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Abstract—One of the biggest bottlenecks in desktop-based
computing is the hard disk with I/O write latency being a
key contributor. I/O write latency stems from the mechanical
nature of hard disks, with seek and rotational delays the major
components. Hybrid disk drives place a small amount of flash
memory (NVCache) on the drive itself which can be leveraged
by the host and has the potential to increase I/O performance
and reduce hard disk power consumption.

We present an I/O scheduling algorithm, ”Flash-Backed I/O
Requests”, which leverages the on-board flash to reduce write
latency. Since flash memory and rotating media have different I/O
characteristics, predominantly in random access context,an I/O
scheduler can decide which media will most efficiently service I/O
requests. Our results show that with Flash-Backed I/O requests,
overall write latency can be reduced by up to 70%.

I. I NTRODUCTION

Hard disks are slow mechanical storage devices. However,
because they are inexpensive and offer large capacities (one
terabyte hard disks are available), they are typically usedas
the back-end media for general purpose operating systems.
Although disk capacities are expected to increase by a factor of
16 by 2013, disk bandwidth and seek time are not expected to
scale as much [1]. As a result, the gap between drive capacity
and performance will continue to grow.

One of the key contributors to hard disk latency is seek
time, which is the penalty incurred when the head must move
from one track location and settle on another. Seek time is a
function of the inter-sector request distance and ranges from
a few milliseconds to 10s of milliseconds.

Both operating systems and disk drives try to mitigate
the performance penalty rotating media imposes by reduc-
ing I/Os and coordinating their execution. Solutions in-
clude page caching, I/O scheduling, and file system alloca-
tion/defragmentation. Page caching attempts to keep the most
recently used data in memory, such as file and directory
data. Several I/O scheduling algorithms have been proposed
to minimize I/O latency [2], [3]. File system allocation and
defragmentation policies try to minimize disk seeks by keeping
file data contiguous. Even with such performance enhance-
ments, hard disks still remain the most significant bottleneck
in the I/O path.

Upcoming hybrid disks will place a small amount of flash
memory (NVCache) next to the rotating media as shown in
Figure 1. The first hybrid disks will have several hundred
megabytes of NVCache in a 2.5 inform-factor [4], but because
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of the already low profit margins in the disk drive industry,
it isn’t clear how much the NVCache will grow [5]. The
NVCache will have constant access time throughout its block
address space because of its non-mechanical nature, unlike
rotating media.However, rotating media sequential throughput
is significantly faster than flash media. Table I shows the
general trade-offs between flash memory and rotating media.
Hybrid disks present an opportunity to increase performance
over traditional disk drives and reduce power consumption
while still minimizing the reliability and spin-up latency
impact of spin-down algorithms. While the rotating media is
spun-down write requests can be redirected to the NVCache,
reducing contact start-stop operations and aggregate spin-up
latency [6].

I/O scheduling algorithms are traditionally implemented
to minimize access time to rotating media. However, with
hybrid drives such a presumption may no longer be most
efficient. In this paper we propose leveraging upcoming hybrid
drives to reduce I/O write latency through ”Flash-Backed I/O
Requests”. Flash-backed I/O requests redirect write requests to
flash media when it is more efficient to service an I/O request
with flash media rather than rotating media. The redirected
request is kept in main memory until it can be written to
rotating media without a significant write penalty. Redirected
I/O requests and their dirty pages still remain in main memory;
data safety is preserved in the case of power-failure because
the dirty pages are backed in the NVCache. Additionally, since
the flash and rotating media exist in the same enclosure data
separation is not possible.

