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Abslmel-For cooperative work of robots and humans in 
the real world, a communicative function based on speech is 
indispensable for mbots. To realize such a function in a noisy 
real environment, it is essential that robots be able to extract 
target speech spoken by humans from a mixture of sounds by 
their own resources. We have developed a method of detecting 
and extracting speech eveni based on the fusion of audio 
and ?ideo inlormation. In this method, audio information 
(sound localization using a microphone array) and Video 
information (human tracking using a camera) are fused by 
a Bayesian network to enable detection of speech events. 
The information of detected speech events is then utilized 
in sound separation using adaptive beamforming. In this 
paper, some basic investigations for applying the above system 
to the humanoid robot HRP-2 are reported. Input devices, 
namely a microphone array and a camera, were mounted on 
the head of HRP-2, and acoustic characteristics for sound 
localizatiadseparation performance were investigated. Also, 
the human tracking system was improved so that it can be 
used in a dynamic situation. Finally, overall performance of 
the system was t ~ t e d  %<a 08-line experiments. 

I. INTRODUCTION 

For communication between robots and humans using 
speech in a everyday situation with environmental noise, 
extraction of speech spoken by humans (target speech) 
from a mixture of sounds is essential. The authors have 
previously proposed a method of detecting and separating 
target speech events using audio and video information 
fusion [Z], [3], [4]. From audio information obtained by a 
microphone may, the time and location of an audio event 
(emission of sound from sound sources) can be known. 
From video information, the time and location of a video 
event (existence of a human) can be known. By combining 
such audio and video information, co-occurrence of the 
audio and video event in a certain region can be detected. 
This co-occurrence is defined as a speech event in this 
study. By using both audio and video information, only 
speech signals emitted by humans are detected and noise, 
including speech signals such as sound from a TV, can be 
avoided. 

A method of detecting and separating speech events 
based on audio and video information has also been 
proposed by Nakadai ef d. [5 ] .  The scope of thier research 
is considered to realize a more human-like robot audition 
system using only two microphones at the ear position 
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of robots and the knowledge of human speech such as 
harmonic structures. In the method proposed by the authors 
[Z], 131, [4], a microphone may  with more microphones 
and a more general sound localizatiodseparation approach 
were employed. By using these at the cost of larger 
computational load and system size, the limitations on 
source signal, system configuration and environments are 
considered to be relaxed to some extent. 

In this paper, to facilitate introduction of the above 
framework to the humanoid robot HW-2 as shown in 
Fig. 1 [I], some basic investigations are reponed. We first 
evaluated the performance of sound localization used in 
the above approach with a microphone m a y  mounted on 
the head of a humanoid. Especially, the effects of the 
complicated shape of the head and the size limitation on the 
sound localization performance were examined. Secondly, 
the background subtraction method of human tracking 
was replaced by a model-based approach. The background 
subtraction used in 121, [3] and [4J is a simple and effective 
method for human detection. However, this method cannot 
be used for robot application since the background often 
changes as the robot moves. Thus, a model-based approach 
is newly introduced into the information fusion framework. 
In this method, a human in a scene is first detected by 
using skin-color detection and template matching of face. 
Once a human is found, a model of that human is made 
and is tracked by the kernel-based tracking method [6]. In 
the present study, the performance of the newly introduced 
human tracking system was tested in an information fusion 
framework. Finally, an experiment on the detection and 
separation of speech events was conducted in an ordinary 
environment with interference by music. 

11. SOUND LOCALIZATION 

A. Merhod 

The purpose of sound localization is to estimate the 
location of sound sources in the environment. For sound 
localization, the MUSIC method [7] extended to the broad- 
band signal with eigenvalue weighting [Z] was employed. 
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I'i:. 1. Humanoid HRP-2. 

