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Abstract-This paper describes a module-based beharior selec- 
tion architecture for a personal robot intended for a real world 
environment We adopt the Emotional GrOunded architecture 
for a basis, and define and describe a behavior module and an 
associated tree structure for controlling many behavior modules. 
Also we discuss the requirements and approach for eontrolling 
the behavior module tree. Through experimentation and imple- 
mentation on QRlO SDR4X-II, we confirm the feasibility and 
design of the behavior selection system. 

I .  INTRODUCTION 

There are many new research efforts involving robots that 
live with human users in daily life in recent years. [1][21[31 
To develop robots capable of sharing the life of a human for 
extended periods, it is indispensable that the robot not only 
perform useful tasks hut also entertain people. To realize this 
concept, which we call "Robot Entertainment", the key issue 
is how to make the robot's behave like a living entity, and it is 
our belief that the solution lies in the realization of complex 
behavior. 

We earlier proposed behavior modules and a preemption 
process for behavior modules in [4][5]. In this paper, we 
focus on integration of the behavior modules based on a tree 
structure and also on the behavior selection process. This 
behavior selection strategy, which goes beyond the earlier be- 
havior selection architecture of AIBO, covers not only simple 
behaviors but also complex activities such as interaction with 
a human. 

First we overview the basis of the behavior selection archi- 
tecture and its requirements. Then we address the main issue, 
the tree-structured integration of behaviors. 

11. EGO ARCHITECTURE 

We proposed EGO architecture (Emotionally Grounded Ar- 
chitecture) as a behavior control architecture for autonomous 
robots. [6] m e  main strategy for behavior selection of EGO 
architecture is based on ethological model[7]. The behavior 
control is based on homeostasis which let the robot regulate 
internal status within a certain range, and interpretation of 
external stimuli with corresponding behaviors. Figure 1 shows 
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Fig. 1. Overview of EGO architecture 

the outline of EGO architecture. The robot integrates visual, 
auditory and other sensing informations into the short term 
memory(STM) and uses those informations as external stimuli. 
On the other hand, it calculates motivation['l]from internal 
Status and emotion. Using external stimuli, motivation and in- 
formation from long term memory, the robot selects behaviors. 
In this paper, we focus on the hahavior selection part of the 
EGO architecture and describe the framework of expression. 
integration and contml of complex behaviors, followed by 
description of our implementation on real robot system, QRIO 
SDR-4XII. 

111. R E Q U I R E M E N T S  A N D  APPROACH FOR THE CONTROL 
OF VARIOUS BEHAVIOR 

A robot should behave with sufficient complexity and in 
meaningful ways if it is to share the life of a human for a 
long period. The basic requirements for this kind of behavioral 
contml include: (1)effective structure of the behavior, and 
(2)suitahle coordination of the various behaviors. From an 
engineering viewpoint, it is also important for the developers 
of a robot's behaviors, (a) to provide a simple description, (b) 
employ a simple strategy for behavior design, and (c) make it 
easy to reuse behaviors. 

To achieve these requirements, we propose an approach 
as follows: (1) Modularization of behavior, (2) Integration 
of behavior modules based on a tree structure, (3) Parallel 
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In order to realize behavior interupt-resume, each be- 
havior module maintains its own status, and performs 
suitable processing to change its status from active to 
waiting when a module which has higher priority than 
itself causes it to stop executing. That module can also 
resume execution and continue its behavior after being 
deemed a suitable process for reactivation. 

As mentioned in the introduction, the details of the behavior 
module and interrupt-resume process were described in a 
previous paper 141. In this paper, we focus on the integration of 

Fig. 2. Tree-structured behavior modules 

evaluation and parallel execution of behavior modules, (4) 
Intemption continuation of execution , and ( 5 )  Behavioral 
selection based on behavior values (described later). 

Modularization of behavior and integration of behavior 
modules based on a tree structure makes the design of a robot’s 
behavior easy and simple. Parallel execution and intempt- 
resume procedures permit an increase in the complexity of 
a robot’s exhibited behavior. Moreover, the introduction of 
behavior values lets the behavior selection method he straigbt- 
forward, as behaviors can only be selected that possess a 
suitable behavior value. Let us explain these points in detail: 

1) Tree structure for integration of behavior modules 
(a) Modules are defined as a unit of behavior: Each 

behavior modules based on a tree structure and on the means 
of behavior selection. 

