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Abstract— With the development of biped robots, systems
became able to navigate in a 3 dimensional world, walking up
and down stairs, or climbing over small obstacles. We present
a method for obtaining a labeled 2.5D grid map of the robot’s
surroundings. Each cell is marked either as floor or obstacle and
contains a value telling the height of the floor or obstacle. Such
height maps are useful for path planning and collision avoidance.
The method uses a novel combination of a 3D occupancy grid for
robust sensor data interpretation and a 2.5D height map for fine
resolution floor values. We evaluate our approach using stereo
vision on the humanoid robot QRIO and show the advantages
over previous methods. Experimental results from navigation
runs on an obstacle course demonstrate the ability of the method
to generate detailed maps for autonomous navigation.

Index Terms— 3D perception and navigation, obstacle avoid-
ance, humanoid robot.

I. INTRODUCTION

Mobile robot navigation in a 2 dimensional world using
range data is a well studied problem with many publications
on the subject [3]. With the development of precise 3D range
sensors, increasing computational power, and the introduction
of legged robots, 3 dimensional navigation became possible.
Nowadays, humanoid robots can climb stairs [2], [5], [7],
[16], step over barriers [2], and change its shape and posture
for passing through narrow space [12], [19].

This paper addresses one of the aspects in 3D navigation,
the creation of a 2.5D height map of the environment around
the robot. The world is divided into a regular, 2 dimensional
grid of evenly spaced cells. Each cell holds the height of an
obstacle or the floor covering the area at the cell’s location
(thus the term 2.5D). Such maps are useful for finding paths
through cluttered environments and for collision checking [1],
[11]. A limitation of this approach is that multiple height
levels for the same cell location cannot be represented. In
such a situation we only store the highest level and assume the
lower ones are not of interest for navigation. This assumption
is reasonable for many man-made environments.

There are two problems one has to take care of when
generating such maps from sensor data. First, 2.5D height
maps do not allow to represent uncertainties and thus can
suffer from noise in measurements. Integrating measurements
by averaging can reduce such noise but bare outliers can still
disturb the map in a significant way. The second problem is
how to distinguish between obstacles (the robot should avoid)
and planar surfaces (the robot could step on). Computing
the curvature around a cell’s location [1] can provide such
information but requires fine-spaced grid maps for obtaining
reasonable quality.

We tackle both problems using a novel representation
where a coarse 3D occupancy grid provides the probabilistic
backbone of the 2.5D height map. By inserting measurements
into the 3D grid, an environment representation robust to
sensor noise is obtained. A floor grid stores the height
values of planar surfaces. Sensor measurements can be tested
for outliers by verifying the corresponding cells in the 3D
occupancy grid. In the same way, cells in the height map can
be checked for validity. This enables a reliable and precise
interpretation of the noisy sensor data.

For a humanoid robot, it is important to distinguish between
the floor and obstacles for its safe navigation [11], [16],
[17]. This problem can be addressed by employing plane
segmentation [6], [16] on the range data. Measurements that
are segmented into horizontal planes represent floor the robot
can step on, and all others correspond to obstacles the robot
should avoid. It is important that the floor height is precise
since kinematic constraints of humanoid robots need accurate
information to ensure stable walking. On the other hand,
obstacle heights are allowed to be imprecise since our only
aim is to avoid them. Therefore, we only store the height
of the floor and compute the (coarse) height of obstacles by
finding the highest index of occupied cells in the 3D grid at
each location.

Our final map for navigation is a 2.5D floor and obstacle
grid ( ����� ) generated from the 3D grid and the floor height
map. Each cell holds a pair describing the type of cell (floor,
obstacle or unknown) and its height, which can be computed
in a straight forward way from the above two representations.

The rest of this paper is structured as follows. The next
section contains prior work to ours and motivates our ap-
proach. Section III presents our novel representation using 3D
occupancy grid and floor height map. The implementation of
the algorithm on the humanoid robot QRIO is described in
Section IV. Experimental results are reported in Section V
and we conclude in Section VI.

