion or gesture

it is performing. Each kind of motion or gesture produces

a similar noise pattern every time it is performed. So, by

recording the motion and gesture noises in advance, a motor

noise can be easily estimated from the information on the

corresponding motion or gesture.

In this paper, we propose a new method to improve

Automatic Speech Recognition (ASR) for a humanoid with

motor noises by utilizing information about the humanoid’s

motion/gesture. This method consists of two stages; noise

suppression suitable for ASR, and ASR based on the Missing
Feature Theory (MFT) which improves ASR by masking

unreliable acoustic features in an input sound [7]. The mo-

tion/gesture information is used for estimating reliability of

acoustic features for MFT. The result of the experiment on

isolated word recognition under the condition where there

exist a variety of motion and gesture noises supports the

effectiveness of our proposed method.

The rest of this paper is organized as follows: Section II

discusses which of the existing noise-robust ASR techniques

would be effective for humanoid motor noises. Section III

explains our method for coping with humanoid motor noises,

while detailing how we apply MFT using pre-recorded noises.

Section IV describes the isolated word recognition experiment.

Section V discusses our results. The last two sections present

our conclusions for future work.
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II. NOISE-ROBUST AUTOMATIC SPEECH RECOGNITION

So far, many noise-robust ASR techniques have been pro-

posed. Generally, they fall into three categories; noise-robust

acoustic models, decoder modification, and preprocessing.

This section introduces these techniques and discusses which

techniques are suitable for ASR under humanoid motor noises.

A. Noise-Robust Acoustic Model

A common technique is the multi-condition training. It

trains the acoustic model on speech data to which noises are

added. This technique improves ASR performance when an

input signal includes the noises added in training acoustic

model. However, speech data with all kinds of motor noises

are necessary to train an acoustic model. Further, it is time-

consuming and might suffer from overfitting.

Maximum-Likelihood Linear Regression (MLLR) [8] also

improves the robustness of ASR by using an adaptation

technique with the affine transform. It is less time-consuming

than multi-condition training in terms of calculation. However,

the cost of data preparation is the same as with multi-condition

training. A large amount of speech data with motor noises is

required to cope with the many different motor noises.

B. Decoder Modification

One approach to improving noise-robustness by modifying

the ASR decoder is Missing Feature Theory (MFT) [7]. When

noises exist, some areas in the spectro-temporal space of

speech are unreliable as acoustic features. In MFT, such

unreliable acoustic features are masked and only reliable ones

are used for likelihood calculation in the ASR decoder. So,

this process requires some modifications to the ASR decoder.

In a similar approach, multi-band ASR [9], [10] has been

proposed. This method uses HMMs for each sub-band, and

obtains integrated likelihood by assigning smaller weights to

unreliable sub-bands. In this paper, when we use the term

MFT, it can indicate both MFT and multi-band ASR.

MFT-based methods show high noise-robustness against

both stationary and non-stationary noises when the reliability

of acoustic features is estimated correctly. The main issue in

applying them to ASR is how to estimate the reliability of

input acoustic features correctly. Because the SNR and the

distortion of input acoustic features are usually unknown, the

reliability of the input acoustic features cannot be estimated.

However, because pre-recorded noises are available in recogni-

tion, the reliability estimation of the input acoustic features is

easier even when noise power is high. So, we think that MFT is

more suitable for dealing with the non-stationary noises from

the humanoid’s motors.

C. Preprocessing

Preprocessing is performed to improve the SNR of the input

speech signals. There are two common approaches – single

channel and multi-channel approaches.

Spectral Subtraction (SS) [11] is one of the common meth-

ods to suppress noises. Ito et al. proposed application of SS

to cope with the humanoid’s own motor noise [12]. Their

method estimated the motor noise from the humanoid’s joint

angles with a neural network, and performed SS using this

estimated noise. One problem with this approach is that ASR’s

performance degraded when the noise was not well-estimated.

In addition, when the noise estimation fails, the degradation

is worse than that in the case of MFT approaches, because

SS modifies acoustic features directly. Since the same types

of motions do not always generate identical motor noises, it

is difficult to estimate the motor noises well enough for SS

to cope with noises properly. So, the SS-based method is not

suitable for the humanoid.

Other noise suppression techniques also have been reported.

Ephraim and Malah reported adaptive noise suppression based

on a kind of spectral subtraction [13]. This method adaptively

estimates a probability of speech existence based on the

spectral power of a monaural input sound. According to

this probability, noises included in the input are suppressed.

Generally, while spectral subtraction makes musical noises and

some distortions, but the noise-suppressed signal using this

method includes less musical noises and distortion, because it

takes temporal and spectral continuities into account.