IV. TREE STRUCTURE FOR THE INTEGRATION OF 
BEHAVIOR MODULES 

The rationale for using a tree structure is: 1) Easy reconfig- 
uration of behavior modules into different organizations, 2) a 
clear interface between the behavior modules and preservation 
of their independence, and 3) the abstraction of an entire 
subtree into a single behavior module. 

In this section, we focus on the key issues surrounding 
the integration of behavior modules. These are six-fold (A) 
Independence of each module, (J3) Control at the conceptual 
level, (C) Common values and keys for execution, (D) Parallel 
evaluation and parallel execution, (E) Control strategy in each 
conceptual level, and (F) Shared information. 

behavior module has two functions; computing its suit- A, Mod,& Independence 
ability and the execution of actions. 
(b) Behavior modules are according their Ensuring independence helps in providing reusability of be- 
meaning, and form a tree structure which has layers bavior modules. However, it requires a mechanism of behavior 

coordination to reside above the reused behavior modules. In corresponding to conceptual levels. 
Figure shows the tree struchlfe of behavior our case, a parent coordinates its children behavior. 
The figure’s rectangle illustrates the conceptual level. 
The upper layer behavior module is termed the “parent”, 
and its “children” are the lower layer modules. 
Due to the independence of behavior modules, both ease 
of their design and reuse can be achieved. Furthermore, 
the tree structure using a layered conceptual level helps 
in composing higher conceptual behavior with detailed 
behavior modules. 

Within each behavior module, a behavior value that 
represents the suitability of the behavior is calculated. 
This value can be used to prioritize behavior, depending 
on the strategy chosen for controlling child modules. The 
high-level module in the tree structure only gathers the 
behavior values of its direct childm so that the subtree 
size can be easily increased using the same behavior 
selection policy based on behavior values. 

Each behavior module has certain keys for execution 
such as a robotic resource, and behavioral coordination 
using these keys enables the robot to exercise parallel 
execution. 

2) Behavior value and behavior selection strategy 

3) Parallel execution 

4) Interrupt-resume processing 

B. Control at the conceptual level 

Because of the inherent complexity associated with large 
compositions of independent behavior modules, it is essential 
to have a suitable control strategy. Also, to support easy 
reconliguration of the behavior module tree, it is important 
to minimize the amount of information to be shared by every 
behavior module. 

Control of the whole behavioral tree is based on selection 
information available at each conceptual layer. The values 
considered are the priority for behavior selection, and an 
execution key for parallel execution. Control policies of the 
parent are based on only these two values. 

The parent considen child modules as single behavior 
modules. There is no assumption that a child is a parent of 
another subtree. Moreover, each module can serve as both 
an executable behavior module and a parent module for 
coordination of other child modules. 

C. Common values and keys for execution 

To control behavior modules in each conceptual level, the 
information about their priority value and execution key are 
needed. 
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We adopt the term behavior value to represent an execution 
priority. This value is calculated from the motivation (depend- 
ing on the robot’s current internal status), and a merit value 
(depending on the current external stimuli), as follows: 

Mv is the motivation value which is calculated as a desire 

Rv is the releasing value which represents an expected merit 
vector from the robot’s internal state. 

value. It is calculated as follows: 

RU = a A S  + (1 - a)(S +AS)  (2) 

S is the satisfaction value derived from current internal 
status, and AS is the expected change of the satisfaction value 
as follows: 

A S  = j (A1)  (3) 

AIis the expected change of internal value which is based 
on current external stimuli. 

Also, a behavior’s required resources are referred to as an 
execution key. For example, one part of the robot’s body can 
be used by only one module at a time. The Head resource 
cannot be used by two behavior modules simultaneously. The 
interpretation of language can be treated similarly, where this 
constitutes a cognitive resource. These keys form limitations 
for each behavior module when considered in terms of parallel 
execution. 

D. Parallel evaluation and parallel execution 

The behavior selection sequence starts from the lower level 
of the behavior tree, gathering the necessary information for 
selection towards the top. Execution is then assigned from the 
top level down to the lower ones. 

The sequence is propagated from parent to child down to the 
leaf modules, which perform the evaluations of their behavior 
values and execution keys, and then transmit them to their 
parent, and so on. 

After gathering all the information at the top layer, the 
parent module assigns an execution key to child modules at 
each conceptual layer, and propagates it sequentially from 
the top of the tree to the bottom. Behavior modules are 
then activated in parallel until a conflict of execution key is 
detected. 

