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Abstract— Robots working in complex environment require
accurate perception of a wide field of view. Using cameras, Hybrid
Motion Stereo, which combines the computations by stereo vision
and motion stereo, is capable of acquiring positional information
of the whole field of view. However, the technique generates errors
in computation by motion stereo when tracking feature points
fails. This paper describes a method to reject the outliers to
avoid erroneous recognition. The method uses computation results
from several previous images, computing the spatial deviation and
temporal deviation of points, and rejecting those considered to be
deviated. The evaluation function is composed with a weighted
average of the sequential results, each with a weight of the
total number of points existing in the neighboring space, which
represents the spatial deviation. Experimental results using the
humanoid robot HRP-2 denote the effectivity of the method.

Index Terms— Mobile Robot, Environmental Recognition,
Stereo Vision, Motion Stereo

I. INTRODUCTION

Recently, researches on the robotic field have been acti-
vated for the aim of creating a human and robot interactive
society[1][2]. While stationary robots are best suited for iter-
ative tasks, they are ineligible for operating in human envi-
ronments in which mobility cannot be disregarded. Therefore,
mobile robots, especially those also capable of performing ma-
nipulation tasks, have been brought into researchers’ attention.

One of the main issues in robotics is robot vision. Due to
the characteristic of containing bounteous information, many
applications for environmental recognition using cameras have
been developed. Object recognition uses an image of a single
camera, extracting the features of objects for identification[3].
Object tracking uses image features, such as color or brightness
distribution, contained in the image of a single camera to
determine the correspondence between sequential images[4].
3D computation uses images captured at different views,
calculating their disparity for recovering the 3D positions[5].
Such methods include the common stereo vision and motion
stereo. The authors have focused on 3D computation using
stereo vision and motion stereo as basic technologies to acquire
broad 3D information.

Stereo vision and motion stereo each have their disadvan-
tages; stereo vision is capable of computing only the over-
lapping views, and motion stereo requires camera movement
for computation. The authors have proposed Hybrid Motion

Stereo, which compensates for the disadvantages of stereo
vision and motion stereo[6]. However, feature point tracking
required for motion stereo computation occasionally fails, pro-
ducing errors in computation by motion stereo. These points,
or outliers, are required to be rejected in order to prevent false
perception.

Methods for outlier rejection can be categorized into two
groups: those developed by the statistical community and those
by the computer vision society. Rejection techniques developed
by the statistical community include M-Estimators and Least
Median of Squares[7]. RANSAC(8], ALKS[9], and MUSE[10]
are examples of techniques from the computer vision society.
The difference between the two is the breakdown point of the
proportion of the number of outliers to the total number of
points. Least Median of Squares is tolerant to 50% of outliers
while RANSAC, ALKS, and MUSE have been developed to
exceed this limit. The methods developed by the computer
vision society have the advantage over those by the statistical
community for its ability to reject outliers from images with
several populations of data. The features of these methods are
their robustness using a set of data acquired at a single state
of time. However the computation cost due to the process
of fitting a model into the experimental data reduces their
adaptabilities to the robotic field. Calling into account that
images are constantly acquired, the authors propose a method
for outlier rejection using a series of sequential data. The
method described in this paper sets upon a simple computation
of the weighted average reducing the computation cost as much
as possible in order to retain real-time computation.

II. HYBRID MOTION STEREO

Cameras are highly effective in computing 3D positions
for its ability to acquire plentiful information with substantial
precision. Indefectible camera modeling leads to computation
errors which are minimized by Least Square Method in the
process of stereo vision. Therefore, substantially high precision
can be obtained in the area used for calibration. Errors in
calculation increase as the calculating point recedes from the
calibration area.

Computation by stereo vision can only be done in areas
visible in more than two cameras (MCVA : Multiple Camera
Visible Areas). Areas visible in only a single camera (SCVA :



Single Camera Visible Areas) require movement of the camera
between two consecutive images for computation by motion
stereo. Precision in computation by motion stereo is affected
not only by the accuracy of camera modeling, but also by
the precision of camera movement estimation. The authors
have proposed a new technique, Hybrid Motion Stereo, which
combines the computations in MCVA and SCVA to recover
all the 3D positions of the visible points[6]. The proposed
technique computes the camera movement in MCVA which
can then be used to compute the 3D positions of points in
SCVA. The concept of Hybrid Motion Stereo is shown in Fig.
1.