II. RELATED WORK

The probabilistic backbone of our approach are occupancy
grid maps. For a comprehensive overview of such grid maps,
see the article by Martin and Moravec [14]. Moravec recently
reported new results with high-resolution, color-textured 3D
evidence grids [15]. However, such fine-grained maps demand
for large memory and processing time on sensor update, and
require additional post-processing steps in order to detect
flat surfaces a robot can step on. Coarse 3D grids are
computationally efficient. If the vertical resolution is variable,
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a layered occupancy grid is obtained [8]. This allows for the
generation of useful maps for 2D navigation but lacks precise
floor height information.

Raw data points or the position of visual features can be
maintained in a 3 dimensional stochastic map [18]. However,
computational requirements are high and further steps for
extracting surface information are necessary which prohibit
the navigation in 3D in real-time.

Probably the best source of information about where a
humanoid can place its foot, is plane information segmented
from range image data. A variety of plane extraction methods
[6], [10], [16] and systems for obtaining detailed polygonal
maps of indoor environments [9], [20] have been developed.
The disadvantages of such approaches are that non-planar
obstacles cannot be represented adequately, changes in the
world are difficult to detect in the map, and outliers (wrong
segmentation results) can disturb the integrity of the map.

If only monocular image data is available, simple box-like
objects can be recognized by image edge extraction, hypothe-
ses generation and verification. Although this approach seems
brittle and might fall into traps easily, it enables the humanoid
robot Johnnie to step over a barrier, walk around an obstacle,
and climb up a staircase [2].

The method most relevant to ours is the approach of
Kagami et al. [11]. They introduced the 2.5D terrain height
map for humanoid robot navigation where each cell holds
height information of the environment at the cell’s 2D posi-
tion. However, they do not distinguish between obstacles and
planar surfaces and thus need further methods for deciding
where the robot can place its foot [1]. Furthermore, they
integrate information only by averaging data over time, a
method that can suffer from outliers. Finally, changes in
the environment might not be reflected in the map by their
approach as we will show.

III. FLOOR AND OBSTACLE HEIGHT MAP

Our approach is similar to the one of Kagami et al. but
we only store the height of horizontal planar surfaces in
the 2.5D map, and additionally maintain a 3D occupancy
grid updated with all measurements. This combination allows
to verify the height values in the floor map (e.g. when the
environment changes), enables the detection and filtering of
outliers, distinguishes between obstacles and places the robot
can step on, and provides precise floor height and coarse
obstacle height information.

Formally, the 3D occupancy grid is a function of 3D
positions to probabilities:�����
	���������������� �����  !#"%$ (1)

and the floor height grid relates 2D positions to height values:�'&�()(+*,�-	.����!����0/� /1��2,3 (2)

We reserve a special value 46587:9�&�4<;>=@?BA to indicate there
is no floor height at a given position.

Both representation are organized as grids, that is, they
store information in cells (or voxels). Throughout this paper
we abstract from the detail that coordinates have to be
translated to or from grid indices. We only require that both
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Fig. 1. System overview of floor and obstacle map generation.

grids have the same � and � resolution. Using this convention
we have a convenient way to e.g. look up the probability
corresponding to a cell’s floor height:CED8FHG�G�I 	.����!�J= ���>	���K�L��'&�()(+*M	.����!���%3 (3)

We use this value later for deciding whether a stored floor
height still has enough support in the 3D occupancy grid.

For practical applications, the domain of both grid maps
is limited to a range of values (e.g. we use a grid size of"N O ,PQ"# R ). By convention we define ���>	.�����K�:�S=T !3VU and�'&W()(+*:	���K�M��=04X587:9:&.4<; for values � , � and � outside this
domain. We also initialize the maps using these values:���>	.�����K�:��'&�()(+*M	.����!� ==  !3VUM YL�����K�46587�9:&.4<;-�YL�����3 (4)

By maintaining and updating these two maps, we can compute
a floor and obstacle grid ( ����� ) that tells for each location
if there is a flat surface the robot can step on, or an obstacle
we have to avoid:�������
	.����!�S��Z	�[\�/L� (5)

where []� �)^ &�()(+*)�(`_%a#[b9�cd&�e��fL5�g:5h(+ij5k� and /l�m2 is the
height of the floor or obstacle. In the following sections, we
describe how the 3D occupancy and floor height grids are
updated on sensor input, and how the ����� is computed.

