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Abstract 

W e  introduce a method to generate whole body mo- 
tion of a humanoid robot such that the resulted to- 
tal linear/angular momenta become specified values. 
First, we derive a linear equation which gives the to- 
tal momentum of a robot from its physical parameters, 
the base link speed and the joint speeds. Constraints 
between the legs and the environment are also con- 
sidered. The whole body motion i s  calculated from a 
given momentum reference by using a pseudo-inverse 
of the inertia matrix. As ezamples, we generated the 
kicking and walking motions and tested on  the actual 
humanoid robot HRP-2. This method, the Resolved 
Momentum Control, gives us a unified framework to  
generate various maneuver of humanoid robots. 

1 Introduction 

Smooth and dexterous control of complicated mech- 
anisms is an important subject of robotics. Humanoid 
robots can be regarded as its ultimate goal, and recent 
development of reliable biped walking gives ordinally 
people even an illusion of a perfect multi-purpose ma- 
chine [1 ,2 ,3 ,4 ,5 ] .  However, once we step out the field 
of walking control, humanoid robots can perform very 
limited tasks. Although we can program our robot for 
a particular purpose, we can’t do that for thousands 
of tasks in thousands of different environments as  hu- 
manoid robots encounter in real world. Here we have 
a problem. 

As one of the possible solutions, Wooten and Hod- 
gins showed their simulated human model can perform 
various dynamic motions including inward/backward 
somersault, back handspring, vertical leap, broad 

jump and so on. To generate them, they combined 
four basic behaviors, which are leaping, tumbling, 
landing and balancing [ti]. 

In this paper, to establish a unified framework prc- 
ducing variety of motion, we rely on the basic law of 
physics, an equation of motion written with momen- 
tum. No matter how a robot has complicated struc- 
ture, we can determine its total linear and angular 
momenta. The total momentum is a vector of six el- 
ements, which describes macroscopic behavior of the 
entire robot. Since the momentum vector has a lin- 
ear relationship with the joint speed vector, we can 
calculate joint speeds which will realize the desired 
momentum. With this strategy, it is shown that we 
can easily generate a humanoid’s balancing, walking 
and other motions. 

This paper is organized as follows. In Section 2, 
we describe basic equations of momentum calculation. 
Using the equations, we show a method of motion 
planning and name it the Resolved Momentum Con- 
trol in Section 3. At the end of Section 3, we discuss 
the relationship between OUT resolved momentum con- 
trol and other conventional methods. In Section 4, we 
explain the detailed calculation of inertia matrix which 
is necessary to our method. In Section 5, using a hu- 
manoid robot HW-1, kicking and walking motions are 
generated and tested. Section 6 concludes the paper 
and states our future plan. 

2 Momentum equation 

2.1 Momentum and joint velocities 

We represent a humanoid robot as a mechanism 
of tree structure whose root is a f ieflying base link 
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(pelvis), a rigid body having 6 D.0.F in 3D space (Fig- 
ure 1). We define the frame Cg embedded in the base 
link whose translational velocity and angular velocity 
are ug and W B ,  respec!ively. In addition, we define 
a n x 1 column vector 0 which contains velocities of 
all joints as its elements where n is the total number 
of joints. The linear momentum P (3 x 1) and the 
angular momentum L (3 x 1) of the whole mechanism 
are given by 

where is the total mass of the robot, E is am identity 
matrix of 3 x 3, TB-: is the 3 x 1 vector from the base 
link to the total center of mass (CoM) and i is the 
3 x 3 inertia matrix with respect to the COW. M,j and 
Hg are the 3 x n inertia matrices which indicate how 
the joint speeds affect to the linear momentum and the 
angular momentum respectively. ̂ is an operator which 
translates a vector of 3 x 1 into a skew symmetric 3 x 3 
matrix which is equivalent to a cross product. 

In this paper, we assume all vectors of position, 
velocity and angular velocity are represented in the 
Cartesian frame CO fixed on the ground. 