Nakadai et al. reported noise cancellation by using an in-

ternal microphone located close to the noise source[14]. How-

ever, this approach has the problem of deploying microphones

for noise cancellation in the case of a humanoid, because a

humanoid has many degrees of freedom that produce, a lot of

noise sources, and their locations change due to gestures and

walking.

When multiple microphones are available, it is possible to

use speech separation techniques to extract the target speech

such as Beam Forming (BF) [5], Independent Component
Analysis (ICA) [15], and Geometric Source Separation (GSS)
[6]. BF is a common method to separate sound sources

by using multiple microphones. However, in the cases of

conventional BF approaches, separate speech is distorted by

noises and inter-channel leak energy. This degrades ASR

performance. Some BF methods with less distortion such as

adaptive beamforming require a lot of computational power,

which makes real-time sound source separation difficult. ICA

is one of the best methods for sound source separation. It

assumes that sound sources are mutually independent and

the number of sound sources is equal to the number of

microphones. These assumptions are, however, beyond the

real world capability to separate sound sources. In addition,

ICA has some other problems, for example a permutation

problem and a scaling problem that are hard to solve. In

GSS, the limitation of the relationship between the numbers

of sound sources and microphones is relaxed. It can separate

up to N − 1 sound sources where N is the number of

microphones, by introducing “geometric constraints” obtained

from the locations of sound sources and microphones. Ya-

mamoto et al. reported a humanoid audition system that

recognized simultaneous speech by the combination of GSS

and MFT-based ASR [6]. They showed the effectiveness of

GSS as well as MFT-based ASR with automatic reliability

estimation using the inter-channel leakage energy. However,

27



Noise Template
Selection

Noise
Matching

Continuous Missing 
Feature Mask Generation

Selected
Noise Template

Captured Sound
(Speech + 
  Motor Noises)

Utterance

Motion Command

Decoder Recognition
Resut

Log-spectral
Feature

Continuous
Missing
Feature Mask

    Noise
Suppression

White Noise
Addition

Log-spectrum 
Feature Extraction

Noise Timing
Noise Template
Captured Sound

Acoustic Feature Extraction with Preprocessing

Missing Feature Mask Generation Utilizing Motor Noise Templates
Pre-recorded noise templates

Motion 1 Motion 2 Motion N

Humanoid
with Mic.

MFT-ASR

Fig. 1. Block diagram of the proposed method

in GSS, errors in geometric constraints adversely affect the

performance, while microphone and sound source locations

generally include some errors in measurement and localization.

Multi-channel approaches are effective when the sound source

separation works properly. However, every approach more or

less generates separation errors. In addition, the total system

tends to be complicated. This means that the number of

parameters for the system increases and more computational

power is required by the system. Because the space and

computational power a humanoid can provide is limited, these

can be difficult problems. Therefore, in this paper we focus

on single channel approaches.

Consequently, we decided to use noise suppression based on

Ephraim and Malah [13] for preprocessing, and MFT [7] for

decoder modification. We did not use noise-robust acoustic

model training techniques such as multi-condition training

and MLLR explicitly. However, the acoustic models we used

in this work assume that white noise is added to speech

signals. So, we trained the acoustic models on white-noise-

added speech data. In this sense, we use noise-robust acoustic

models.

III. AUTOMATIC SPEECH RECOGNITION BASED ON

MISSING FEATURE THEORY FOR MOTOR NOISES

Figure 1 shows the block diagram of the proposed method.

It consists of three blocks – acoustic feature extraction with

preprocessing, missing feature mask generation utilizing motor

noise templates, and missing-feature-theory-based automatic

speech recognition (MFT-ASR).

A. Acoustic Feature Extraction with Preprocessing

This block extracts acoustic features from noisy input suit-

able for MFT-ASR. It has three processes; noise suppression,

white noise addition, and log-spectrum feature extraction.

1) Noise Suppression: The input speech has quite a low

SNR of less than 0 dB. It is difficult to extract acoustic

features robustly under such a noisy condition. So, first, noise

suppression is performed as preprocessing of ASR. The noise

a) Three fragments do not
    organize.

b) Occlusion information helps 
    organization.

Fig. 2. An example of perceptual closure in Gestalt psychology

suppression method we adopted is based on Ephraim and

Malah’s method [13] described in Sec. II.

2) White Noise Addition: There is no method to suppress

noise without distortion. Such a distortion severely affects

acoustic feature extraction for ASR, especially the normal-

ization processes of an acoustic feature vector, because the

distortion causes fragmentation of the target speech in the

spectro-temporal space, and produce many sound fragments.