A. Estimation of Camera Motion

Using more than two cameras from a different point of
view, the 3D positions of every point visible in more than
two cameras can be computed by stereo vision, given the
correspondence of the points in the image planes. Considering
that the cameras are installed into the mobile robot, the camera
coordinate systems fixed to the cameras move according to the
robot’s motions. The 3D coordinate calculated by stereo vision
is based on the camera coordinate system. Therefore, the same
immobile points in two consecutive images generate a slight
displacement in the computed 3D positions.

Movements of the robot engender identical virtual motions
of immobile points, which are the direct opposite of the camera
motions. Let 0, ¢, @ be the rotational movements of the
camera around the X, Y, and Z axes of the camera coordinate
respectively. Let tx, ty, tz be the translational movements of
the camera along the X, Y, and Z axes of the camera coordinate
respectively. Here, we will calculate the camera movement in
the following order.

1) 6 rotation around the X axis.
2) ¢ rotation around the Y axis.
3) ¢ rotation around the Z axis.
4) Translational movements, tx, ty, tz.

The movements of immobile points can then be denoted as
follows:

1) —0 rotation around the X axis.

2) —¢ rotation around the Y axis.

3) —1 rotation around the Z axis.

4) Translational movements, —tx, —ty, —tz.
Using these variables, the virtual movements of immobile
points between two consecutive images derive the following
equation:
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Fig. 1. Concept of Hybrid Motion Stereo

R represents the rotation matrix of the camera coordinates
between the images. s, and c, represents sina and cosa
respectively (o = 6, ¢,1). Vectors [Xi Y, Z; 1}T and
[XZ-, Y, Z, 1]T represent the 3D positions of the ¢th im-
mobile point of the primary and secondary images respectively.
In this paper, we will assume that the rotation matrix R
in (1) equals to the identity matrix I, that is, there are no
rotational movements of the cameras. This results in

t=x; — a:,:-, 3)
where t = [tx ty tZ]T
motions, @; = [X; Y; Zi]T and @, = x; v, Zz
represents the computed 3D positions of the ith immobile point
by stereo vision in the primary and secondary images respec-
tively. Equation (3) estimates the camera movement using a
single immobile point. Assuming that there are no rotational
movements, the median of the movements of computed points
provides a good estimate presuming the environment to be
constructed with a majority of immobile objects.

represents the translational camera
] T

B. Outlier Rejection

Motion stereo computation requires tracking between two
consecutive images. The precision of motion stereo is di-
rectly affected by the accuracy of tracking, thus producing
miscalculated points, or outliers, when tracking fails. Although
techniques developed by the CV community, such as RANSAC



or MUSE, are capable of robustly rejecting outliers, the com-
putation cost required for fitting models implies it unsuitable
in robotics using current computer technology. The authors
propose a method using not only the results at a single moment
but also previous results to detect and reject the outliers. The
concept of the rejection method is illustrated in Fig. 2.

The method is relatively similar to ROR[11] which ro-
tates the image to acquire a virtual image from a different
camera pose to evaluate the accuracy of stereo matching.
Since robotics call for computation as quick as possible, the
authors have used the results from previously captured images
for evaluation. The method creates an evaluation function
using the acquired results instead of evaluating the matching
process. The evaluation function can be created with a simple
calculation, thus unaffecting the computation time required for
3D position computation.

Since the camera coordinate system fixed to the camera
moves along with the robot, the coordinates of the prior results
should be adjusted to the current coordinate system. Let T;H
be the coordinate transformation matrix between the jth and
(j + 1)th images. The coordinates of a computed point in the
ith image, x;, can be converted to the coordinates in the nth
image by the following equation:

x, =T | Th 5. T, 4)

Determination of outliers can be performed by using the
two following properties. Spatial deviation, which segregates
the outlier from the distribution of points, is a measure to
determine outliers from a set of points at a single moment.
Temporal deviation, which segregates the outlier from the
computed sequential set, is a measure to determine outliers
from a sequential set of images computing the same point. The
authors have mixed the two measures to specify an evaluation
function to reject the outliers.

By using prior results, outliers could be rejected more stably
than using just the results of a single moment. However, the
prior results also contain outliers which should be considered
in the process of creating the evaluation function. The effects
to the evaluation function of outliers in prior results should
be minimized. The total number of computed points existing
in the neighboring space around the evaluating point serves as
the measure for spatial deviation, since no objects possess only
a single feature point and the area around the outlier can be
considered to be nondense. The authors have used weighted
average to evaluate the temporal deviation.

