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In this paper, we propose a learning algorithm for action selection mechanism in the EGO 
architecture, which we proposed for autonomous behavior conuol of a humanoid robot. The 
concept of behavior value is introduced for action selection. The behavior value of each 
behavior module depends on external stimuli and internal stales, and he behavior module 
with the higher behavior value is selected in the situation. We address the importance of 
learning the behavior value of each behavior. We describe how to compute behavior values 
for behavior modules through interaction with humans and environment We implemented the 
learning algorithm on QRlO SDR-4X II, B small humanoid robot, and confirmed that for a 
given interaction driven behavior module, a high behavior value is obtained when intericting 
with a friendly user. The same tendency is oblained for a proper color painted ball for soccer 
play behavior module. 
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1. Introduction 

We have been proposing autonomous behavior control architecture, named EGO 
Architecture, for consumer entertainment applications'. For the purpose, we 
developed a small humanoid robot QRIO SDR-4X (later QRIO). It is necessary for 
such a robot to walk around in home environment, to respond to social cues and 
other stimuli, to find and identify users, and to communicate with users naturally. 
There are many technologies, such as real-time dynamic walking control, 
map-building of environment, human detection and identification, speech 
recognition and synthesis, and natural language processing for verbal 
communication. Moreover, it is important to behave spontaneously and naturalIy. 
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The EGO architecture is developed to integrate the technologies and to make 
QRZO behave spontaneously and naturally. 
From Behavior Control Architecture point of view, how to coordinate behaviors 
properly is one of the important issues. in the Behavior Based architecture’, it is 
described that the “releasers” of behaviors coordinate behaviors, and the releasers 
are carefully designed and debugged by human. Usually, the releasers are described 
as a TRUE-FALSE logic table, and one TRUE releaser releases the corresponding 
behavior in the situation2. 
In our EGO architecture, we assign “behavior value” for each behavior module, 
and proper behaviors are coordinated based on that value. The behavior value 
could be considered as Q-value in reinforcement learning, where the action with 
the higher Q-value is selected to get the higher reward. In the similar way, the 
behavior with the higher behavior value is selected to regulate the intemal 
variables. The details will be described in the later section, but in short the intemal 
variables must be regulated in certain ranges. This is a key for autonomous or 
spontaneous behavior of the EGO architecture. 
Let us return to the action selection issue, as the releaser is programmed manually, 
the behavior value is usually programmed or assigned manually. However, it is 
clear that when the system is getting complex as behaviors and target objects are 
increased, it is difficult to determine these behavior values manually. Moreover, in 
some cases it is impossible to determine the behavior values before the robot 
actually interacts with targets. For example, if there are a user (USER-A) who likes 
to interact with the robot, and a user (USER-B) who doesn’t like to interact with 
the robot, the robot has to determine the behavior value of interaction behavior 
module in such a way that a higher behavior value for USER-A and a lower 
behavior value for USER-B are set. These values can not be assigned before the 
robot interacts with users. 
We already proposed Emotionally Grounded Symbol ~ o n c e p t ~ ’ ~ ,  in which symbols 
are grounded to emotional system, which corresponds to the system with the 
internal variables. The learning algorithm of the behavior value is an example of 
implementation of the Emotionally Grounded Symbol concept. 
In this paper, first we describe an overview of the EGO architecture, followed by 
how to compute behavior values, and how to coordinate behaviors properly based 
on the behavior values. Then, we describe how to learn the behavior values through 
interactions with target objects, some of which are initially set by programmer, and 
some of which are new targets. We implemented the learning mechanism in the 
EGO architecture and performed some feasibility studies. We describe several 
implementations and presents results of experiments using QRIO. Then, comparing 
with existing architectures, we discuss some features of the EGO architecture with 
respect to our learning mechanism. 
Note that regarding the terminologies in this paper, because the EGO architecture 
is inspired by Ethological studied, we often use terminologies for animals’ 
behaviors for our robot behaviors such as EAT for an energy charge behavior and 
NURISHMENT for an intemal variable corresponding to battery energy. In EGO 
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architecture, if a robot is HUNGRY then EAT, a battery charging behavior, should 
have the higher behavior value. 
One more thing we should note here is about the terminology of “action selection” 
and “behavior selection”. The two tenninologies are used in many fields in aImost 
the same meaning. Because “action” sounds more primitive meaning than 
“behavior”, we basically use behavior selection for our EGO architecture. However, 
when we refer to other articles, we try to use the original terminology in the 
Iiteratures. 