A conflict is detected by the parent module at each concep- 
tual layer. In the case of a conflict, the module with higher 
priority is selected for execution. If the module with lower 
priority is already executing, it will he stopped first and then 
the higher priority module will be activated. 

The execution status of each module is propagated from the 
child module to its parent module. 

Thus, dynamic and parallel activation control of the behav- 
ior modules based on available execution keys is enforced at 
each moment. 

E. Control strategy within each conceprual level 

consists of: 

phase 

The evaluation and execution at each conceptual layer 

. Gathering behavior information during an evaluation 

. Distribution of key in execution phase . Integration of behavior status 
1 )  Gathering behmior information in theovaluation phase: 

Given a trigger for evaluation from its parent module, the child 
module calculates its behavior value and its key for execution. 
Gathering the information from all child modules along with 
those of the parent itself is indispensable for each conceptual 
level’s control, especially for the distribution of keys in the 
execution phase. 

The manner for gathering depends on the strategy for 
controlling child modules. For example, if the parent module 
wants to activate all child modules at the same time, all keys 
required by the children and the parent itself are needed for 
evaluation. On the other hand, if the parent module does not 
need to activate all child modules at the same time, a candidate 
list of execution keys is enough. Through this gathering and 
calculation, a behavior module can propagate its execution 
key to its parent module. The integration of priority value 
information is also needed. 

This information collection process enables complete evalu- 
ation and execution in each concept level of the behavior tree, 
while also enabling proper distribution of keys from the top 
to the bottom layer. 

2 )  Distriburion of key in execution phase: Using informa- 
tion which is gathered and integrated as explained previously, 
a parent module distributes the execution key and manages the 
activation of its child behavior modules. 

The key is distributed from parent to child, and all available 
keys, except for the keys required by the parent itself, are 
distributed to child modules. The computed behavior value is 
used as the priority level for arbitrating key distribution. 

After the distribution of keys, the parent module manages 
the activation status of its children according to the assigned 
execution keys. Child modules without a key should stop 
execution and release any keys they currently bold. Child 
modules not yet activated but possessing an execution key 
should start execution, when the assigned keys are released 
from the other modules which were previously holding those 
keys. 

3) hiregration of behavior .sfatus: After execution, a parent 
module must update its own behavior status and that of its 
children. In [4], we proposed adding an intermediate behavior 
status between run status and stop status . Figure 3 shows the 
set and organization of these behavior statuses. Two different 
stop statuses are used. The first stop has initialized informa- 
tion, while the other has preserved information for preemption 
and resumption of the module. To update the behavior status 
of its modules properly, the parent module has to integrate the 
information of its own behavior status based on the results of 
its execution, (e.g., the execution succeeded, failed, paused, 
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Fig. 3. Behavior SUNS 

Fig. 4. Behavior Module 

or continued), and 'the child modules' behavior status. This 
integration also depends on the strategy for controlling child 
modnles. 
. At the same time, a parent module checks whether the 
entire subtree is able to continue execution or not. This also 
depends on the execution strategy employed. For example, if 
all child modules have to be activated at the same time, one 
child module in stop status will cause all other modules in the 
subtree to change from run to stop status. 

E Shared information 
Previously, we discussed the information needed for the 

basic control of child modules. High-level coordination of 
behavior modules in the evaluation and execution phase also 
requires additional information, e.g. information about the 
target of a behavior. 

For example, the target information of a soccer behavior is 
a ball. To coordinate an approaching behavior and a kicking 
behavior. information about the target ball should be shared 
and the robot should kick the ball to which it approached. In 
a sense, information about the target of a behavior should be 
shared at a Conceptual level within the behavioral tree. 

v. IMPLEMENTATION OF BEHAVIORAL CONTROL 

In this section, we present an implementation of the module- 
based behavior selection system as previously discussed in this 
paper and in [4]. 

A. Behavior module 

Each behavior module bas an evaluation part and an execu- 
tion part. (Figure 4) 

In the evaluation part, a module calculates the execution key 
that is needed for the execution phase, and also the behavior 
value which is regarded as the behavior's priority. 

In the execution part, the actual behavior is described as 
state machines. Using a state machine smcture, the module 

can select a suitable action for given internal values and 
external stimuli, and transition to the next state as needed. The 
state machine includes sending an action command, changing 
internal status, deciding control policy of child modules, and 
so on. 