Figure 1: A model of humanoid robot 

2.2 Constraints of foot contact 

Equation (1) gives the total momentum of a flying 
robot. However, when the robot is in contact with 
the ground, we must take into account of constraints 

that reduce the total D.0.F of the system. The foot 
velocities (up,, WF,)  of the frame C,(i = 1,2) are 
given by 

where J I , ~  is a Jacobian matrix (6 x 6) calculated 
from the leg configuration, rB.+F,  is a position vector 
(3 x 1) from the base frame to the foot frame and 
0iegi is the joint speed vector (6 x 1) of each leg. If 
Jl,< (i = 1 , Z )  are non singular, the vectors for the leg 
joint speeds are given by 

. .  
Let us divide the whole joint speed vector into leg 
parts and the rest part as 

where &fie, is the joint speed for waist, arms and head. 
We also divide the corresponding inertia matrices as 

Mg = [ M l e g ,  Mreg, Mfre.1, 
Hg = [ H l e g ,  Hlq,  Hfie.1. 

Then, we can rewrite the momentum equation (1) as 

By substituting (3) into ( 5 ) ,  we obtain the momentum 
equation under the constraint as 

The second term in the right hand side of ( 6 )  indicates 
the extra momentum generated by specifying the foot 
speed. 

1645 



3 Resolved Momentum Control where 

3.1 Setting momentum reference 

For every mechanical system, no matter how its 
structure or behavior is complicated, we can deter- 
mine the position of the CoM E ,  the linear momentum 
P and the angular momentum L for the total mecha- 
nism. 

Dividing the total linear momentum P by the total 
mass in, we obtain the translational speed of the CoM. 

(7) 

Thus, we can control the position of the CoM hy ma- 
nipulating the linear momentum. 

As the extension of this, we propose a method of 
control or pattern generation by manipulating the to- 
tal (linear and angular) momentum. Let us call this 
method the Resolved Momentum Control. The ref- 
erence motion of a humanoid robot can he specified 
by assuming a rigid body whose mass and moment 
of inertia are equal to the target. However, we can- 
not associate the orientation of this imaginary object 
to the robot, since a rigid body can not hold enough 
information to represent the internal structure of the 
multi-body system. 

3.2 Momentum selection and control by 
pseudo-inverse 

In many applications, we do not have to specify all 
six elements of the momentum. Moreover, in some 
case we encounters a numerical unstability hy spec- 
ifying the a11 elements of the reference momentum. 
Therefore, we introduce a selection matrix S which is 
1x6  ( 0 < 1 5 6) to pick up the elements of the momen- 
tum to be controlled. The selection of the momentum 
is given by 

SE [ Z ] ,  (8) 

where e,, is a column vector of 6x 1 that has one at  si- 
th  row and zeros for the rest. si specifies the element 
of the momentum we want to pick up. Transposing the 
second term of (6) from the right side to the left side, 
then multiplying S from left, we ohtain the following 
equation. 

(9) 

Here Pref is the reference linear momentum, Z" is 
the reference angular momentum and is the ref- 
erence velocity for each foot. 

Using (9), the target speed which realizes the ref- 
erence momentum and the speed is calcu- 
lated as the least square solution by 

where At is a pseud&inverse (the least-squares in- 
verse) of A. This equation gives the Resolved M e  
mentum Control. 

3.3 Related works 

The resolved momentum control can be regarded 
as a unified scheme of conventional methods for hu- 
manoid robots. Kagami et  al. (71 proposed a bal- 
ance control of a humanoid by manipulating the Cob4 
with second order nonlinear programming optimiza- 
tion. Sugihara et al. proposed a balancing and walk- 
ing controller based on the CoM manipulation [SI. 
Both methods mainly take into account of linear mo- 
mentum control. Especially, their COG Jacobian [7, 81 
can be obtained when we divided the matrices ML 
and Mfi.. of (6) by the total mass f i .  

Baerlocher and Boulic discussed the control of 
highly redundant mechanical system under the mul- 
tiple demands like reaching target, obstacle avoidance 
and balancing 191. They encoded the task priority hy 
using pseudo-inverse and the damped least-squares in- 
verse. By combining the Resolved Momentum Con- 
trol, we can extend their method for a dynamic mo- 
tion. 