This method can be summarized as follows: 

R =  
R =  

p(a,w) = 

B(R) = 

. 
A(w) = 

."=l 

First, the spatial correlation is calculated by (1). Here, 
x(w,t) is termed the input vector, which consists of 
the short-time Fourier transform of the input signal at 
microphones. Then, the eigenvalue decomposition is ob- 
tained using (2), where A = diag(X1,. . . , A,) and E = 
[ e l ,  . . . ,e&,] are the eigenvalue matrix and eigenvector 
matrix, respectively. The eigenvalues are assumed to be 
sorted in descending order. The standard MUSIC method is 
denoted as (3). The symbols M and N denote the number 
of microphones and sound sources, respectively. The vector 
v ( w , 0 )  is termed location vector, which consise of the 
transfer functions of the direct paths from the virtual 
sound source located in direction 0 to the nucrophones. 
The broadband extension with the eigenvalue weighting is 
denoted as (4), where the weight 1 is defined as (5 ) .  The 
eqs. (1)-(5) are evaluated and the location of the sound 
sources is estimated at every 0.5 s in this paper. 

B. Measurement 

For the operation of the sound localization shown in the 
previous section, the lacation vector, v ( w , # ) ,  must be pre- 
pared. When the microphone array configuration is simple 
such as a linear or circular one, the location vector can 
be calculated by geometric information of the microphone 

Pi%. 2. Confieunlion of thr microphone m y r  

array configuration. However, when a microphone array is 
mounted on the complicated surface as in the case of this 
paper, the location vector must be measured discretely in 
advance of the operation. 

In the measurement, a mock-up of the head of HRP-2, 
which was mounted on a camera stand, was used. Figure 2 
shows the microphone array configuration and Fig. 3 shows 
its appearance. Two microphone-arrays. denoted as Array 
A (upper level) and Array B (lower level), were employed. 
Each microphone array consists of 8 microphones. Two 
microphone array sets were employed in order to evaluate 
the effect of the complicated surface of the robot head on 
the performance of the array processing. 

Figure 4 shows a scene of the measurement of'the 
location vector. The small square markers surrounding the 
mock-up show the points of vimal sound sources. The 
loudspeaker was placed at these points and the impulse 
responses from the loudspeaker to the microphones were 
measured. For measuring the impulse response, the time- 
stretched pulse (TSP) method was used [9]. The sampling 
frequency was 16 IcHz. Then, the portion of the impulse re- 
sponse corresponding to the direct sound depicted in Fig. 5 
was extracted. In this figure, the symbol T, denotes the 
length from the largest peak of the impulse response which 
determines the length of the direct portion. In this paper, 
T, = 32 was employed. The Fourier transform of the im- 
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Fie. 3. Minophone arrays mounicd on the head 01 HRP-2 
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- 
pulse response, Vm(u,%), then becomes an element of the 
location vector as v(w,%) = [V , (~ , e ) ; . . ,Vnr (w ,%)]~ .  
The length oI the Fourier eansform was 512. 

C. Resuln 

Figure 6 shows the spatial specmm P(B) obtained by 
(4). The sound sources were located at 0" and 60" . The 
frequency range was [:00,3000] Hz. The location of the 
sound sources was well estimated by both array sets, and 
the effect of the complicated shape of the robot head is 
considered to he small. Comparing the performance of 
Array A and Array B, the spatial specmm with Array 
A (upper level) has duller peaks than that with Array B. 
The main reason for this is the effective size of the may. 
Array A was mounted on the top of the head with a smaller 
interval of microphones. This effect is more clearly seen in 
the spatial spectrum for each frequency P(w,B) depicted 
in Fig. 7. At the lower frequencies, no clear peaks were 
observed in the direction of 0" and 60' . This is due to the 
phase difference between the microphones being smaller. 
Therefore, Array B is employed hereafter in this paper. 

111. HUMAN TRACKING BY VISION 
Our human tracking method consists of two processes. 

One is a finding a face by using a skin-colored model and 
template matching of that face in chromatic color space, 
and the other is tracking by a kernel-based face model. 