We can learn to solve this problem from human perception

mechanisms. We use the psychological evidence that noise

helps perception. Figure 2 depicts an example of “perceptual

closure” in Gestalt psychology [16]. Figure 2a) shows that

in human perception, it is sometimes difficult to perceive

organization from only fragments. Figure 2b) shows that other

information such as occlusion and noise helps the organization

of fragments. It is known that in the human auditory system

noises that pad temporal gaps between sound fragments help

auditory perception organization[16]. This is a kind of percep-

tual closure, and is called “auditory induction”.

This evidence is also useful for ASR. We propose to

add white noise to noise-suppressed speech signals. Because

this process degrades speech quality in regard to SNR, one
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might expect that the performance of ASR would not be

improved. However, it does improve the ASR performance

for the following two reasons.

• An additive white noise softens the distortions. Because it

is a broad-band noise, it is effective for distortion in any

frequency band. Actually, we add a white noise as strong

as half of the noise-suppressed signal so that the power of

distortion can be ignored. Therefore, the distorted speech

signal plus the white noise is regarded as non-distorted

speech plus white noise.

• An acoustic model that is trained with white-noise-added

speech data improves the performance of ASR for the

white-noise-added speech. In this case, the system is able

to assume only one type of noise included in speech, that

is, white noise. It is easier for ASR to deal with one type

of noise than various kinds of noises, and white noise is

suitable for ASR using a statistic model.

The addition of low-level noises has been reported as an

approach to noise-robust ASR in the speech community [17].

They added low-level noise to blur distortion after spectral

subtraction, and showed the feasibility of this approach in

noisy speech recognition. The added noise was office back-

ground noise, that is, broadband with some colors in frequency

domain. So, we use this technique more aggressively to attain

higher noise-robustness. The added noise power is nearly half

the speech power and we use white noise instead of colored

noise. As far as we know this is the first application of

this techinique to a humanoid audition system. Therefore, we

believe that our approach is original in this sense.
3) Log-spectrum Feature Extraction: After white noise is

added, acoustic features are extracted. For acoustic features,

we use log-spectral features [18], [19], not MFCC. This is

because of the characteristic of motor noises. Motor noise

does not have uniform power over the frequency domain.

Usually the power is concentrated in certain frequency bands.

This means that the effect of the motor noise depends on

the frequency subband. Once it is transformed to MFCC,

the motor noise spreads over all coefficients, that is, all

subbands in the Cepstrum domain. The feature reliability

is estimated per subband, so feature vectors in a frequency

domain are suitable for MFT-ASR. In the case of MFCC, three

normalization processes are performed to obtain noise-robust

acoustic features; C0 normalization, liftering, and Cepstrum

mean normalization. It is known that these processes are quite

effective, so we conducted spectral normalization processes for

log-spectral features – mean power normalization, spectrum

peak emphasis and spectrum mean normalization – corre-

sponding to the three normalization processes in MFCC. The

details of spectrum normalization are described in [18], [19].

B. Missing Feature Mask Generation Utilizing Motor Noise
Templates

This block estimates a missing feature mask for MFT-ASR

that represents which frequency band of which time frame

is damaged by the motor noise . Automatic missing feature

mask generation has been studied by [20]. This estimate is

still difficult without using a priori information on speech and

noise. In our case, however, the system estimates motor noises

by using a motion command. So, this block estimates the

missing feature mask by using a motor command and pre-

recorded motor noise templates. It includes three processes;

noise template selection with pre-recorded motor noise tem-

plates, noise matching, and continuous missing feature mask

generation.

1) Noise Template Selection: This process selects a pre-

recorded noise template corresponding to an input motion

command. The noise template is selected from a pre-recorded

noise template database. The database is constructed by

recording the noises of all motions beforehand. In our system,

32 noise templates are currently stored in the database. The

selected template is sent to noise matching process.

2) Noise Matching: The inputs to this process are the

selected noise template and the captured sound obtained with

the humanoid’s microphone. When the types of motions are

the same, the corresponding motor noises have similar spectral

features. So, by matching the two inputs, the target noises

included in the captured sound can be estimated. Note that in

this paper we call the noises contained in the target sound (a

mixture of speech and noises) the target noises in this paper.

We used the following method to match the noise templates

and the target noises. The N sample average of the difference

between the noise template and the target noise D(s) is defined

by

D(s) =
1
N

N∑
n=1

|T(s)n − Rn|. (1)

where T and R are a noise template, and a target noise,

respectively. T(s) or T(−s) means the acoustic feature

vector shifted forward or backward at s samples. R is obtained

as an acoustic signal including no speech data.

