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Abstracf— For cooperative work of robots and humans in
the real world, a comununicative function based on speech is
indispensable for robots. To realize such a function in a noisy
real environment, it is essential that robots be able to extract
target speech spoken by humans from a mixture of sounds by
their own resources. We have developed a method of detecting
and extracting speech events based on the fusion of audio
and video information. In this methoed, audio information
(sound localization using a microphone array) and video
information (human tracking using a camera) are fused by
a Bayesian network to enable detection of speech events,
The information of detected speech events is then utilized
in sound separation using adaptive beamforming. In this
paper, some basic investigations for applying the above system
to the humanoid rebot HRP-2 are reported. Input devices,
namely a microphone array and a camera, were mounted on
the head of HRP-2, and acoustic characteristics for sound
localization/separation performance were investigated. Also,
the human tracking system was improved so that it can be
used in a dynamic situation. Finally, overall performance of
the system was tested via off-line experiments.

I. INTRODUCTION

For communication between robots and humans wvsing
speech in a everyday situation with environmental noise,
extraction of speech spoken by humans (target speech)
from a mixture of sounds is essential. The authors have
previously proposed a method of detecting and separating
target speech events using audio and video information
fusion [2}], {31, [4]. From audio information obtained by a
microphone array, the time and location of an audio event
(emission of sound from sound sources) can be known.
From video mformation, the time and location of a video
event (existence of a human) can be known. By combining
such audio and video information, co-occurrence of the
audio and video event in a certain region can be detected.
This co-occurrence is defined as a speech event in this
study. By using both audio and video information, only
speech signals emitted by humans are detected and noise,
including speech signals such as sound from a TV, can be
avoided.

A method of detecting and separating speech events
based on audio and video information has also been
proposed by Nakadai et al. [5]. The scope of thi¢r research
is considered 1o realize a more human-like robot audition
system using only two microphones at the ear position
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of robots and the knowledge of human speech such as
harmonic structures. In the method proposed by the authors
{2], [3], [4], a microphone array with more microphones
and a more general sound localization/separation approach
were employed. By using these at the cost of larger
computational load and system size, the limitations on
source signal, system configuration and environments are
considered to be relaxed to some extent.

In this paper, to facilitate introduction of the above
framework to the humanoid robot HRP-2 as shown in
Fig. 1 [1], some basic investigations are reported. We first
evaluated the performance of sound localization used in
the above approach with a micrephone array mounted on
the head of a humaneid. Especially, the effects of the
complicated shape of the head and the size limitation on the
sound localization performance were examined. Secondly,
the background subtraction method of human tracking
was replaced by a model-based approach. The background
subtraction used in [2], [3] and [4] is a simple and effective
method for human detection. However, this method cannot
be used for robot application since the background often
changes as the robot moves. Thus, a model-based approach
is newly introduced into the information fusion framework.
In this method, a human in a scene is first detected by
using skin-color detection and template matching of face.
Once a human is found, a model of that human is made
and is tracked by the kernel-based tracking method [6]. In
the present study, the performance of the newly introduced
human tracking system was tested in an information fusion
framework. Finally, an experiment on the detection and
separation of speech events was conducted in an ordinary
environment with interference by music.

II. SOUND LOCALIZATION

A. Method

The purpose of sound localization is to estimate the
location of sound sources in the environment. For sound
localization, the MUSIC method [7] extended to the broad-
band signal with eigenvalue weighting [2] was employed.
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Fig. 1. Humanoid HRP-Z,

This method can be summarized as follows:

R = E[x{w,t)x(w, )] 1)
R = EAE™! (2)
H
(w,8)v(w, 8)
P(0,w) = M 6)
1"'\::]\'+l |VH (wve)emlg
PEY = Y Mw)Pw,8) “@
) w;‘wr_
Alw) = Am(w) (3)
m=1

First, the spatial correlation is calculated by (1). Here,
X(w,?) is termed the input vector, which consists of
the short-time Fourier transform of the input signal at
microphones. Then, the eigenvalue decomposition is ob-
tained using (2), where A = diag{A1, -+, Aa) and E =
[e1,---,exs] are the eigenvalue matrix and eigenvector
matrix, respectively. The eigenvalues are assumed to be
sorted in descending order. The standard MUSIC method is
denoted as (3). The symbols M and N denote the number
of microphones and sound sources, respectively. The vector
v(w,#) is termed location vector, which consists of the
transfer functions of the direct paths from the virtual
sound source located in direction # to the microphones.
The broadband extension with the eigenvalue weighting is
denoted as (4), where the weight } is defined as (5). The
eqs. (1)-(5) are evaluated and the location of the sound
sources is estimated at every 0.5 s in this paper.

B. Measurement

For the operation of the sound lecalization shown in the
previous section, the location vector, v(w, #), must be pre-
pared. When the microphone array configuration is simple
such as a linear or circular one, the location vector can
be calculated by geometric information of the microphone

Fig. 2. Configuration of the microphone arrays.

array configuration. However, when a microphone array is
mounted on the complicated surface as in the case of this
paper, the location vector must be measured discretely in
advance of the operation.