A behavioral module also maintains its behavior status. 
Basically there are four status states: stop status, preparation 
status for activation, activated statns, and preparation status 
for stop. Also for the preemeption function, the stop status 
includes two different status states: an initialized status and 
preserved status. With the preserved status, the behavior mod- 
nle can be reactivated from its previous stop point after a brief 
interruption. 

B. Shared informarion 
The information shared within a subtree of behavioral 

modules is: ( I )  Environmental information of a target, (2) 
Associated information of a target. 

An example of environmental information is target infor- 
mation that the robot actually senses, e.g. an object seen by 
the robot. An example of associated information is a key for 
associating one target with long-term memory data e.g. a face 
index, voice index, or word index. 

Several behavior modules in the snbtree share this informa- 
tion. 

C. Contml for tree structured behavior modules 
As mentioned earlier, a required function for tree-structured 

behavior modules is the propagation of the timing of eval- 
uation, execution, and behavioral status update. For suitable 
control, the integration of calculated values, distribution of 
execution keys, and integration of Status update are indispen- 
sible. These important functions depend on the strategy of 
child activation chosen as discussed in the previous section. 

We propose a child execution policy that allows designers 
to have a simple description of the behavior. 

As examples of child execution policy, there are three 
typical policies: ( I )  Simultaneous execution policy, (2) Parallel 
execution policy, (3) Main child existence policy. 

Using this method, calculations and operations which de- 
pend on the child execution policy are hidden, and all the 
designer has to do is declare which of the policies is used and 
the associated child modules involved. 

I )  Simultaneous execution policy: Parent module activates 
all child modules at the same time. 

Calculation of evaluated values 
This policy requires all modules to be activated and stay 
active simultaneously. Execution keys for the subtree are 
the collection of all execution keys for all behavioral 
modules. This subtree can he activated only when all of 
the execution keys are available from the parent module. 

In the execution phase, the parent module checks whether 
enough execution keys are distributed by its own parent 
module, and then distributes the keys to itself and its child 
modules. 

Distribution of execution keys 
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. Integration of behavior status update 
Even when there is only one stopped module, the parent 
module stops every child and itself. Accordmgly, behav- 
ior statuses are changed to preparation status of stopping. 
After execution, the parent module checks the result of 
the execution of the child modules and itself, and decides 
whether to change the behavior s t a ~ s  or not. 

2)  Purullel erecution policy: Parent module activates as 
many child modules as possible until no conflict of execution 
key occurs. This is the most common arbitration policy. 

Calculation of evaluated values 
The execution key is the candidate list of child modules 
and itself, because the parent module wants to activate 
as many children as possible. Even though not all keys 
are distributed in the execution phase, the parent module 
distributes execution keys to the greatest extent possible. 

The parent module distributes available keys to child 
modules, except the keys required by the parent itself, 
according to the priority of child modules. Modules with 
high priority value are assigned keys first. After key 
distribution, behavioral modules are stopped or activated 
according to execution keys. 

The parent module keeps the subtree active while there is 
at least one behavior module active, including itself. Only 
when all behavior modules are stopped then the subtree 
itself stops. 

3) Main child existence policy: The parent checks main 

Calculation of evaluated values 

Distribution of execution keys 

. Integration of behavior stams update 

child (distinguished) modules in updating behavior status. 

The calculation is the same as for the parallel execution 
policy. 

The distribution is the same as for the parallel execution 
policy. 

The result of the execution in the main child module 
is most important. If the main child module finishes 
execution, then the parent module stops all the other child 
modules. The result of the behavior tree depends on the 
result of the main child module. 

Distribution of execution keys 

. Inlegration of behavior status update 

VI. EXPERIMENT WITH QRIO SDR4X-I1 

Using the behavior selection implementation described in 
section V, behavior experiments were performed using QRIO 
SDR4X-II in a real environment. 

A. System composition 
Figure 5 shows an overview of QRIO SDR4X-n. Using 

this robotic system, we performed experiments for behavior 
selection and behavior execution. The right part of the figure 
shows the software components. This robot has inputs from 
visual, auditory, and tactile sensors. It has 38 DOF, LEDs 
on its eyes and ears, and a speaker for talking. The software 

._ ~. 
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Fig. 6. Tree srmnure for behavior conuOI experiment 

components include a long-term memory and an internal state 
model, which manages internal values and emotional status. 
The short-term memory gathers all inputs and the resource 
manager distributes output commands. 