The matched sm is defined by

sm = argmin
s

D(s). (2)

The acoustic features of T(sm) is sent to the missing feature

mask generation process with time shift information sm.

3) Continuous Missing Feature Mask Generation: This

process uses time shift information of the target noise, the

selected noise template, and the captured sound, to estimate a

missing feature mask for each time frame. Each value in the

missing feature mask is a reliability of the corresponding sub-

band. We can say that we use a continuous missing feature

mask, because the range of the reliability is from 0 to 1.

The missing feature mask is determined based on the noise

level. We define several signals here. The log-spectrum of

the estimated noise T(sm) is n(k, t), where k is the feature

index in the log-spectrum acoustic feature vector, and t is time

frame. The log-spectra of the input speech and the white-noise-

added signal after noise suppression are y(k, t) and p(k, t),
respectively. The log-spectrum of the clean speech is estimated

by

c′(k, t) = y(k, t) − n(k, t). (3)
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The weight factor f(k, t) is calculated by

f(k, t) =
|C ′(k, t) − mediank(C ′(k, t))|

P (k, t) − C ′(k, t)
(4)

where mediank(a(k)) is a function that obtains the median

value of a(k). P (k, t) and C ′(k, t) are normalized spectra of

p(k, t) and c′(k, t), respectively.

Because the range of the weight factor f(k, t) can be wide,

we set an upper limit threshold fth so that f(k, t) can have a

value from 0 to fth. fth is empirically set to 5.0. We, then,

normalize it as missing feature mask w(k, t), so that the sum

of the w(k, t) at a time frame can be equal to the number of

dimensions of the acoustic feature vector K described in [18],

[19]. This normalization suppresses the change in optimized

values of parameters such as insertion penalty.

w(k, t) =
k(f, t)

K∑
k=1

f ′(k, t)

(5)

f ′(k, t) =

{
f(k, t) if f(k, t) < fth,

fth if otherwise.

C. Missing-Feature-Theory-Based Automatic Speech Recogni-
tion

In this block the decoder recognizes input speech based on

MFT. MFT is expected to work well for irregular noises. Most

distortions and noises, besides white noise, are suppressed in

the first block, but the acoustic feature still includes some kind

of distortion. MFT is effective in dealing with such distortions.

Note that if the difference between pre-recorded noise and

the noise included in the target speech is large, MFT is less

effective.

In MFT, reliable features of the acoustic feature vector have

large weight values and unreliable features have small weights.

The weights affect the acoustic likelihood as described in

[18], [19]. When not using MFT, the acoustic likelihood of

a phoneme model qk and the acoustic feature vector st is

defined by

L(st|qk) =
N∑

i=1

L(sti|qk). (6)

In MFT, using a weight ωi, the acoustic likelihood is defined

by

L(st|qk) =
N∑

i=1

ωiL(sti|qk). (7)

IV. EVALUATION

We evaluated the system throughout isolated word recogni-

tion to determine the effectiveness of the proposed method.

We used Honda ASIMO as a testbed. ASIMO had two

microphones mounted on its head. We used the data recorded

through the left microphone.

We prepared two types of speech data sets for training

and test data. As clean speech data, we used the ATR 216

phonetically-balanced word set. Nineteen speakers (9 males

and 10 females) included in the word set were used for acous-

tic model training (hereafter dataset A1). Another 3 speakers

(2 males and 1 female) were used for isolated word recognition

tests (hereafter dataset R1). ASIMO has two microphones

on its head, we selected ASIMO’s left microphone for data

capturing.
To make the training data set, we first played all speech data

included in dataset A1 through a loudspeaker, and recorded it

with the left microphones in an anechoic room. The distance

between ASIMO and the sound source was fixed at 100 cm,

and the direction of the sound source was also fixed toward the

center of ASIMO. ASIMO’s stationary noise was also recorded

with ASIMO on in the anechoic room. A training data set A2

was then generated by adding the recorded speech data and

noise.
The test data set was generated by performing a convolution

of clean speech data and transfer functions from a sound

source to ASIMO’s left microphone. Motor noises were added

to the convoluted speech data. The transfer functions were

obtained by measurement of impulse responses. The impulse

responses were measured in a 7 m (W) × 4 m (D) × 3 m (H)

room. In this room, three walls of the room were covered

with sound absorbing materials, and another wall was made

of glass. The floor and the ceiling are flat and make echoes.