In the measurement, a mock-up of the head of HRP-2,
which was mounted on a camera stand, was used. Figure 2
shows the microphone array configuration and Fig. 3 shows
its appearance. Two microphone-arrays, denoted as Array
A (upper level) and Array B (lower level), were employed.
Each microphone array consists of 8 microphones. Two
microphone array sets were employed in order to evaluate
the effect of the complicaled surface of the robot head on
the performance of the array processing.

Figure 4 shows a scene of the measurement of the
location vector. The small square markers surrounding the
mock-up show the points of virtual sound sources. The
loudspeaker was placed at these points and the impulse
responses from the loudspeaker to the microphones were
measured. For measuring the impulse response, the time-
stretched pulse (TSP) method was used [9]. The sampling
frequency was 16 kHz. Then, the portion of the impulse re-
sponse corresponding to the direct sound depicted in Fig. 5
was extracted. In this figure, the symbol T, denotes the
length from the largest peak of the impulse response which
determines the length of the direct portion. In this paper,
T = 32 was employed. The Fourier transform of the im.
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(a) Microphone Array A

Fig. 3.

Micrephone arrays mounted on the head of HRP-2,

pulse response, V;,(w, §), then becomes an element of the
location vector as v{w,8) = [Vi(w,8), -+, Var(w, 8)]7.
The length of the Fourier transform was 512.

C. Results

Figure 6 shows the spatial spectrum P(8) obtained by
(4). The sound sources were located at 0° and 60° . The
frequency range was {300,3000] Hz. The location of the
sound sources was well estimated by both array sets, and
the effect of the complicated shape of the robot head is
considered to be small. Comparing the performance of
Ammay A and Array B, the spatial spectrum with Array
A (upper level) has duller peaks than that with Array B.
The main reason for this is the effective size of the array.
Array A was mounted on the top of the head with a smaller
interval of microphones. This effect is more clearly seen in
the spatial spectrum for each frequency P(w, ) depicted
in Fig. 7. At the lower frequencies, no clear peaks were
observed in the direction of 0° and 60° . This is due to the
phase difference between the microphones being smaller.
Therefore, Array B is employed hereafter in this paper.

III. HUMAN TRACKING RY VISION

Our human tracking method consists of two processes.
One is a finding a face by using a skin-colored model and
template matching of that face in chromatic color space,
and the other is tracking by a kernel-based face model.
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Fig. 4. Scene of measurement.
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Fig. 5. Measured impulse response. The portion surrounded by a square
is assumcd to be direct sound.
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Fig. 6. Eigenvalue-weighted broadband MUSIC spectrum.
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Fig. 7. MUSIC spectrum at cach frequency.

A. Finding A Human Face

To reduce the computational costs of face finding, we
used a skin-colored model in chromatic color space de-
signed to characterize a human face. Since the color of
human skin is made up of sufficiently distinctive chromi-
nances, we believe it is an effective way to direct a robot’s
attenijon towards humans without requiring knowledge of
he human shape or other high-level models. This model is
adaptable to different people and different lighting condi-
tions in dynantic environments.

Most devices for capturing images use RGB represen-
tation. However, RGB is not necessarily the best color
representation .for characterizing skincolor, because the
RGE representation (r,g,5) includes not only color but
also brightness. If the corresponding elements at two points
(r1,g1,b1) and (ro, g2.bo) are proportional, they have the
same color but different brightness.

Therefore, if the color space can be normalized as in
the equadons R = r/{r + g+ 8),G = g/{r + g+ b),
general skin color becomes an identifiable constant. After
this transform, the skin-color model can be represented by
a two-dimensional Gaussian model N (m, }:2} where m is
the mean vector of (12, ) and ¥, is the covariance matrix.

Although human skin colors fall into a cluster in the
chromatic color space, background colors, such as colored
cloth or wooden bookshelves, may have an influence on the
skin-color model. Therefore, to find the target face region
in a scene, we apply a template matching method against
each skin-color region.

Resull of skin-color detection

Fig. 8.

The procedure for detecting the face region is as follows:

1y Taking a face image or a set of face images, se-
lect the skin-colored region, and estimate the skin-
color model from the mean and the covariance of
their color distribution in chromatic color space in
advance.

2) Calculate the likelihood of source pixels in a current
frame matched against the model skin-color distribu-
tion by an appropriate error threshold.

3) Compute normalized squared differences between
template images of the face and each skin-celor
region, and detect a candidate face region in a scene.

An experimental result of detecting a skin-color region

and a face region is shown in Fig. 8. Black pixels in the
right image indicate the skin-color region. Red rectangles
and a green rectangle represent candidate face regions and
a target face region, respectively.