2. EGO ARCHITECTURE OVERVIEW 

In this section, the individual software components of the EGO Architecture are 
briefly explained. Fig. 1 provides an overview. Please refer to the paper for more 
details in the EGO Architecture6. 

I 1 
olvlmolncm 

Fig. 1. Overview of the EGOArchitecture 

2.1. Short Term Memory (STM} 

STM integrates the results of perception. From audio perception, STM receives the 
result of not only speech recognition but also sound source direction by multi 
microphone localization. As for vision perception, STM can obtain the result of 
face recognition with its associated direction and distance computed from stereo 
vision. In the case that both, audio and visual directions, are same, STM merges the 
results to indicate that they are from the same user. 
STM can also compute relative positions to detected objects (face and ball etc.) 
through kinematics. Therefore STM can store and recall results located outside af 
the limited view range. 
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2.2. Long term memory (LTM) 

LTM associates the recognition results with an internal state. For example, LTM 
can associate an acquired name with an identified object or an identified voice, and 
change the internal state associated with a target object. Details of LTM are 
described in the paper', 

2.3. Internal state model (ISM) 

ISM maintains various internal state variables. It alters their values depending on 
the passage of time and incoming external stimuli. Basically, a behavior module is 
selected in order to keep these internal state. variables within proper ranges. ISM is 
the core for spontaneous behavior and response generation to external stimuli. 

2.4. Emotion model (EM) 

EM has 6+1 emotions, which are ANGER, DISGUST, FEM, JOY, SADNESS, 
SURPRISE, and NEUTRAL, based on Ekmann's proposal7. Each emotion has an 
associated value. They are determined based on self-preservation. The 
determination of self-preservation is composed of self-crisis and self-crisis 
expectation. The value of self-crisis is evaluated from external stimuli. Detail of 
this evaluation is described in the paper*, 

2.5. Situated behavior layer (SBL) 

SBL controls behavior moduIes. Each behavior module has two basic functions, 
monitor and action. 
Monitor function periodically and concurrently creates a value, which is called 
Behavior Value (BV), using internal state variables and external stimuli. It indicates 
how relevant the behavior is far the situation (e.g., observing an object and a sound 
event etc.). The details of this computation are described below. 
A behavior module is selected by competition on the BVs. Greedy or soft-max is 
used as a selection policy. Then the selected behavior module is given execution 
permission. 
Availability of necessary resources for execution, e.g., head, arm, speaker, etc., are 
also considered in the competition. In the case where there is no resource conflict 
among behavior modules, all of them are given execution permission and then 
execute concurrently. 
After a behavior module is given permission, the action function executes the 
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behavior implemented as a state machine. Each node can output e.g. a motion 
command (designed motion command, walk command, and tracking command 
etc.) and can decide to state transition depending upon the given situation. 
Figure 2 shows a behavior module and associated process. 
A tree structure is used to organize the behavior modules. An abstract behavior can 
be divided into concrete and multiple sub-behaviors. For example, as shown in Fig. 
3, “Soccer” can be decomposed into “Search ball”, “Approach ball” and “Kick 
ball”, also “Approach ball” can be decomposed into “Go to ball by walk”, “Track 
ball by head”, and “Speak for approach” etc. 
In the parent behavior module in the tree structure, a monitor function can also 
determine the BV through the child BVs instead of evaluation through the internal 
state variables and external stimuli. The action function can also select a child 
behavior module instead of a motion command 

Fig. 2. Behavior module and process 

Fig. 3. Tree structure of behavior modules 

SBL is organized in 3 modules, D-SBL (Deliberative SBL), N-SBL (Normal SBL) 
and R-SBL (Reflexive SBL). D-SBL realizes behavior control for deliberative 
behavior, N-SBL realizes behavior control for homeostatic behavior, and R-SBL 
realizes behavior control for quick responses. 
Please refer to the proceedings for more. details on SBL6.9. 
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3. LEARNING BEHAVIOR VALUE 

In this paper, we focus on the learning of BV’s to realize homeostatic behavior in 
N-SBL. Performing a behavior on a target would cause changes in the internal state 
variables. Each behavior module evaluates how much the intemal state would 
change as a result of performing the behavior. The association of it is learned in 
each behavior module. Evaluation and learning of BV are described in detail in the 
following subsection. 