There is a kitchen sink inside the room. We can hear sounds

from an air-conditioner at a low frequency. So, the room

has asymmetrical reverberation and a noise source in addition

to the humanoid’s motors. ASIMO was placed at the center

of the room. The distance between ASIMO and the sound

source was set at 50 cm, 100 cm, 150 cm, and 200 cm, and the

direction of the sound source was fixed in direction to the

front of ASIMO. The impulse response was measured at each

point with ASIMO off. We also recorded 32 kinds of noises:

stationary motor noise, gesture noises, and walking noises.

These noise data were used not only for data set generation but

also for making a pre-recorded noise template database. So,

the noises of these motions were recorded several times so that

the noises for test, multi-condition acoustic model training and

the templates for matching would be mutually exclusive. A test

data set R2 was generated by adding the captured motor noises

after convolution of R1 and the measured transfer functions.

We, thus, prepared two speech data sets: A2 for training and

R2 for tests.
We, then, trained four triphone based acoustic models “AM-

1” through “AM-4” by using the following data sets:

AM-1 the data set A1 only (clean acoustic model),

AM-2 the data sets A1 and A2 (multi-condition trained

acoustic model),

AM-3 the data set A1 and a data set A3 which was obtained

by performing noise-suppression for A2.

AM-4 the data set A1 and a data set A4 which was obtained

by adding white noises to A3.

Strictly, we might have to say that “AM-3” and “AM-

4” are multi-condition trained models, because A3 and A4

still include motor noises. However, motor noises in A3 are

suppressed, so its noise level is greatly lower than A2. A4 is
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regarded as speech data with only white noise, that is, “uni-

condition”. So, we defined “AM-3” and “AM-4” as non multi-

condition trained acoustic models.

We compared the speech recognition performances for the

six conditions shown in Table I. Condition A is just con-

ventional speech recognition with a clean acoustic model. In

condition B, the system used a multi-condition trained acous-

tic model which is a common noise-robust technique. Most

applications to robots and car navigation currently use this

technique. So, we regard condition B as the baseline condition.

In condition C, noise-suppressed speech signals were recog-

nized without adding white noises by using conventional ASR.

This will show the basic performance of noise suppression.

In this case, we did not use mean power normalization in

extracting log-spectrum acoustic features described in Sec. III-

A.3, because this normalization adversely affects log-spectrum

acoustic features badly due to distortions in noise suppression.

Actually, we confirmed that log-spectrum acoustic features

without mean power normalization outperform those with this

normalization. In condition D, noise-suppression and white

noise addition are effective, but conventional ASR was used.

So, this will show the effectiveness of white noise addition.

Condition E is the proposed method. In this condition, noise-

suppression, white noise addition and MFT-ASR were per-

formed. We expect that the performance in condition E to

be the best among conditions A through E. Condition F
is similar to the condition E. However, in missing feature

mask generation, we gave the correct missing feature mask

information to the system. The correct missing feature mask

was generated by giving a motor noise included in the input

speech as a noise template to the system. Condition F will

exhibit the upper-limit in performance for our approach.

Table II shows the experimental results. A large bold face

number denotes the best result per noise type per distance

among the conditions A through E, and large italic denotes

the second best result. In the columns of condition E, P-

values[21], which denote error rates of the proposed method

(condition E) for the baseline (condition B), are shown. P-

values of less than 10%, which are expected to statistically

improve the performance with the proposed method, were

emphasized in Table II. P-values over 100% were shown as

“—”.

Generally, condition F has the best performance because it

uses a priori information to estimate missing feature masks.

So, when the system does not use a priori information,

condition E is the best. Condition B or D is second best.

In the cases of gestures using a hand and walking motions at

200 cm, the proposed method showed a statistically-significant

improvement in ASR performance according to P-values. We

could not find a significant difference in the other cases, for

head gestures and walking motions at the distances of 50 cm,

100 cm, and 150 cm.

V. DISCUSSION

The reason why the proposed method did not work well for

head gestures is that head motions are not especially noisy in

ASIMO, that is, for these noises the input speech has a high

SNR. Actually, we could not hear the sound of head motions.

This causes ASR, in the cases of these head motions, to show

good performance in condition A. In the cases of walking

motions at 50 cm, 100 cm, and 150 cm, we can also say that

the proposed method did not work properly again because

of high SNR input. In these cases, noise sources are a little

distance away from the microphone, because the microphone

was installed on the head while noises came from the legs.

So, the input SNR is higher than for other gestures. However,

the effect of reverberation is stronger, so condition A did not

deal with walking motions well regardless of high SNR input.

When the distance to the target speech source was 200 cm,

the proposed method was more effective because input SNR

was low. Thus, we can say that the proposed method is more

effective than multi-condition training in the case of low SNR

input, and it is comparable in the case of high SNR input.