B. Behavior coiirml experiment with wee-stnrcrured behavior 
modules 

Figure 6 shows an example of a tree of behavior modules. 
The behavior tree includes “Soccer”, ‘Tharge”, and “Chat”. 
The main motivation of “Soccei‘ is vitality, the main motiva- 
tion of “Charge” is hunger, and the main motivation of “Chat” 
is social interaction. There are other behaviors such as “Sound 
Attention”, where the robot turns towards the direction where 
user calls are detected, and “Idling gesture” where the robot 
performs idle gestures which has a constant behavior value. 
Figure 7 shows the whole experiment layout. 

1)  Luyering of behavior in conceptual level: From a top 
level point of view, there are three kinds of behavior: “Soccer”, 
“Charge” and “Chat”. At the next layer, each subtree is 
defined “Soccer” includes “searching a ball”, “approaching 
the ball” and “kicking the ball”: the “Charge” subtree includes 
asking to recharge its batteries; and the “Chat” subtree includes 
“searching a user”, “approaching.to a user” and “chatting to 
the user’’. 

In addition, the “chatting to user” subtree includes the 
“tracking” a userk face module and the “controlling topic” 
of chatting module. They are activated at the same time, 
according to the simultaneous execution policy. 

2 )  Beltuvior selection: 
Using motivation: The behavior value of “Soccer” is 
increased according to the vitality internal state value. 
The soccer behavior tree is selected when the value of 
vitality is high enough. After searching, approaching, 
and kicking a ball, the robot is satisfied and vitality 
is decreased. The value of “Chat” changes based on 
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~ i g .  7. Overview of an experiment scene 

the robot’s need  for^ social interaction, and decreases 
when the robot chats with a user. The behavior value of 
“Charge” increases as the battery charge level decreases. 
While the robot plays soccer and chats with a user, its 
battery will discharge and the motivation of the charge 
behavior will exceed those of both soccer and chat. . . Using motivation ind external stimuli: First let’s consider 
the behaviod~ changes inside one subtree, e.g. soccer. 
The Searching for a ball module and the Approaching. 
module calculate their behavior values based on the 
existence of a ball and the distance between the target 
ball and the robot itself. When there is no ball in the 
robot’s view, the value of the searching behavior is higher 
than the approaching a ball behavior. But when the robot 
finds a~ ball, the priority changes, that is, the value of 
approaching a ball becomes higher than that of searching. 
So the approaching behavior is selected. In n e  same .way, 
the approaching a ball module and kicking a ball module 
compete based on the distance of the target ball. The 
upper part of figure 8 shows the robot’s soccer behavior. 
We can now describe changes in activation between mod- 
ules in different behavior subtrees. Suppose that someone 
calls the robot while the robot’s approaching a ball. The 
robot stops and turns to the direction from where it was 
called, and finds a face. The behavior value of Chat will 

. change based .on the value of a user’s face (who that 
.- person is) and its motivation for chaning. If the value of 

chatting‘is higher than the value of approaching the ball; 
the robot turns to the user and s&s chatting. On the 
other ‘hand, if the face is not so. amactive for the robot, 
then the robot turns back to the ball, and continues its 
approaching behavior. The lower part of figure 8 shows 
the robot’s different behavior depending on a user. 

3) Parallel execution: . Simultaneous execution: The Chat module consists of 
the simultaneous execution of tracking a user’s face 
and controlling the topic of chaning..When the tracking 
module fails to find the target user, the result of the 
tracking module is “failure”, and the behavior status of 
the tracking module changes to preparation for stopping. 

. 

Wltacmmm c.!l.adcI 

Fig. 8. Behavior selection expriment 

The& according to the execution policy, at the same time 
the behavior status of chatting also changes to preparation 
for stopping and the robot stops chatting naturally. . Parallel execution: The Approaching behavior consists of 
walking towards a ball, while speaking is an optional 
extension of the behavior. They are not needed to be 
activated simultaneously, so they are executed based on 
each one’s timing: . Main child existence’policy: In the soccer behavior, the 
kicking a ball module is the main behavior module. So 
if the result of this main module is “success”, then the 
result of the soccer subuee is also “success”. But if the 
result of this main module is “failure”, then the result of 
the soccer subtree is also “failure”. On the other hand, the 
s l a ~ s  of the other behavior modules in the subtree, e.g. 
approaching a ball module, has no influence on the status 
of the soccer subtree. If the result of the approaching 
a ball module is “failure”, according to the change of 
behavior values, the searching for a ball behavior will be 
activated. 