A. Approach Overview
Fig. 1 shows an outline of our approach. First, 3D data	��-nopK�:noqK��nop� captured by a range sensor r are segmented

into planes. Kinematic information provides the method with
pose information of the sensor relative to the robot coor-
dinate system 2 . Segmentation returns labeled range data	��-so ��Mso K��so �/-so � in robot coordinates where the additional
value /-so is the height of the flat horizontal plane the 3D
point 	.�Lso ��Mso K��so � belongs to, or 46587�9:&�46; if the point was not
segmented into such a plane. Basically /Lso tells whether the
robot could potentially step on this point ( /Lsout=v46587:9�&�4<; ), or
if it refers to an obstacle ( / sow=u4X587:9:&.4<; ). The labeled range
data is then used to updated the 3D occupancy grid and floor
height map from which in turn the ����� generated.

Updating ��� and �'&W()(+* is performed in 5 steps (see
Fig. 2). The first step is to transform the labeled range data
into grid coordinates. This can be achieved by maintaining
the robot pose p xs =m	.�Lxs K�:xs ��Rxs KyOxs � in the grid coordinate
system � 1. Updating the robot pose is usually referred to
as robot localization which is a research topic by its own

1Note that we do not maintain the full 6D pose of the robot since roll and
pitch are zero if we assume the robot always stands on a horizontal surface.
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Fig. 2. Data flow for updating floor height map and 3D occupancy grid.

and behind the scope of this paper. In this work we assume
the robot pose is given and is accurate enough for obtaining
precise maps. Our approach to this problem will be presented
in Section IV. Given the robot pose, the labeled range data
is transformed into grid coordinates by first rotating about� of angle yRxs and then translating with 	.��xs K�:xs K��xs � . The
result are labeled point data p xo = ( �-xo , �Mxo , ��xo , /-xo ), where/-xo =T/-so1z ��xs . Note that /-xo =v46587:9�&�4<; , if /
so ={46587:9:&.4<; .

The second step matches the labeled point data to the floor
height map and is optional in our approach. If all range
data, joint sensors, and the robot pose were within tight error
bounds, we could skip this part. In practice, however, these
quantities are affected with noise and by matching the new
sensor data to the existing floor map, position errors can be
reduced. For example, it is possible to compute a position
update for robot localization using map matching [11]. Details
of our solution are presented in Section IV.

The other 3 steps, updating the 3D grid, verifying the floor
map, and updating the floor map, are presented below.

B. 3D Occupancy Grid

The 3D occupancy grid ��� can be updated by ray tracing.
Given the robot pose p xs and relative camera pose p sn , we
compute the camera pose p xn in grid coordinates. Then, for
each labeled data point p xo , we draw a straight line from p xnto 	��-xo , �Mxo ��Rxo � and update all cells along this line according
to a sensor model of the range data. Typically this updates
the cells between sensor and data point as being empty and
cells at the data point as occupied. We employ the Bayesian
approach for updating the probability

C 	Wcd�S=u���>	���K�L���� of
each grid cell c along the line according to:C 	�c#�J| C 	�c'} p xoS�= C 	 p xov})cd�C 	 p xo }`cd� C 	Wcd� z C 	 p xo }`~kcd�d	b"j? C 	�c#��� (6)

where
C 	 p xo�}Mcd� and

C 	 p xo�}!~kcd� are the sensor model and
define the likelihood of the measurement p xo given the cell is
occupied or empty respectively.

The Bayesian method assumes the world is static. However,
for practical applications one can limit the probability values
to a minimum and maximum one which allows the occupancy
grid to adapt itself to a (slowly) changing world.

When inserting all sensor data points into the grid, the
method also computes the 	.����!� bounding box of the changed
area in the grid (called the affected area). This allows to limit
the operations in the subsequent steps to a small area inside
the potentially large grid.

C. 2.5D Floor Height Map
For obtaining reliable floor height information robust to

sensor noise, we examine the cells in the 3D occupancy
grid which correspond to the height information in floor
grid and sensor data. We require that a cell in the 3D
grid has accumulated enough probability before floor height
information that corresponds to this cell can be treated as
reliable. Formally, floor height / is considered reliable for
position 	.����!� if the following inequality holds:���>	�������/-��� C GK�<�

(7)

where
C G��<� �{ !3VU is a sufficient large threshold.