3.1. Evaluation of behavior value 

Each BV is composed of a Motivation value (Mot) and a Releasing value (Rel). 
The evaluation of Mot, Re1 and BV is described using the following example 
behavior “Approach a target abject for eating it”. EGO architecture is based on 
ethological study. The example is for an agent to regulate the NOURISHMENT 
state variable. From the viewpoint of robotics, NOURISHMENT is interpreted as 
charge of battery, eating as pseudo-eating, that is charging-battery, and object as 
battery station. 
The motivation value is the degree to which the instinct drives the behavior module. 
It i s  derived from intemal state variables and is composed of instinct values. 
An instinct vaIue ( I n s [ i J )  is designed for each specific internal state variable 
( Int [ i l ) .  
Two examples for NOURTSHMENT and FATIGUE are shown in Fig. 4 (a), @) and 
can be interpreted as follows, The less nourishment there is, the larger the instinct 
to eat it is. Also, in the case of large nourishment, this instinct turns negative to 
realize a moderation or reduction in eating behavior. Fatigue has a negative effect. 
The more fatigue there is, the less the value of the instinct associated with it. 
Mot is evaluated as shown in Eq. (1). 

where WMo,[z]: Weight of Ins[tl 

The releasing value is the degree regarding how much an extemal stimuli would 
satisfy an intemal state as a result of the behavior. It is derived from an internal 
state variable and the extemal stimuli. It is composed of a satisfaction value and 
the expectation of satisfaction value. 
A satisfaction value (Sar[i]) is designed for each specific intemal state valuable. 
Examples for NOURISHMENT and FATIGUE are shown in Fig. 4 (c), (d). 
To evaluate the expectation of satisfaction value (ESat[il), the behavior module 
maintains a database on expectation of change in the internal state variable (lirnt[i]) 
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against the result of the behavior for the given external stimuli. 
Figure 5 is an example where the behavior module expects a change in 
NOURISHMENT and FATIGUE when an external stimuli (OBJECT_ID, 
OBECT-SIZE, and OBJECT-DISTANCE) is obtained. It means that when a 
target object is found which has OBJECT-ID = 1, OBJECT_SIZE = 100, and 
OBECT-DISTANCE = 2000, NOURISHMENT would increase 20 and FATIGUE 
would increase 20 after approaching and eating the target object. 

Fig. 5. Database about expectation of change in the internal state variable 
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ESat[i] and expectation of change in satisfaction value (dSat[ij) are shown in Fig. 4 
(c), (d). They are interpreted as follows. When dht ,  is determined by observing an 
objecb, the dSut[NOUFWHMENT] is expected as positive. On the contrary, when 
dlnt, is determined when observing another objectt, for example whose size is 
larger than objecb, the dSut[NOURISHMENT] is  expected as negative due to 
overeating. dlnt for fatigue is related to the distance of an observed object. The 
farther the distance is, the more dissatisfaction the agent receives. 
Rei is evaluated by Eq. (2). 

where WRel[i] : Weight of ( Wd,&ur[z]+( 1- Wdst,,)ESut[i]) 
Wds,l: Weight of dSat[i] against ESar[~l 

BV is evaluated from Mot and Re1 by Fiq. (3). 

BV = W,,,Mot + (1 - W,,,)Rel (3) 

where WM~,: Weight of Mot against Re1 

Note that when there is no external stimuli for the behavior module, BV is set to 0, 
so that behavior module is never selected. 

3.2. Learning of change in the internal state variable 

As mentioned in the introduction, it is difficult to set BV properly. And it is 
important that BVchanges properly through interactions with external stimuli. 
In the evaluation of BV, each behavior module expects dfntIil based on the 
database through external stimuIi. And as a result of the behavior, internal state 
variable really changes. In this paper, dht[i] is renewed by feedback of rea1 change 
in internal state variable and parameters of BV are learned. 
Figure 6 shows the process of the learning using an example of “eat a target object”. 
The behavior module evaluates BV from Inf[NOURSHMENT] and external stimuli 
OBJECT-ID = 2, OBJECT-SIZE = 100.0 in the database. 