In space robotics, many researchers have already 
pointed out the importance of the total momentum. 
Umetani and Yoshida discussed a control of free fly- 
ing robot equipped with a manipulator and proposed 
a resolved motion rate control combined with the mo- 
mentum conservation [lo]. An equivalent calculation 
is possible using our resolved momentum control. Let 
us assume a space robot equipped with one leg or- 
biting in space. We set the reference momentum as 
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Pmf = 0,  Le' = 0 taking adequate reference frame. 
By using a selection matrix S = E ,  (10) becomes 

where F;: is the desired foot speed in space. For a 
space robot with one leg of 6 D.O.F, matrix A of (11) 
becomes square. Therefore, (12) is 

CB = A-'., 

where E B  is the base link speed obtained by the reac- 
tion of the leg motion. Finally, the joint speed is given 
by the following equation (same as (3)). 

4 Calculation of the inertia matrices 

In this section we describe a method to calculate 
the inertia matrices Mg and Hg, which appears in 

Figure 2 shows a part of the robot links containing 
the joint j - 1 and joint j. We assume the robot can 
rotate its joints with specified speed under the proper 
control law like PD feedback. The joint j's rotation 
with speed b j  yields additional linear and angular mw 
menta of 

(1). 

% 

P j  = w j  x (63 - r j ) k j ,  (13) 
Lj = sj X P , + l j W j ,  (14) 

wj  U j 6 , ,  (15) 

- 

where ~j and uj are the position vector and the ro- 
tation axis vector of the joint j .  h j ,  E,  a n d i j  mean 
mass, center of mass and inertia tensor of all link struc- 
ture driven by the joint j. 

Now, the columns of the inertia matrices corre- 
sponding to the joint j are determined by the following 
equations 

(16) 
(17) 

m .  = p . / &  
3 -  3 31 
h . = L .  3 - JIb'j, 

where mi and h; are vectors of 3 x 1. By comparing 
(13) and (16), we obtain m;. Likewise, by comparing 
(14) and (17), we obtain hj by 

m -  J a . x ( E . - T . ) ? j -  3 3  3 3 ,  (18) 
hj = E j  x mj + I&. (19) 

- 

0 

Figure 2: Link configulation 

Using these column vectors, the inertia matrices Mg 
and Hg are constructed like 

Mg = [ml,mz,. ..mnl, (20) 

(21) 
(22) OH. 0 E [hi,hz,. . .hn] .  

?. H .  - O H . - E M .  
0 -  0 8 ,  

Equation (21) converts the angular momentum about 
the ground frame into the angular momentum about 
the robot's CoM. 

We can calculate kj, Ej  and ij from an extrem- 
ity to the body side by using a recursive algorithm. 
Assuming we have already calculated h,, 6j and f, 
about joint j, the parameters of adjacent joint j - 1 
can be calculated as 

h j - 1  = mj+mj-I,  (23) 

i,-l = ii + a j ~ ( z i  - sj-l) + R ~ - ~ I ~ - , R ; - ~  

+m,-~D(cj-i - E j - I ) ,  (25)  
D(r) = f T F ,  (26) 

4 - 1  = ( Q E j  + mj-ic;-i)/(hj + mj-I),  (24) 

where &-I, mj-l and I j - I  are 3 x 3 orientation ma- 
trix, mass and inertia tensor around the center of the 
j - 1 th link, respectively. 

5 Examples 

5.1 Kick motion 

In this section we evaluate the motion generated 
by the Resolved Momentum Control using an actual 
humanoid robot HRP-2[11]. HRP-2 is a humanoid 
robot of 154cm height and weighs 58kg developed in 
Humanoid Robotics Project (HRP) of MET1 1121. 

1647 



Figure 3: Kick: S = E 
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Figure 4 Kick S = (e1e2e3e6]T 
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Figures 3 and 4 show the calculated kicking action 
of HRP-2. The target momentum was given such that 
the robot's CoM follows given references by 

.ref P$ = %K P (Pf z,y - c.4) +&> (27) 

Pi"f = fiKp(z;f-zB), (28) 
L"' = OZX1,  (29) 

where Kp is a feedback gain which compensates the 
error caused by time derivative of Jacobian, Emf is 
the target position of CoM, c IS the target speed 
of CoM and ZB is the target height of the pelvis. As 
specified by (28) we made special treatment for the z 
element of the linear momentum. This is because the 
constant pelvis height is desirable for most of the case. 