Assume that the robot has acquired a time-series result
computed at times 1, 2, ---, n. Each result contains the
computation results by motion stereo for all the computed
points. Let x;1,x;92, - - -, x;,, be the set of computed results for
the i¢th computed point, which have been converted to the nth
camera coordinate system by (4). To evaluate whether x;, is
an outlier or not, we will compute the weighted average, p,,,,
using the following equation:
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where w; is the weight for x;;. The weight represents the
reliability of the computation result, x;;, which is determined
by spatial deviation. Defining the neighboring space around
x;; as S, w; is calculated by the following equation:

wi = Ok(xk)), 6)
k

where
Tij € S
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The weighted average, p,,,, calculated in (5) represents the

expected position at which point x;,, should be located. Large

deviation from the expected position denotes the computed

point x;, to be an outlier. Therefore, setting a threshold 7

for rejection, outliers can be specified as those satisfying the
following inequality:

f(@in — pi) > 7. ®)

f represents a function to evaluate the deviation rate in which
the 3D distance between x;,, and u,,, cannot be used directly
due to the difference of distributions in computation errors
along the three axes, i.e. the components of the computed re-
sults along the perspective axis possess larger errors compared
to those along the lateral and longitudinal axes.



III. EXPERIMENTS USING THE HUMANOID ROBOT HRP-2

To evaluate the effectivity of the proposed technique, the
authors have implemented the technique into the humanoid
robot, HRP-2 (Fig. 3). The vision system of HRP-2 consists
of three cameras equipped on the head. We will name each
camera as stated in Fig. 3. The camera coordinate system X
is set as stated: the X axis faces in the lateral direction to the
right of the robot, the Y axis faces in the longitudinal direction
downwards, and the Z axis faces in the perspective direction
which the robot faces. The origin of the camera coordinate
system is set at the neck joint.

A. Image Processing

Hybrid Motion Stereo requires image processing for stereo
vision and motion stereo computation. Assuming that the cam-
eras are calibrated, stereo vision requires the correspondence
of the feature points between the images, while motion stereo
requires the correspondence between sequential images. Since
feature points of objects are often used for acquisition of 3D
positions and orientations[12] the authors have implemented
Hybrid Motion Stereo based on the computation of feature
points. Feature points can be extracted from the image by de-
termining those with big eigenvalues[13]. Methods for feature
point tracking have been proposed by Lucas Kanade[14][15],
which is capable of performing real-time tracking with sub-
stantial stability. The authors have implemented the functions
in OpenCV[16], provided by Intel Corporation, for extracting
and tracking feature points.

B. Configuration of the Cameras

The cameras of the robot are set so that a large area
computable by stereo vision, manipulatable with both hands,
can be obtained. The optic axes of each camera face inward,
redounding high precision in manipulatable areas using stereo
vision, but also creating large areas visible in only a single
camera at distant locations. Fig. 4(a) shows the planer visible
area 1500[mm] away from the robot. The light gray area and
dark gray area each represent SCVA and MCVA. Defining
each area as S and M, the area computable by stereo vision
is limited to M, while Hybrid Motion Stereo is capable of
computing (M + S). Therefore, comparing Hybrid Motion
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Fig. 3. Vision System of the Humanoid Robot HRP-2
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Stereo and stereo vision, the rate of increase in computable
area can be defined as (M + S)/M.

Since the configuration of the cameras form large SCVA in
distant locations, the proportion, (M + S)/M increases along
with the distance from the cameras. The graph on Fig. 4(b)
represents the increase rate of the proportion relative to the
distance from the camera. As can be seen, Hybrid Motion
Stereo is capable of computing more than 2 times as much
area compared to stereo vision in distant areas.

C. Experimental Conditions

The authors have constructed the experimental environment
with three checkered boxes, each of a different size, stacked on
one another. The setup and views of each camera are stated in
Fig. 5. For simplicity, the movement of the cameras are created
by rendering the robot to walk on a spot. The walk generates
lateral cyclic motions induced by the movement of the center
of gravity for stability retainment[17].

IV. EXPERIMENTAL RESULTS

Feature points in SCVA can be computed only by motion
stereo, while those in MCVA can be computed by both
motion stereo and stereo vision. To evaluate the results of
motion stereo, the authors have computed the 3D positions
of feature points in MCVA and SCVA by motion stereo.
Camera movements are estimated by using the median of the
movements of feature points for each component, X, Y and
Z. The total computation time for three images, excluding the
image acquisition time, is approximately 0.1[s] for each frame.
Outlier rejection is conducted using the results of 5 sequential
images.