, 
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Fig. 6. Process of the learning 

Execution of the behavior (eat the target object) causes real change in 
NORISHMENT (dhr,,,,lNORISHMENT]). And dlnr[NOURISHMEIW for the 
given external stimuli is learned by feedback of dIn~Reol[NOUIUSHMENTl by 
foIlowing Eq. (4). 

d~nt[i] e (1 - a)dlnt[i] + a - dint,,, [i] (4) 
where a : Learning ratio 

For unknown target object, a default dInt[i] is set heuristically. Even if the default 
dhr[i] is not proper at first, it would be learned properly because dlnt[i] grounds 
on real change in internal state variable through the process. 

4. IMPLEMENTATION AND EXPERIMENTAL RESULTS 

Let us consider two example behaviors (application) to proceed in the discussion. 
The first behavior, "Kick a ball" satisfies e.g. VITALITY. The second behavior, 
"Interact with an user" satisfies e.g. INTERACTION. Experiments are conducted 
to learn parameters of BV through QRIO interacting with faces and balls, and to 
behave autonomously based on leamed BV in the real environment. 

4.1. Hardware component of QRIO 



Figure 7 shows QRIO’s appearance. It is 580 [mm] height, approximately 7 [kg] 
with battery and having 38 DOE It is a stand-alone robot with three CPUs. The 
first is for audio recognition and text-to-speech synthesis. The second is for visual 
recognition, short- and long-term memory, and the behavior control architecture. 
The third is dedicated to motion control. Remote processing power and robot 
control is also available through wireless LAN. 

-D. 

(a) Front 

I 
J 

(b) Side 

A. Stereo Camera 

C. Shoulder Swwh 
D. Dirlance Sensor (Head) 
E. Expression Lamp (Eye) 
F. Expression h p  (Chcrt) / 

G Modc Lamp 
H. Distance Senpor (Hand) 
I. &pression Lamp (Ear) 
I. Multi Minophone 
K. Grip Switch 

B. Spakm 

Power Switch 

b 

(c) Back 

Fig. 7. Appsrance of QRIO 

4.2. Implementation of experiment 

The tree structure of behavior modules for the application is shown in Fig. 8. 
Soccer (Sc) sub tree has 3 child behavior modules Soccer Search (ScSr), Soccer 
Approach (ScAp), and Soccer Do (ScDo). They evaluate BV based on an internal 
state variable and external stimuli. BV of Sc is the maximum BV among its 
children. 
ScAp focuses on VITALITY and FATIGUE as internal state variables, and 
BALLJD and BALL-DISTANCE as external stimuli. BALL-ID = 0 means a red 
ball with radius 75 [mm] and weight 330 [g]. BALL-ID = 1 means a green ball 
with radius 75 [m] and weight 110 [g]. 
BV is composed of Mot and Re1 with WMo, = 0.4. 
Mot is composed of Ins[VITALITY] and InsIFATIGUE], which are shown in Fig. 
9 (a) and (b), with W,,,[WTALITu] = 0.8 and WM~~[FATIGUE] = 0.2. 
Re1 is composed of dSat[VITALlTY], dSat[FATIGUE], ESut[VITALITY] and 
ESat[FATIGUE], which are shown in Fig.9 (d) and (e), with WRel[VITALITU] = 
0.8, WRtr[FATIGUE] = 0.2 and W,,, = 0.0. 
dInt[VITALITY] and dht[FATIGUE] are estimated from BALL-ID and 
BALL-DISTANCE. Default value for them are shown in Fig. 10 (a) and (b). 

459 



Fig. 9. hr[q against h r f i ]  and sut[i] against I r r f [ i l  

Fig. 10. Default dhfli-j against extemal stimuli 
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ScSr focuses only on VITALITY is an intemal state variable. It does not focus on 
extemal stimuli. Evaluation of BV is the same as for ScAp except for the values on 
FATIGUE, which are set to 0. 
ScDo focuses only on VITALITY as an intemal state variable and BALL-ID as an 
external stimuli. Evaluation of BV is same as ScAp except for the values on 
FATIGUE, which are set to 0. On the condition that the ball distance i s  not in the 
proper range for kick motion (0 - 400 [m]), BV = 0. Note that the distance is not 
used to evaluate Rel. 
Motion commands for search and approach a ball are output in children behavior 
modules of ScSr and ScAp. ScDo outputs kick motion commands and 
dfnt,,/[VITALITY] is estimated from the distance to the ball after kicking it in the 
action function. The estimation is defined by Eq. (5). It means that fnt[VITALITY] 
increases by 50 when distance of kicked ball is 1000 [mm]. 