Fig. 4. Scene of mcasuremcnl. 
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Fig. 5. Measured impulse response. The portion slmoilndcd by a square 
is assumed lo hc direcl sound. 

AI. 6. Eigenvalue-weighted broadband MUSIC specmm 
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A. Finding A Human Face 

To reduce the computational costs of face finding, we 
used a skin-colored model in chromatic color space de- 
signed to characterize a human face. Since the color of 
human skin is made up of sufficiently distinctive chromi- 
nances, we believe it is an effective way to direct a robot’s 
attention towards humans without requiring knowledge of 
he human shape or other high-level models. This model is 
adaptable to different people and different lighting condi- 
tions in dynamic environments. 

Most devices for capturing images use RGB represen- 
tation. However, RGB is not necessarily the best color 
representation for characterizing skincolor, because the 
RGB representation (r,g, b) includes not only color but 
also brightness. If the corresponding elements at two points 
( ~ ] , g ~ , b ] )  and (r2.92: b2)  are proportional, they have the 
same color but different brightness. 

Therefore, if the color space can be normalized as in 
the equations R = T / ( T  + g + b) ,G  = g / ( T  + g + b) ,  
general skin color becomes an identifiable constant. After 
this transform, the skin-color model can be represented by 
a two-dimensional Gaussian model N ( m ,  E’) where m is 
the mean vector of (R, G) and is the covariance matrix. 

Although human skin colors fall into a cluster in the 
chromatic color space, background colors, such as colored 
cloth or wooden bookshelves, may have an influence on the 
skin-color model. Therefore, to find the target face region 
in a scene, we apply a template matching method against 
each skin-color region. 

The procedure for detecting the face region is as follows: 
1) Taking a face image or a set of face images, se- 

lect the skin-colored region, and estimate the skin- 
color model from the mean and the covariance of 
their color distribution in cbromatic color space in 
advance. 

2) Calculate the likelihood of source pixels in a current 
frame matched against the model skin-color distribu- 
tion by an appropriate error threshold. 

3) Compute normalized squared differences between 
template images of the face and each skin-color 
region, and detect a candidate face region in a scene. 

An experimental result of detecting a skin-color region 
and a face region is shown in Fig. 8. Black pixels in the 
right image indicate the skin-color region. Red rectangles 
and a green rectangle represent candidate face regions and 
a target face region, respectively. 

B. Kernel-based Face Tracking 
For real-time human tracking in a dynamic environment, 

it is desirable to keep the computational complexity of a 
human tracker as low as possible. The above-mentioned 
template matching process in face finding requires too 
much time to detect several faces at the same time. There- 
fore, a faster procedure is required to track face regions 
in realtime. The kernel-based approach 161 is used for the 
tacking procedure and can be summarized as follows: 

First we define the target model and target candidate at 
location y in the subsequent frame as 

”1 target model: 6 = {#.).=I ,,.. 6” = 1 

target candidate: B(Y) = {fiu(~)]n=~...m ~ ~ = , f i .  = 1 

To find the location corresponding to the target in the 
current frame, the distance which is defined as d ( y )  = 
,/I - p [ o ( y ) , d  should be minimized as a function of y. 
Chooseing 

m 

b ( Y )  = P[P(Y)>d = I 

“=I 

the next location ynrr< can be derived to maximize the 

In our face tacker, we chose the target model 6 as 
normalized m-bin histograms of an ellipsoidal region in 
the chromatic color space. Thus, we have the model 

P(Y).  
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where {xu} is the normalized pixel location in the region 
defined as the target model, k(z) is an isotropic kernel 
which is assigned a smaller weight to a pixel farther from 
the center, b(x , )  is the index of m-bin hostogram, and 6 
is the Kronecker delta function. 

An experimental result of tracking face region is shown 
in Fig. 9. 