Since cells in the affected area of the occupancy grid might
have dropped below this threshold after updating the 3D grid,
we need to verify the state of the existing floor map in the
affected area. Each cell �'&W()(+*:	���K�M� is updated as:

�'&W()(+*:	���K�M��| � �'&�()(+*M	.����!�\ if
C�D8F�GKGKI 	�����!��� CEG��<�4X587:9:&.4<;- otherwise (8)

where
CEDhFHGKGKI

is defined in (3). This verification of the floor
map is an advantage over previous 2.5D methods since it
exploits the 3D structure of the range sensor data.

The last step for updating floor and 3D occupancy grid is
to insert the floor data extracted by plane segmentation into
the height map. For each labeled data point ( �8xo , �Mxo , ��xo , /
xo ),
if ���>	.�Lxo , �:xo , /
xo ��� C GK�<� , the floor grid is updated as:�'&�()(+*M	�� xoB�� xo���|�� � �'&W()(+*M	.�-xo , �Mxo��\ if /-xo����'&W()(+*M	.�-xo , �Mxo��k?��/-xo  if /-xo ���'&W()(+*M	.�-xo ��Mxo � z �� �'&�()(+*M	.�Lxo , �Mxo � z 	b"p? � ��/-xo  otherwise

(9)

where � is a small gate threshold for testing if floor map and
measurement refer to the same floor surface, and � ���  !#"%$ is
a smoothing factor that filters readings over time. This method
prevents the floor grid from step wise changes depending on
where the robot looks in situations with multiple floor heights
at the same position. It only keeps an estimate of the highest
floor surface and ignores measurements of lower ones and of
value 46587:9�&�4<; . Note that the smoothing is only possible since
we know that existing floor height and measurement are both
supported by high probabilities in the 3D occupancy grid.

D. Floor and Obstacle Grid (FOG)
The final step in our system is to compute the ����� from

the floor and 3D occupancy grid. If we maintain this map
over time, we can again reduce the computation time by only
updating the cells in the affected area.

We define the obstacle height �'_%a#[b9:c%&�e:	�����!� for a position
as the largest � coordinate of the corresponding 3D grid cells
that contain enough probability for being occupied:�'_%a#[b9:c%&We�	���K�M��= �>�)�� x��H�O� �+� ���6�L�� X¡W¡ � (10)
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Fig. 3. Sample result in a simulated world. (a) World sensed by system.
(b) Floor height map. (c) 3D occupancy grid. (d) Floor obstacle grid.

where �>�`� returns 46587:9�&�4<; if no cells exceed
C®GK�<�

. Note that
the obstacle height is only a coarse estimate since it depends
on the � resolution of the 3D grid.

Using this notation, the ����� can be computed as:

�����>	���K�M��= �� �1	�(`_%a#[b9:c%&WeR�/ G �\ if / G �v/L¯ z±°	 ^ &W()(+*)�/ ¯ �% elif / ¯ t=v46587:9�&�4<;	.fL5�g:5h(+ij5®K4X587:9:&.4<;:�\ otherwise
(11)

with / G =²�'_%a#[b9:c%&�e:	�����!� , /-¯³=T�'&�()(+*M	�����!� , and ° is a small
threshold that accounts for noise in the grids by ignoring small
obstacles close to an existing floor height.

The ����� representation ignores obstacles that are below
the floor height of a given cell since these are not of interest
for navigation. On the other hand, if there is a floor height
with an obstacle above it (e.g. a curtain hanging above the
floor) then the cell is marked as an obstacle. This is desirable
since the robot cannot possible stand at this location.

E. Simulated example
Fig. 3 illustrates our approach with an example. A simu-

lated world containing 3 different floor levels and 2 obstacles
exhibiting a rough surface at their top is fully observed by
a perfect sensor (Fig. 3(a)). The floor height map captures
the precise floor height but cannot represent any obstacles
since the data from the rough surfaces could not be segmented
into planes. Therefore, areas corresponding to the obstacles
obtain a value of 46587�9:&.4<; (Fig. 3(b)). The 3D occupancy grid
(Fig. 3(c)) contains a complete representation of the scene
but the floor height information is only coarse. The top of
the obstacles show the same flat surface as the floor levels.
Our combination (Fig. 3(d)) is able to represent both types of
information: precise height map of the floor and coarse height
information about obstacles.