dht, ,  [VITALITY = 0.05 * BDst (5 )  
where BDst: Distance to the ball [m] 

interaction (la) sub tree, composed of Ifiteraction Search (IaSr), Interaction 
Approach (IaAp) and Interaction Do ( [ d o ) ,  has the same structure as Sc except 
for intemal state variabie and external stimuli. HVTERACTION and F A C E D  is 
specified instead of VITALlTY and BALL-ID respectively. 
In action function of IuDo, QIUO requests interaction with the user at fust state 
machine node. When the face becomes much closer, interaction motion command 
is executed and Inr[VITALITY] increases in 50 (that is ~I~~R~,,,[VITALITYI = 50). 
On the other hand, if it does not become much closer for a while, QRlO gives up 
interaction and the state machine is finished. In this case, Int[VITALITY] does not 
increase (that is dlntR,,,[VITALITyl = 0). 
fns[lNTERACTION], Sut[INTERACTION] and default of dfnr[INTERACTION] 
are shown in Fig. 9 (c), (f) and Fig. 10 (c) respectively. 
On the condition that the distance to the detected face is not in the proper range for 
interaction (IO0 - 500 [mm]), BY = 0. 
For the implementation of learning, we focus on dlnt[VITALITY] and 
dlnt[INTERACTION] against each target object BALL-ID and FACE-ID. And 
they are same instance in ScAp and ScDo, JaAp and IaDo for each. 
Learning ratio a is set to 0.4. 
Not Homeostasis (NH) is not a homeostasis behavior module, so BV = 10 
constantly. It outputs an idle motion command like leaning the head to one side, 
tracking a face, etc. When BV of ali homeostatic behavior modules are low (all 
internal states are satisfied), NH is executed. 
Event Reaction (ER) does not output any motion command by itself. When an 
event triggering a reflexive behavior comes, ER reserves required resources by 
setting BV = 100 to prevent a homeostatic behavior module from executing and 
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interfering with the reflexive behavior. A parent behavior module selects its child 
behavior modules using a greedy policy based on the children’s BV. 
Figure 11 shows the appearances of the experiment. 

(a) Kick a ball (b) Interact wiih a person 

Fig. 1 I. Appearance of the experiment 

4.3. Experiment of learning behavior value 

In the condition that Int[VITALITY] = 80, Znt[FATIGUE] = 10, 
Znt[lNTERACTZON] = 20, la sub tree is active and Sc sub tree never be active 
because BV of ScSr, ScAp, and ScDo are negative at all times. QRIO tries to search 
a face, approach to the user, and request interaction with the user. It is executed 10 
times for each FACE-ID = 0, 1. 
Figure 12 (a), (c) and (e) show the experimental results of learning 
dlnr[ INTERACTION]. 
User, whose FACE-ID = 0, accepts the request of interaction always. On the 
contrary, User, whose FACE-ID = I ,  accepts it every other time, Then 
dlnf~,,[INTERACTION] = 50.0 is obtained successively for FACE-ID = 0, and 
dZnrR,,[INTERACTION] = 0.0 is obtained every after obtaining 
dlnrR,,[INTERACTION] = 50.0 for FACE-ID = 1. (See Fig. 12 (a) and (c)) 
As a result of the learning, dlnt[tNTERACTION] for FACE-ID = 0 gradually 
converges to dlnrRe,,l[INTERAC”ION] = 50.0 and becomes dlnr[INTERACTIONl 
= 49.9. On the contrary dlnt[INTERACTIONj for FACE-ID = 1 becomes 18.8 
with oscillation. (See Fig. 12 (e)) 
In the condition that Znt[VITALlTY] = 20, Int[FATIGUE] = 10, 
Inr[KNTJ5MCTION] = 80, Sc sub tree is active and la sub tree never be active 
because EV of IaSr, ldp,  and ZuDo are negative at all times. QIUO tries to search 
a ball, approach to the ball, and kick the ball. It is also executed 10 times for each 
BALL-ID = 0 , l .  
Figure 12 (b), (d) and (f) show the experimental results of learning 

In the result of ball distance, the average is 436.1 [mm] for BALLID = 0 and 
dlnt[VITALITY]. 
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577.9 [mm] for BALL-ID = 1. It would be caused of difference of balI weight (330 
[g ]  for BALL-ID = 0, 110 [g] for BALL-ID = 1). Because green ball is righter 
than red ball, it goes further when it is kicked. 
They are less consistent (Standard deviation CT =174.3 [mm] for BALL-ID = 0 and 
4=148.1 [mm] for BALI-ID = 1) .  It would be caused of interaction with real 
environment, that is ball recognition error, kick motion error, friction of the floor, 
etc. ( S e e  Fig. 12 @)) And ~I~~R,JVITALITY] is obtained like Fig. I2 (d) for each 
BALL-ID. 
As a result of leaming, dlnr[VITALITYJ for BALL-ID = 0 becomes 25.4 and 
BALI-ID = I becomes 33.6 as shown in Fig. 12. 