The only use of noise suppression (condition C) did not

produce a good performance. This means that our noise

suppression method handles strong distortions well enough to

affect ASR. However, the combination of noise suppression

and white noise addition (condition D) improve ASR perfor-

mance equal to multi-condition training (condition B). If only

white noise addition is applied, the noise level is much higher

than target speech signals, and speech recognition would be

more difficult for the system. So, this combination use is a

key technique to cope with low SNR input.

The use of MFT (condition E) is basically effective, espe-

cially for low SNR inputs. The results shows that the proposed

method, that is, the combination of noise suppression, white

noise addition and MFT is superior to multi-condition training.

Compared with MFT with a priori missing feature mask

(condition F), the proposed method is somewhat degraded by

a very small amount. This means that our automatic missing

feature mask generation succeeds in generating almost correct

missing feature masks, and the use of pre-recorded noise

templates is effective in coping with motor noises.

VI. CONCLUSION

In this paper, we have proposed an automatic speech recog-

nition method that copes with a humanoid’s own motor noises.

In order to improve ASR when the humanoid’s own motor

noises are present, our method combined two techniques –

noise suppression which is suitable for ASR, and missing-

feature-theory-based ASR utilizing pre-recorded motor noise

templates. Usually, noise suppression is a technique to improve

the SNR of the input speech. For ASR, high SNR speech

is not always the optimal input, because distortion by noise

suppression degrades the ASR performance. We solved this

problem by adding white noise to noise-suppressed signals.

This idea was inspired by psychological evidence of human

audio perception. In applying the missing feature theory,

automatic estimation of unreliable acoustic features is a main

issue. Our method solved this problem by utilizing information

on a motion pattern obtained from a humanoid controller and a

pre-recorded motor noise corresponding to the motion pattern.
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TABLE I

Experimental Conditions

Condition A B C D E F
Multi-condition X
Noise Suppression X X X X
White Noise Addition X X X
MFT X
MFT (a priori mask) X
Acoustic Model AM-1 AM-2 AM-3 AM-4 AM-4 AM-4

We constructed the ASR system based on the proposed method

using the Honda ASIMO. The experimental results using the

constructed system demonstrated that this method is effective,

especially for low SNR input.

VII. FUTURE WORK

For further improvement in ASR for a humanoid with motor

noises, we will need to solve several problems. We should

confirm the effectiveness of our method using not just recorded

data but real data in a dynamically-changing environment. We

are also considering combining our method with sound source

separation by using multi-channel microphones embedded in

the humanoid, and another new feature to select noise-robust

techniques according to the types and the power levels of

noises.
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TABLE II

ISOLATED WORD RECOGNITION (% WORD CORRECT)