IV. INFORMATION FUSION 
A. Sysfern 

In this section, an information fusion system is briefly 
introduced [2]. [3], [4]. Figure 10 shows a block diagram 
of the information fusion system. The results of the sound 
localization and the human tracking by vision are fused 
by a Bayesian network. Figure 11 shows the Bayesian 
network used in this system and the corresponding audio 
and video information. The observation space of the sound 
localization is divided into small regions and each region 
is assigned to an audio input node of the network. In each 
node, occurrence of a sound event is detected by examining 
peaks in the spatial spectrum, and the node is activated 
when a sound event occurs in the corresponding region. In a 
similar manner, the video observation space is divided and 
assigned to video input nodes. In the Bayesian network, 
the co-occurrence of the audio event and the video event 
in a corresponding region is detected as a speech event. 
The information of the detected speech event is utilized 
in updating the separation filter in the sound separation 
and the segmentation of speech in the automatic speech 
recognition (ASR). In the separation filter, the target speech 
event is separated from noise and interferences by using a 
maximum likelihood beamformer. 

E. Results 
The experiment was conducted in the same room where 

the measurement was performed. Using the microphone 
array and the camera mounted on HRP-2, approximately 
20 s of data was recorded and processed. Figure 12 shows 
a scene of the experiment taken by the camera mounted 
on HRP-2. In the scenario used in the recorded data, a 

Fig. 10. Block dia- of thc information fusion system. 
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Pig. 11. Bayesian network and the audio and video i n ima i ion  

noise source (loudspeaker) was located in the direction of 
-50" . Also, as noise sources, computers were located at 
60" and generated fan noise. Speaker 1 kept standing in the 
direction of -20" and spoke between 0 s and 5 s. Then, 
Speaker 2 walked in, spoke at around 10 s and walked out. 

These events can be observed in the audio and video 
information depicted in Fig. 13. In the video infomation 
in Fig. 13(b), the trajectoty of Speaker 2 walking out can 
be seen but that of walking in cannot. This is because it 
takes a few seconds to find humans by the human hder .  
These data were then digitized and the feature vectors 
which indicate the state of the input nodes of the Bayesian 
network as depicted in Fig. 14 were obtained. 

Figure 15 shows the results of the speech event detection 
obtained from the inference by the Bayesian network. 
In this figure, it can be seen that the speech events by 
Speaker 1 and 2 were extracted from the various audio 
events shown in Fig. 14(a). Figure 16 shows the waveform 
observed at one of the microphones (before separation) and 
that observed at the beamformer output. The segments of 
estimated and true speech events are also depicted by bars 
in the upper part of Fig. 16(b). From these bars, it can be 
seen that the estimated speech events are in good agreement 
with the actual ones. By comparing Fig. 16(a) and (b), it 
can be seen that the speech signal buried in noise was 
recovered by the beamforming. 

V. CONCLUSION 

In this paper, a method of detecting and separating 
speech events was applied to humanoid HRP-2 and some 
basic experiments were conducted. From the results, it was 
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(a) Audio Feature Vector 

Fig 12. An cimiplc of thc imagcs used for human tracking. 
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Pig. 14. 
lhc coxspanding nodes are active. 

Audio and video feature veelom. Black squarer indicate that 

Fig. 13. Kcsulis of sound locaiizaion and human tracking. 

Fig. 15. Dclecled s p m h  cwm. "NIP indicates 30 s p r e h  event." 

shown that a performance similar to that obtained by a 
regular microphone array (circular in shape with a diameter 
of 0.5 s, 8 elements) shown in [41 was obtained by the 
microphone array mounted on the humanoid HRP-2. Also, 
a newly introduced human finding and tracking system 
performed well in the tested conditions. As a next step of 
this study, a real-time system, which can be mounted on 
the body of HFS-2, is currently being developed. By using 
this System, a m6re realistic evaluation, including speech 
recognition, should be realized. 
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