Y 

E "  
1" 

10 

0 

4 I 

Fig. 12. E x p e r h m "  resuIt of leaning dlnf 

4.4. Experiment of autonomous behavior bused on learned behavior value 
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Figure 13 (a) shows the experimental result of change in BV in the condition that 
Inr[VITALlTY] = 20, Int[FATIGUE] = 10, Int[INTERACTION] = SO at I = 0.0 [SI 
with learned dnt[VITALITY], dInt[INTERACTION] in previous subsection, 
which dlnr[VITALITY] = 25.4 for BALL-ID = 0, dInt[VI'IALITY] = 33.6 for 
BALL-ID = 1, dfnt[INTERACTION] = 1S.8 for FACE-ID = 0, and 
dlnt[VITALITY] = 49.9 for FACE-ID = 1. 
At first QRIO searches randomly for a ball in BQScSr] = 20. QRIO finds the ball 
with BALL-ID = 1 (green ball) at t = 48.0 [SI, then Ev[ScAp] increases to 44.5 and 
starts to approach the ball. QRIO reaches the distance where kick motion is 
effective at f = 73.5 [SI, and then BQScDoj increases to 45.9 and kicks the ball. 
After kicking the ball, Int[VITALITfl  is satisfied to a level of 45.9 from 20 at t = 
99.0 [SI because ball distance is 519.0 [mm] and dZnr,,,,[VITALITyI = 25.9. 
Int[VlTALlTY] is not satisfied enough in this condition. Then QRIO approaches 
and kicks the ball again from I = 107.5 [SI, t = 124.0 [SI for each. Finally 
Int[VlTAL,lTY] is fully satisfied to a level of 45.9 from 75.S at t = 146.0 [SI 
because ball distance is 577.6 [mm] and dlntfia~[VITALITY] = 28.9, and NH is 
executed by Bv[NH] = 10 after t = 153.0 [SI. 
Note that dInr[VITALITYl is renewed online from 33.6 to 30.5 after first kick and 
from 30.5 to 29.9 in second kick. 
Figure 13 (b) shows the experimental result in another condition that 
Inr[VITALITYl= 20, Inr[FATIGUEl = 10, IntpTTERACTIONI = 20 at I = 0.0 [SI. 
User, whose FACE-ID = 1, claps his hands to make QRIO notice him during 
approach to the ball in BV[ScAp] = 34.5. And QMO detects the sound at t = 29.5 
[SI Then ScAp is interrupted and ER is executed in BQER] = 100 from t = 29.5 [SI 
to 45.0 [SI. The behavior module in R-SBL outputs a motion command to turn 
toward the sound source direction. At t = 43.5 [SI QRIO finds a face whose 
FACE-ID = 1, then SflIuAp] increases to 26.6. Because BVScAp] is stjll larger 
than BV[laAp], QRIO ignores the face at once and resumes the approach from i = 
45.5 [SI and kicks the ball after t = 71.0 [SI. Then QRIO searches, approaches, and 
requests interaction with the user from t = 104.0 [SI, f = 120.0 [SI, and t = 143.0 Is] 
respectively. 
Figure 13 (c) shows the experimental result in same condition as previous 
experiment, that Int[VlTALTTY] = 20, Int[FATIGUE] = IO,  Znt[TNTERACTION] = 
20 at f = 0.0 [SI. User, whose FACE-ID = 0, claps his hands to make QRlO notice 
him during approach to the ball in Ev[ScAp] = 34.5. And QRIO detects the sound 
at t = 45.5 [SI. Then ScAp is interrupted and ER is executed in BV[ER] = 100 from r 
= 45.5 [SI to t = 83.0 [s]. The behavior module in R-SBL outputs a motion 
command to turn toward the sound source direction. At t = 73.5 [SI QRIO finds a 
face whose FACE-ID = I ,  then BV[IuAp] increases to 56.6. Now it is larger than 
BV[ScAp]. QRIO approaches the user, suspending its previous approach to the ball, 
and requests interaction with him at t = 101.5 Is]. After the interaction, 
Int[INTERACTIONI is satisfied enough (Inr[INTERACTION] = 70), and BV of 
IuSr, I@, and I d a  turn negative. QRIO restarts looking toward, approaching 
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and trying to kick it from r = 136.0 [s], t = 187.5 [SI, i = 205.0 [SI respectively. 