IV. IMPLEMENTATION

We implemented our approach on QRIO, a small humanoid
robot with 38 degrees of freedom. Three MIPS R5000 CPUs
clocked at 400MHz provide the computational power for

the robot [4]. For visual perception, QRIO is equipped with
stereo cameras with a field of view of 47 ´ horizontally and
39 ´ vertically, and a FPGA module for stereo processing.
This sub system provides disparity images with 12.5 fps in
resolutions of 176x144 and 88x72 pixels [17]. We utilize the
lower 88x72 pixel resolution in our system which allows to
process all frames in real-time on the robot. This includes the
plane segmentation, the operations needed to maintain the grid
maps, and further navigation modules which are behind the
scope of this paper.

The stereo images are segmented into planes by a variation
of the scan line grouping approach of Jiang and Bunke
[10]. In our experiments this method gave the best results
with respect to under segmentation which we attribute to our
method’s ability to adapt segmentation to noise locally in the
data [6]. Fig. 4 shows the left image of a sample image pair
and the achieved segmentation result by our method.

For the grid maps we use a size of 100x100 with cells of 4
cm side length. Additionally, the 3D grid uses 16 layers (each
4 cm) in the � direction. The maps are centered on the robot
such that they reflect a 4x4 m area around the robot. When
the robot moves, the grids are shifted according to odometry
information obtained by the kinematic information from one
foot to the other [17]. The robot’s � xs and y xs coordinates
are stored as absolute entities and the grids are not shifted or
rotated on changes in �:xs respectively yOxs .

By keeping the grids centered on the robot pose, the impact
of incremental 	.����!� -position errors can be kept low. As
the robot moves on, older parts of the maps are erased and
new terrain is entered. A few problems reside though. When
the robot constantly rotates, the error in orientation becomes
significant. This should be avoided in the motion control.
The robots elevation �:xs also suffers from incremental errors.
We filter ��xs with the floor height at the robot position,�'&W()(+*:	��-xs ��Mxs � . This significantly reduces the errors accumu-
lated in ��xs . However, we note that these techniques only yield
a reduction of the pose drift and a more advanced approach
is needed for keeping errors bounded.

A further source of noise is in the encoders of the robot’s
joints rendering estimates of the camera pose p sn unreliable.
We observed errors of up to µO´ in rotation and 10 mm in
translation. Such high errors degrade the quality of the 3D
grid and consequently the floor height map. Therefore, plane

(a) (b)

Fig. 4. Plane segmentation. (a) Camera image. (b) Segmented range data.
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segmentation rotates the range data according to the direction
of planes that are approximately horizontal. It also searches
for the plane that is closest to an expected ground plane, and,
if found, shifts all data points accordingly.

Still, the labeled range data can be unreliable, e.g. when
a ground plane could not be found. A degeneration of the
grids can be avoided by matching the sensor data to the floor
height map (see Fig. 2). In our implementation, we search for
a � shift that minimizes the sum of squared distances between
measurements and floor map. This � shift, if found, is then
added to the ��xo and /-xo coordinates. If there are only few
matching pairs, the result of ground plane detection decides
whether the data should be considered reliable or withdrawn
completely.

A last implementation detail concerns the Bayesian cell
update in our 3D grid. We employ a sharp sensor model where
one constant

Ck¶b·<¸O¶�·
defines the model asC 	 p xov})cd��= � C ¶b·<¸O¶�·  if ( �Lxo , �Mxo , �Rxo ) = c"p? C ¶�·<¸O¶b·  otherwise (12)C 	 p xo }`~kcd��=¹"p? C 	 p xo }`cd�\3 (13)

By discretization of probabilities (we use 8 bit integers), the
sensor model can be pre-computed such that updating an
occupancy grid cell results into a simple table lookup.

V. RESULTS

In a first experiment we compare our approach to one that
simply averages over the � observations for each grid cell
similar to the approach of Kagami et al. [11]. We placed
a flat box in front of the robot and let the system observe
it. Fig. 5(a) shows the experimental setup and Fig. 5(b) the
result of simple averaging after several frames. The result of
our method is very similar to the averaging one.