50 cm 100 cm
Condition A B C D E (P-value) F A B C D E (P-value) F
Motor Noise 71.45 81.02 46.45 83.33 84.88 (0.03) 83.18 66.20 82.25 50.00 82.87 83.49 (0.50) 83.33
Right hand (1) 59.26 74.38 24.38 77.62 81.94 (0.00) 82.10 44.60 68.52 20.68 71.45 77.62 (0.00) 79.32
Right hand (2) 53.09 71.60 16.20 72.07 78.24 (0.00) 78.86 39.66 63.27 13.73 60.34 68.52 (0.01) 73.77
Right hand (3) 65.59 80.40 30.71 80.56 80.56 (1.00) 81.94 54.78 78.09 28.86 75.77 79.01 (0.66) 78.40
Right hand (4) 61.88 79.01 33.33 80.56 82.10 (0.10) 85.03 50.62 72.99 29.78 76.23 81.33 (0.00) 81.79
Right hand (5) 62.96 76.54 24.38 81.79 81.64 (0.01) 82.25 48.30 72.69 19.91 75.62 80.40 (0.00) 79.17
Left hand (1) 68.98 79.78 37.96 81.33 83.33 (0.05) 83.95 59.10 80.40 36.27 80.40 82.56 (0.25) 81.94
Left hand (2) 70.52 81.48 45.37 82.25 83.02 (0.39) 84.41 62.04 81.33 43.83 78.24 82.41 (0.60) 82.72
Left hand (3) 67.75 79.94 37.65 81.79 83.02 (0.08) 83.18 54.17 77.31 34.72 75.31 80.86 (0.07) 79.94
Both hands (1) 56.02 74.54 24.85 76.23 81.48 (0.00) 80.09 40.28 66.36 21.30 66.67 73.77 (0.00) 75.00
Both hands (2) 60.03 75.77 26.39 78.55 82.72 (0.00) 83.64 47.07 69.14 25.46 70.37 75.77 (0.00) 76.23
Both hands (3) 53.55 72.99 26.39 77.47 80.25 (0.00) 79.94 45.22 66.98 20.83 68.83 73.15 (0.00) 73.46
Both hands (4) 59.57 74.85 27.78 77.47 79.94 (0.01) 81.17 47.07 70.37 24.69 70.99 77.16 (0.00) 79.48
Both hands (5) 59.10 74.54 22.38 78.70 80.25 (0.00) 81.33 46.60 69.14 18.21 71.45 77.47 (0.00) 79.32
Head (1) 66.82 75.62 26.39 76.70 78.70 (0.11) 83.49 56.64 74.54 22.84 66.05 73.46 (—) 79.94
Head (2) 66.82 77.47 33.80 78.70 79.94 (0.22) 83.95 58.02 77.01 34.72 74.69 74.69 (—) 81.02
Head (3) 70.06 80.86 35.80 80.86 83.18 (0.21) 82.25 64.51 81.94 35.65 79.32 78.40 (—) 82.56
Head (4) 63.12 77.01 30.56 75.00 79.32 (0.26) 79.48 48.77 71.45 29.78 64.35 75.93 (0.03) 76.23
Head (5) 65.12 78.09 28.55 76.08 79.17 (0.63) 81.48 56.64 75.00 28.86 70.22 75.15 (1.00) 75.31
Head and Hands (1) 67.59 79.17 33.80 78.70 80.09 (0.67) 82.72 58.33 78.55 32.72 74.07 75.15 (—) 80.56
Head and Hands (2) 60.34 74.54 22.69 77.47 81.64 (0.00) 81.17 44.60 66.20 21.14 71.76 75.62 (0.00) 76.23
Head and Hands (3) 57.25 74.54 16.67 77.62 80.56 (0.00) 81.02 43.67 67.90 14.51 66.51 70.83 (0.17) 75.46
Head and Hands (4) 61.11 74.23 22.22 79.94 82.25 (0.00) 82.41 47.69 68.36 22.53 73.46 78.55 (0.00) 78.40
Head and Hands (5) 62.65 78.09 30.71 79.17 82.25 (0.03) 83.49 50.77 72.22 27.31 72.38 76.85 (0.02) 79.78
Walking Motion (1) 55.25 74.23 25.77 71.60 76.39 (0.30) 79.17 44.75 70.06 23.61 60.03 66.98 (—) 73.30
Walking Motion (2) 58.95 78.40 28.70 70.99 78.55 (1.00) 78.86 47.22 72.53 25.46 59.57 69.29 (—) 72.22
Walking Motion (3) 66.51 79.48 27.93 78.55 81.94 (0.20) 81.48 53.09 77.31 27.47 67.90 75.93 (—) 77.93
Walking Motion (4) 68.83 81.64 38.43 81.02 82.56 (0.65) 82.41 56.79 79.48 36.73 74.54 80.71 (0.52) 81.17
Walking Motion (5) 64.04 79.17 22.84 78.70 80.09 (0.67) 80.71 47.22 76.23 20.52 66.98 72.99 (—) 75.00
Walking Motion (6) 63.27 77.62 23.61 79.17 79.32 (0.41) 82.07 50.00 76.39 20.83 68.06 75.93 (—) 77.16
Walking Motion (7) 68.83 81.64 38.43 81.02 82.56 (0.65) 82.41 56.79 79.48 36.73 74.54 80.71 (0.52) 81.17
Walking Motion (8) 61.27 75.46 22.38 75.15 79.78 (0.02) 81.02 45.37 72.69 19.60 64.35 70.22 (—) 74.69