Fig. 14 Experimental result of BV 

Through these experiments, it would be guessed as follows. 
QRIO prefers an user who interacts with usually to playing soccer with red ball. 
QRIO suspends playing soccer and requests interaction for that reason. But QRIO 
does not prefer a user who rarely interacts with to playing soccer with red ball. 
QRIO ignores him and keeps playing soccer. QRTO gets attached to a user who has 
much interaction with QRIO. The guess wouId attract users to interaction with 
QRIO. 

5. RELATED WORKS AND DISCUSSION 

In the previous section, we describe learning of behavior values, which could be 
considered as action selection mechanism of autonomous robots. Humphrys" 
proposed learnt action selection mechanism with reinforcement learning. As we 
mentioned in the introduction section, the action selection mechanism is based on 
"release?", which are coded and debugged manually. Humphrys also addressed 
that action selection algorithms a x  mainly done by time consuming hand tuning, 
and little work has been done on solving the action selection problem using 
learning. He also pointed out that general Reinforcement Learning work has 
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concentrated with one evaluation function or one goal; however, there are many 
goals that should be considered in real world and real situations. Thus, action 
selection has to deal with multiple goals in a parallel execution fashion. Humphrys 
uses “house robot” as a use case, which has to pick up dirt and to return to some 
base to re-charge and empty its bag, etc. Humphrys uses Reinforcement Learning 
algorithm with predicted rewards and actual rewards. There are multiple rewards 
corresponding to actions, which are learnt by any executions of actions. Then, the 
simplest action selection mechanism is to select the action with the maximum 
reward. There are some dternatives proposed such as selecting the action that 
maximizing the collection of all rewards, and so on. 
Our approach described in this paper can be also considered as Reinforcement 
Learning, but we use regulation mechanism of the internal variables as reward 
system. Then, the learning rule is to learn the expectation of the change of the 
intemal variables, by which each action can compute the expected reward value 
based on the regulation mechanism. The merit of this approach is that the reward 
values depend on both of the internal states and extemal states. So, even if the 
external situation is good for a particular reward, if it is not proper in terms of the 
regulation rule, the expected reward value is low. 
In our EGO architecture, the monitor function computes its behavior value based 
on the regulation mechanism of the internal variables. It can he considered that the 
monitor function computes the expected reward of the corresponding behaviot 
based on the regulation mechanism. In MOSAIC architecture12, multiple pairs of 
predictors and controllers are organized. In the MOSAIC architecture, a proper 
controller is selected based on the performance of the corresponding predictor. 
Thus, the predictor can be considered as the monitor function in our EGO 
architecture. In our EGO architecture, the behavior modules usually perform more 
abstract level of behavior than the controller in the MOSAIC architecture. 
Regarding “motivation” of the behavior, the EGO architecture handles multiple 
motivations based on the regulation rule of the internal variables, however, in the 
MOSAIC, the prediction error can be considered as a general internal variable for 
motivation of the behavior. 
Because each behavior moduIe has database, expectations of change in FATIGUE 
for approach ball and user might be different even if they are leamed. They should 
be linked from the view point of approach behavior. Therefore implementation of 
database for relationship among target object, expectation of change in the internal 
state variabIe and behavior should be considered. And expectation of change in the 
internal state variable is leamed from only a target object as extemal stimuli. The 
learning from multi dimensional extemal stimuli is one of our future works. 

6. SUMMARY 

In this paper, we describe the learning algorithm of the behavior values for 
behavior selection problem. The essential of the learning to make associations of 
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the triples (Behavior, Target, Change of Internal Variables), so that each behavior 
module can predict the internal variables after the behavior is executed. Then, 
based on the regulation mechanism of the internal variables each behavior can 
compute the behavior value in a situation. 
We implement this algorithm using QIUO, and c o n f m  that the learning results in 
different behavior tendency. For a friendly user the interaction behavior is often 
selected, but for an unfriendly user other behaviors are selected, and so on. 
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