4 )  Shared information: In the soccer subtree. behavior 
modules share information about the target ball. With this 
information, the approaching module can know where the 
target ball is-after the execution of searching module, and 
also the kicking module can kick the target ball which is 
approached by the approaching module. 

Behavior modules in the Chat subtree also share infomation 
about the identified target user. 

5) Preemption: Suppose that the robot is called by a user 
while approaching a ball. After turning to the user, the robot 
compares the behavior value of approaching with that of 
chatting. If the value of approaching is higher, then it can 
restart the approaching behavior towards the same target ball. 
That is because the information about the target is stored in 
the stop status of the approaching module. 

Inside each behavior module, information about the slate 
machine is stored. The module can restart from its previous 
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interrupted state. For example, a typical behavior of chatting is 
that the robot says “hello” to the user, does a self introduction 
and then say good-bye to the user. If a user calls the robot 
just after the robot bas said “hello”, then the robot will restan 
chatting from the self introduction. 

VII. DISCUSSION 
First we address the issue of scaling of the behavior tree. 

Theoretically there is no limitation for the number of behavior 
modules in a behavior tree. The limitation is based on the 
computational power and the amount of calculation for each 
behavior. Currently, the result is that several hundreds of 
behavior modules are included in the behavior tree of QRIO 
SDR4X-II. 

Next we discuss design criteria. It is important for the 
entertainment robot to facilitate the design of behavior, and 
that behavior modules can be written based on the designer’s 
intention. 

To design the robot’s behavior easily, the modularity of 
each behavior module plays an important role. If the modules 
are independent relative to each other and can be connected 
anywhere within the tree, the designer can generate a large 
scale behavior tree using a high degree of reusablity while 
exploiting the strategy that the behavior tree can be made up 
of small subtrees which each represent independent functions. 

That enables the designer to easily change the behavior tree 
and permits easy addition of new behavior. The designer does 
not have to create the entire tree from the beginning, but makes 
it expandable in a step-by-step process. 

In addition, we prepared a basic policy for controlling the 
design of the tree, so that the designer can connect behavior 
modules easily. On the other hand, the way to write behavior 
modules is highly flexible, as it also enables the designer to 
write detailed control for the behavior tree if desired. 

As mentioned above, the designer considers the system 
based on behavior modules and the way of connecting the 
behavior modules. 

The next issue regards suitable behavior selection. As this 
behavior module architecture has high modularity, learning 
their evaluation functions is important. The behavior value is 
based on internal value and external stimuli. So it is required 
to learn suitable mappings between internal state values and 
the satisfaction value, between internal state values and the 
driving value, and between external stimuli and the expected 
change of satisfaction. 

Another issue regarding learning of the behavior is learning 
a behavior as a connection of the behavior modules. Each 
behavior module has some actions, and the parent module 
gathers child modules as a subroutine of that behavior. 

We intend to describe and discuss these learning issues in 
detail in another paper. 

There is one more issue for behavior control. That is the 
chattering problem. If the behavior values of behavior modules 
are t m  close, a change of active behavior modules occurs t m  
often. To avoid this, we adopt a lateral inhibition mechanism 
in our system. If one behavior module is active, then other 

modules in the same layer are inhibited based on the behavior 
value of the active module. This mechanism comes from our 
research on the emotional model [SI It provides for stability of 
the behavior, while also allowing for a change between active 
behavior modules if another module has a very high behavior 
value. 

VIII. CONCLUSION 
In this paper, we have described an architecture for the se- 

lection and activation of behavior modules. We have discussed 
requirements in a real world environment and presented our 
approach and an implementation of those ideas in a complex 
robotic system. We have also conducted experiments with 
the entertainment robot QRIO SDR4X-U and confirmed the 
suitability of the architecture. Finally, we showed examples of 
behavior trees and discussed control policies between parent 
and children modules as well as activation based on motivation 
and external stimuli. 

We intend to present other papers about the methods of cal- 
culation of behavior value and the decomposition of behavior 
control parts into reflexive, common, and deliberative layers. 
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