The computation results from overhead view are shown in
Fig. 6. The results are shaded according to their height from
the ground, white being the lowest and black being the highest.
Feature points in the red oval in Fig. 6(a) represent the outliers
which are required to be rejected. The neighboring area to
compute the weight, or spatial deviation stated as S in (7),
is set as a cuboid centering the evaluating feature point, with
sides 10[cm] along the X and Y axes and 20[cm] along the Z
axis. The side along the Z axis is defined larger than the others
since the distribution of the points are scattered wider along
the Z axis[18]. Since the Z axis, which faces the perspective
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direction to the camera, possesses the largest computation
error, the rejection threshold, stated as 7 in (8), has been
defined heuristically as 50[mm] for the absolute difference of
the Z components, stated as the function f in (8), between
the computation result and the weighted average. As can be
seen from Fig. 6, 14 out of the 15 outliers have been rejected,
quoting the effectivity of the method to reject outliers both
near and far.

Fig. 7 presents the perspective view of the results with
points shaded according to their distance from the cameras,
black being the nearest and white being the farthest. The
results reconstruct quite accurate shapes of the three boxes.
The distributions of the points are closer to the camera at lower
places, i.e. those possessing a high value of Y components
are shaded with darker colors, and tend to recede from the
camera as the points get higher. The feature points in the
red shaded area in Fig. 7 indicates the points incomputable
by stereo vision. Nearly 30 percent of the whole points exist
in the shaded area, quoting a 42 percent increase of points
compared to pure stereo vision. Fig. 7 also remarks that the
rejecting algorithm is capable of retaining the necessary results
while rejecting the outliers. However, compared to the map
of the constructed environment in Fig. 5(a), the distribution
of the computed points is shifted 7 to 8 centimeters towards
the robot in the perspective direction. It also possesses a few
centimeters of deviation in the longitudinal direction, upwards.
These errors are induced from camera movement estimation
errors, which increase as the points used for camera movement
estimation recede from the calibration area. Future works
include a more stable method for estimating the motions of
the cameras.

V. GENERAL DISCUSSION

In this paper, a rejection method for Hybrid Motion Stereo,
which produces outliers due to mistracking between consecu-
tive images, has been proposed. Weighted average using spatial
deviation and temporal deviation for creating the evaluation
function proved to be effective in rejecting these outliers. The
rejection threshold defined heuristically extracts the best results
for the distribution of points in the experiment. Increasing
the threshold results in a decrease of computed points, while
decrease of the threshold results in insufficient rejection of
outliers. Experimental results have shown that 14 out of 15
outliers have been rejected using the method. The method
has been proved to retain the reliable results while rejecting
outliers.

Although the method is capable of rejecting outliers, it is
vulnerable to errors in estimated camera movements. Since Hy-
brid Motion Stereo uses consecutive images acquired between
a short span, subtle errors in camera estimation induce large
errors in motion stereo computation. Miscalculation in camera
movements lead to the deviation of the whole distribution
of points, which cannot be considered as outliers since the
spatial density of the points cannot be distinguished from those
computed when the camera movements have been accurately
estimated. Errors in computation by stereo vision increase
as the computing point recedes from the calibration area.
Therefore, estimation of camera movement using stereo vision
turns out to be quite unreliable when the points used are distant
from the camera.

To minimize the errors in estimation of camera movement,
an accurate calibration of the cameras or an alternative measure
for estimation is required. Accurate calibration for off-the-
shelf cameras implanted into mobile robots is an arduous
task since the correspondence between the camera coordinate
system and the robot coordinate system is difficult to obtain.
As an alternative measure, odometry for wheeled robots or
direct kinematics for biped robots can be used to evaluate
the camera movement computed by stereo vision. Specifically,
direct kinematics for biped robots possess large errors in
camera movement estimation only in the stepping phase of
the robot. Defining a proportion rate for camera movement
estimation by stereo vision as «, the camera motions § could
be estimated quite accurately by,

d=aC+(1-a)K 0<a<l), ©)
when the most appropriate has been selected for the variable
«, where C and K represent the camera movements estimated
by stereo vision and direct kinematics respectively.

These future works for improving the precision of motion
stereo is the first step for the completion of Hybrid Motion
Stereo. Latter steps include consideration of rotational camera
motions, creation of robot behavior from the constructed 3D
map, and extracting moving objects in the environment. By
overcoming these issues, we believe that Hybrid Motion Stereo
is capable of applying to various practical situations.
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