The box is then removed and the methods continue up-
dating their maps. Simple averaging is inherently not able to
erase all data corresponding to the box as the floor area closer
to the robot cannot be observed by the robot without changing
its field of view. Thus a portion of the obstacle remains in
the map as can be seen in Fig. 5(c). Altering of these cells
requires to explore the 3D structure of range sensing. Our
approach, on the other hand, exploits this structure through the
3D occupancy grid. After several updates, cells corresponding
to the box fall below

C®GK�<�
and thus, the floor height vanishes

from the map completely (see Fig. 5(d)).
Another effect can be observed when comparing our ap-

proach with simple averaging. If the box is slowly moved
through the camera’s field of view, the averaging method does
not produce a sharp floor height map but one where height
values between the height of the box and the floor are present.
Our method does not show this behavior and the floor height
jumps directly according to the motion of the box after the
3D occupancy grid has adapted to the changed situation.

Thus, our method produces more accurate and reliable
results than simple averaging due to the robust nature of the
employed 3D grid.

In order to evaluate our method in a larger environment
we setup an obstacle course on a 4 x 1 meter large stage
and placed several obstacles, a sill and a staircase leading

x

y

Stereo camera

z

Field of view

(c) (d)

(a) (b)

Fig. 5. Comparison of our approach with simple averaging. (a) A box is
placed in front of the robot. (b) Initial map of both approaches. (c) After
removing the box, simple averaging is unable to ”forget” the box. (d) Our
approach erases the height data corresponding to the box.

to a higher level platform (see Fig. 6). In the past we used
this setup for demonstrating QRIO to the public, e.g. for the
presentation of our 3D navigation system at RoboCup 2004
and IAV 2004 in Lisbon, and at IROS 2004 in Sendai.

We let QRIO walk between the obstacles and climb up
and down the sill using our stair recognition and climbing
system [5]. During its motion QRIO continuously captured
stereo data which was processed by our map-building system.
Fig. 7 shows the floor and obstacle grid result of our approach
before QRIO was climbing up the stairs.

The resulting map presents a good approximation of the
real world. Obstacles are found close to their true position
and the sill and stair case are recognized correctly. Table I
compares the estimated heights of the different objects in the
map with ground truth measured by hand. We feel that these
results are quite satisfactory and the quality of the maps very
useful for the navigation of the robot.

We measured the maximum time on sensor update as
12 msec on the robot’s on-board CPU (corresponds to 3 msec
on a Pentium III, 1.4GHz). This leaves enough computing
resources to other modules for navigation.

floor estimated ground truth

sill 37 mm 38 mmº�»6¼
step 31 mm 31 mm½\¾#¿
step 61 mm 61 mmÀ\Á ¿
step 94 mm 92 mm

higher platform 126 mm 122 mm

TABLE I
ESTIMATED HEIGHT VS. GROUND TRUTH OF FLOOR LEVELS IN THE MAP.

1070



Fig. 6. Experimental setup. Several obstacles and a sill are placed on a
stage. A staircase leads to a platform on a higher level.

Fig. 7. Floor and obstacle map generated by QRIO. Gray areas indicate
unknown terrain, the floor height is drawn in different colors, and obstacles
are marked in black with a colored cross indicating their coarse height. The
indicator on the right maps colors to height values in mm.

VI. CONCLUSION

We presented a novel method for building a floor and
obstacle grid representation of a real world observed by a
range sensor. Grid cells hold either the precise height of a
horizontal surface or a coarse height of an obstacle covering
the cell. The method is robust to sensor noise and changes
in the environment thanks to a 3D occupancy grid which
verifies and filters floor height information and sensor data.
The method advances previous methods which only maintain
a 2.5D terrain map and average data over time.

A limitation of our approach is that only horizontal planes
are mapped into the floor grid. It should be possible to extend
the method to allow for inclined surfaces by also estimating
tilt and roll of the robot pose and floor cells. However, it is
unclear how well such an estimation would work in practice
since the additional two degrees of freedom are subject to
incremental estimation errors similar to the orientation and
elevation estimate of the robot.

We believe that maps generated by our approach can be
employed in a variety of existing path planning systems that

have been developed in the past for simulated 2.5D worlds [1],
[13], [19]. Thus, our approach fills in the gap between path-
planning in simulation and real robots by providing detailed
floor and obstacle maps of real world environments.

A possible extension of our method would be to also
compute a ceiling map of the environment by finding the
smallest index of occupied cells in the 3D occupancy grid.
This would further enable the application of behavior planning
systems [12], [19] where the robot could e.g. crawl underneath
obstacles. We follow this direction in the future.
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