Figure 5 shows reference right foot speed ,,$/ to 
obtain the kick motion. Since the left foot stays on 
the floor we set 6;: = 0 for entire sequence. Suhsti- 
tuting those foot speed, Ff and Lref into (10) and 
using (12), ne  obtain the body speed and the joint 
speeds except leg joints. Finally, the leg joint speeds 
are calculated hy (3). 

In Fig.3, we set a selection matrix as identity, so 
that all momentum follows the given reference. The 
robot starts from the neutral posture, moves its Cohl 
on the left foot(0.0s 4 2.0s), swings the right leg back 
(2.0s + 3.0s), and kicks forward (3.0s + 4.0s). The 

;vel , 

0.5 - c_ 

lime Is1 

Figure 5: Reference velocity of right foot 

upper graph of Figure 6 shows the corresponding lin- 
ear momentum during this action. We see P,, increases 
and decreases from 0.0s to 2.0s which represents the 
initial motion of the CoM from center to left. P, have 
a big change around 3.5s as the result of kick motion 
and pelvis height control done by (28). The lower 
graph of the same figure shows the total angular mo- 
mentum around CoM which is kept around zero as 
specified in (29). To achieve this, the robot throws 
back its body when it  swings the leg back, and the 
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Figure 8: Kick experiment: S = [ e , e ~ e 3 e 6 ] ~  

Figure 6 Momentum change during kick action (5’ = 
E )  
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Figure 7 Momentum change during kick action (S = 
[elemeslT) 

robot bends forward when it kicks forward. This mo- 
tion, however, cannot be realized by the actual robot 
since the angle of hip pitch joint exceeds the movable 
range. 

To prevent the body swing at kicking, we chose a 
selection matrix S = [ e l e ~ e g e g ] ~  so that  the Resolved 
R4omentum Control will not take care of the angular 
momentum around roll and pitch axes. Figure 4 shows 
its result. Now we see the kick motion of natural look 
with upright body posture. Figure 7 shows the cor- 
responding momentum. In the lower graph, we can 
observe L, and L, are no longer kept zero. However, 
the vertical angular momentum L ,  is kept zero which 
causes natural compensating motion by twisting the 
waist joint and swinging the arms. 

Figure.8 shows experimental result that we gives 
the same pattern of Fig.4 to  HFS-2. The robot could 
perform kick action with good stability. 

.. - -~ .......... 

5.2 Walking motion 

Figure 9 shows snapshots of the walking exper- 
iment. We generated a walking pattern based on 
the 3D Linear Inverted Pendulum Mode [13). Giv- 
ing its ideal pendulum motion as the target position 
and speed of the CoM, the reference linear momen- 
tum was calculated by (27) and (28). As we did in 
the kick motion, we omitted the control of the angu- 
lar momentum around roll and pitch axis. As shown 
in Fig.9, we realized a stable walking motion with nat- 
ural arm swing. The Zero-Moment Point (ZMP) and 
the projected hip motion is shown in Figure 10. Since 
the ZMP trajectory is kept inside of the support area 
(shown by dotted lines), we can see a proper motion 
is generated hy the Resolved Momentum Control. 

Figure 9: Walk experiment: S = (elezegesj* 

6 Conclusions 

We proposed the Resolved Momentum Control 
which is a method to generate a robot motion with 

1649 



Figure 10: Hip motion and Zero-moment point (sim- 
ulation) 

given linear/angular momenta. We demonstrated its 
application for balancing and walking by using the hu- 
manoid robot, HRP-5. We also applied it to the differ- 
ent humanoid robot HRP-IS and it will be reported 
by Neo et.al 1151. Another application of the  Resolved 
Momentum Control is to generate a hopping and run- 
ning motion by controlling the vertical element of the 
linear momentum (141. 

The application of the Resolved Momentum Con- 
trol is not limited in humanoid robotics. As we dis- 
cussed in Section 3.3, it can be applied to space robots. 
Moreover, we believe it can be extended for any kind 
of mobile robots which dynamically interact with envi- 
ronments and propel themselves. Such unified theory 
for general mobile robots might be an exciting future 
target. 
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