B. Kernel-based Face Tracking

For real-time human tracking in a dynamic environment,
it is desirable to keep the computational complexity of a
human tracker as low as possible. The above-mentioned
template matching process in face finding requires oo
much time to detect several faces at the same time. There-
fore, a faster procedure is required to track face regions
in realtime. The ketnel-based approach [6] is used for the
tracking procedure and can be summarized as follows:

First we defing the target model and target candidate at
location ¥ in the subsequent frame as

target model: 4= {fu}u=1..m Yoy Gu=1

target candidate: ﬁ(Y) = {ﬁu(y)}uzl.‘.m Zumzl Pu=1
To find the location corresponding to the target in the
current frame, the distance which is defined as d(y) =

1 — pip(y). q] should be minimized as a function of y.
Chooseing

ply) = pld¥)al =Y VB ¥)u
u=l

the next location Yner: can be derived to maximize the
Ay}

In our face tacker, we chose the target model § as
normalized m-bin histograms of an ellipsoidal region in
the chromatic color space. Thus, we have the model

du = C > k{llx:*)alb(xs) — v

=1
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Fig. 9. Resuli of kemel-based tracking

where {x,} is the normalized pixel location in the region
defined as the target model, k(z) is an isotropic kernel
which is assigned a smaller weight to a pixel farther from
the center, b(x;} is the index of m-bin hostogram, and §
is the Kronecker delta function.

An experimental result of tracking face region is shown
in Fig. 9.

IV, INFORMATION FUSION
A. System

In this section, an information fusion system is briefly
introduced [2], [3], [4]. Figure 10 shows a block diagram
of the information fusion system. The resuits of the sound
localization and the human tracking by vision are fused
by a Bayesian network. Figure 11 shows the Bayesian
network used in this system and the corresponding audio
and video information. The observation space of the sound
localization is divided into smal! regions and each region
is assigned to an audio input node of the network. In each
node, occurrence of a sound event is detected by examining
peaks in the spatial spectrum, and the node is activated
when a sound event occurs in the corresponding region. In a
similar manner, the video observation space is divided and
assigned to video input nodes. In the Bayesian network,
the co-occurrence of the audio event and the video event
in a comresponding region is detected as a speech event.
The information of the detected speech event is utilized
in updating the separation filter in the sound separation
and the segmentation of speech in the automatic speech
recognition (ASR). In the separation filter, the target speech
event is separated from noise and interferences by using a
maximum likelihood beamformer.

B. Resulrs

The experiment was conducted in the same room where
the measurement was performed. Using the microphone
array and the camera mounted on HRP-2, approximately
20 s of data was recorded and processed. Figure 12 shows
a scene of the experiment taken by the camera mounted
on HRP-2. In the scenario used in the recorded data, a

X

Cemerd

33

Mic, Aoy

! Soung

Speech
Recognition

Fig. 10. Block diagram of the information fusion system.
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Fig. 11. Bayesian network and the audio and videc information.

noise source (loudspeaker) was located in the direction of
—30° . Also, as noise sources, computers were located at
60° and generated fan noise. Speaker 1 kept standing in the
direction of —20° and spoke between 0 s and 5 s. Then,
Speaker 2 walked in, spoke at around 10 s and walked out.

These events can be observed in the audio and video
information depicted in Fig. 13. In the video information

. in Fig. 13(b}, the trajectory of Speaker 2 walking out can

be seen but that of walking in cannot. This is because it
takes a few seconds 1o find humans by the human finder.
These data were then digitized and the feature vectors
which indicate the state of the input nodes of the Bayesian
network as depicted in Fig. 14 were obtained.

Figure 15 shows the results of the speech event detection
obtained from the inference by the Bayesian network.
In this figure, it can be seen that the speech events by
Speaker 1 and 2 were extracted from the various audio
events shown in Fig. 14(a). Figure 16 shows the waveform
observed at one of the microphones (before separation) and
that observed at the beamformer output. The segments of
estimated and true speech events are also depicted by bars
in the upper part of Fig. 16(b). From these bars, it can be
seen that the estimated speech events are in good agreement
with the actual ones. By comparing Fig. 16(a) and (b), it
can be seen that the speech signal buried in noise was
recovered by the beamforming.

V. CONCLUSION

In this paper, a method of detecting and separating
speech events was applied to humanoid HRP-2 and some
basic experiments were conducted. From the results, it was

2408



Fig, 12.  An example of the images used for human tracking.
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Fig. 13. Resulis of sound localization and human tracking.

shown that a performance similar to that obtained by a
regular microphone array (circular in shape with a diameter
of 0.5 s, § elements) shown in [4] was obtained by the
microphone array mounted on the humanoid HRP-2. Alse,
a newly introduced human finding and tracking system
performed well in the tested conditions. As a next step of
this study, a real-time system, which can be mounted on
the body of HRP-2, is currently being developed. By using
this system, a more realistic evaluation, including speech
recognition, should be realized.
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