150 cm 200 cm
Condition A B C D E (P-value) F A B C D E (P-value) F
Motor Noise 51.70 76.70 43.67 74.54 78.86 (0.26) 78.09 41.51 69.14 40.28 68.21 72.22 (0.13) 73.46
Right hand (1) 29.17 56.48 17.13 62.04 69.44 (0.00) 68.21 22.99 44.91 14.04 52.47 60.34 (0.00) 61.73
Right hand (2) 25.93 47.53 10.65 48.61 57.56 (0.00) 65.43 18.98 38.12 7.25 39.51 50.46 (0.00) 55.09
Right hand (3) 40.28 66.82 23.30 66.67 71.45 (0.03) 72.84 33.02 57.25 20.06 58.95 65.74 (0.00) 68.36
Right hand (4) 36.88 58.95 22.84 67.28 72.99 (0.00) 75.46 27.62 49.69 16.51 55.09 65.90 (0.00) 66.67
Right hand (5) 35.03 57.25 18.06 64.66 73.15 (0.00) 73.46 26.39 46.14 13.43 55.86 63.89 (0.00) 65.28
Left hand (1) 42.90 69.75 32.87 68.83 73.30 (0.07) 74.23 32.25 60.19 28.24 59.41 67.44 (0.00) 68.36
Left hand (2) 45.99 73.30 40.90 72.69 75.93 (0.20) 76.85 36.73 63.12 35.34 63.58 72.22 (0.00) 72.84
Left hand (3) 39.35 67.28 29.94 68.06 73.61 (0.00) 73.92 31.33 55.40 25.93 58.49 65.28 (0.00) 66.51
Both hands (1) 26.85 53.86 18.06 56.48 66.36 (0.00) 67.75 19.75 43.83 14.81 45.99 55.40 (0.00) 56.64
Both hands (2) 32.10 59.10 21.30 60.96 67.28 (0.00) 68.52 25.15 49.38 15.74 51.54 59.10 (0.00) 61.11
Both hands (3) 29.94 56.02 17.28 58.18 65.28 (0.00) 66.67 21.30 47.53 14.35 48.77 56.64 (0.00) 58.49
Both hands (4) 32.41 58.49 18.21 61.27 68.06 (0.00) 71.30 25.00 50.00 16.20 51.85 60.49 (0.00) 61.42
Both hands (5) 33.49 56.48 14.04 61.73 69.44 (0.00) 71.60 24.07 46.76 11.42 51.85 58.02 (0.00) 61.42
Head (1) 42.44 64.81 19.44 58.49 62.04 (—) 72.84 34.72 58.64 16.20 48.15 57.72 (—) 65.90
Head (2) 45.37 67.28 30.56 66.05 65.90 (—) 75.31 37.65 61.73 25.62 55.71 57.72 (—) 69.91
Head (3) 49.69 75.31 33.02 70.99 70.99 (—) 76.08 40.43 64.81 29.63 62.19 66.67 (0.43) 70.37
Head (4) 35.96 60.03 24.69 54.32 63.43 (0.15) 66.05 26.08 50.00 21.14 46.91 57.41 (0.00) 59.41
Head (5) 45.83 66.05 25.31 60.96 66.05 (—) 67.13 36.42 58.18 22.07 50.46 58.02 (—) 61.88
Head and Hands (1) 43.83 70.37 28.86 64.81 67.44 (—) 76.23 34.88 59.57 26.85 58.18 61.88 (0.30) 71.30
Head and Hands (2) 30.40 56.48 16.51 60.80 65.28 (0.00) 68.83 22.84 46.14 14.66 50.15 58.18 (0.00) 59.10
Head and Hands (3) 30.71 56.64 10.96 54.63 61.73 (0.02) 66.67 22.84 46.76 9.41 46.14 52.93 (0.00) 56.79
Head and Hands (4) 32.56 55.25 18.83 62.04 69.44 (0.00) 71.60 24.69 45.83 14.04 56.94 63.12 (0.00) 61.88
Head and Hands (5) 33.95 61.42 22.99 64.04 71.30 (0.00) 71.76 26.54 53.55 18.21 56.33 61.57 (0.00) 63.27
Walking Motion (1) 31.94 58.18 18.83 46.45 57.72 (—) 62.19 23.61 46.60 15.74 39.66 51.23 (0.03) 54.32
Walking Motion (2) 34.26 62.04 23.30 51.70 62.65 (0.82) 64.20 24.07 51.54 20.06 42.44 53.09 (0.50) 52.62
Walking Motion (3) 37.96 68.52 25.62 58.49 70.06 (0.50) 69.44 29.17 58.18 21.91 49.38 57.87 (—) 61.73
Walking Motion (4) 43.21 71.45 35.19 66.98 73.30 (0.39) 74.07 35.19 61.57 29.78 59.72 67.75 (0.00) 68.83
Walking Motion (5) 32.56 63.89 18.98 57.25 64.97 (0.65) 69.44 26.08 51.08 15.43 45.22 55.86 (0.03) 58.02
Walking Motion (6) 35.96 64.51 19.14 57.87 65.59 (0.65) 68.52 27.62 55.40 15.90 47.99 56.02 (0.83) 61.11
Walking Motion (7) 43.21 71.45 35.19 66.98 73.30 (0.39) 74.07 35.19 61.57 29.78 59.72 67.75 (0.00) 68.83
Walking Motion (8) 32.56 60.49 16.98 49.07 59.57 (—) 64.81 23.77 49.69 14.04 41.05 49.38 (—) 56.02
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