II. BACKGROUND AND MOTIVATION

I/O write latency is responsible for a large portion of
total disk access time. File system allocation policies try
to minimize write latency by providing spatial locality of



Flash Rotating Media
Capacity Smaller Larger
Random Access Faster Slower
Sequential Access Slower Faster

TABLE I
GENERALIZED FLASH AND ROTATING MEDIA PERFORMANCE AND

CAPACITY COMPARISON
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Fig. 2. Access Time with 99% Confidence Interval.

file data through contiguous file block allocation. However,
some file systems do not provide a high degree of inter-
file locality. For example, FFS-derived file systems, such as
ext2/3, try to allocate files evenly across the entire address
space in block groups [7]. Additionally, user-initiated file
system operations prevent sequential write operations from
occurring. For example, a read between two writes. Log-based
file systems which employ various versions of copy-on-write
can address this issue [8], [9]. However, such file systems must
employ cleaner processes to make room for new writes.

Hybrid drives bring forth a new storage technology and
with it an opportunity to improve hard disk write performance
without the need for a log-structured file system allocation
policies and the associated cleaner overhead. Hybrids drives
provide such a capability because two storage media are co-
located with each other in the same enclosure and I/O can be
directed to either storage media. Having both storage mediain
the same enclosure is also important for data safety—data from
either media cannot be separated. This may not be true with
other upcoming technologies that also leverages flash such as
Intel Robson, in which flash is located on the motherboard
instead of the drive [10]. File system integrity can be lost if
the drive is detached from the motherboard..

I/O scheduler implementations provide different polices.For
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Fig. 3. Seek Distance Frequency

example, some schedulers push for fairness while others aim
solely for efficiency. Traditionally, I/O schedulers used the
access time along the single dimension of a block device’s
logical address space to guide scheduling decisions. With
hybrid drives, two access times are available: one along the
rotating media address space, and one along the flash media
address space. As a result, an I/O scheduler can improve the
I/O performance on hybrid drives by leveraging the additional
block address space. Figure 2 shows the access times for a
flash media and rotating media device. This figure shows the
potential benefit of utilizing a hybrid drive to reduce write
latency. By augmenting an I/O scheduler to be aware of the
access-time discrepancy between flash and rotating media, it
can select which media is most efficient to service any

A. Trace-Based Motivation

We performed an analysis of access patterns for four block
level traces (shown in Table II). The traces were gathered from
desktop systems and represent 7 days of activity. They span
four operating systems: Windows XP, Mac OS X, Linux, and
HPUX. Each system was used in a desktop environment and
described in more detail in Section IV-A.

Figure 3 shows seek distance for write operations in gi-
gabytes as a function of time for each trace. Seek distance is
the difference in logical block address between two successive
requests. Seeks for read requests are not shown in this figure,
and all seek distances are absolute values. The point of these
figures is to show the horizontal banding that occurs for
several seek distances for each trace. The horizontal banding
represents potential I/O redirection to flash media. The banding
that occurs for large seek distances represents write requests
which incur long seeks that can potentially be satisfied by the
NVCache. These figures only show the first 24 hours of each
trace so that the horizontal banding can be clearly seen.

To further motivate the need for reducing write latency we
show the total I/O count as a function of the seek distance for
the entire 7 days of each trace in Figure 4. In these figures
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only write operations contribute to the total count, and theseek
distance is again an absolute value. This figure shows that most
frequent write operations occur for short seek distances and
the frequency continues to decrease until roughly a 1MB seek
distance. After reaching 1MB, the I/O frequency at a particular
seek distance remains relatively constant. We also consider
write operations after 1MB ideal candidates flash-backed I/O
requests.

B. Hybrid Drives

The NVCache on hybrid disks can be controlled through
new ATA commands specified in the ATA8 specification [11].
The NVCache does not extend a disk’s capacity, rather it
can store particular sectors. Sectors stored in the NVCache
are either pinned or unpinned, which when referred to as
a collection are known as the pinned and unpinned set,
respectively. The host manages the pinned set, while the disk
manages the unpinned set. The disk uses the unpinned set in a
new power mode, NV Cache Power Mode, in which the drive
will redirect all I/O to the NVCache if possible and use an
aggressive disk spin-down policy.

The host controls I/O to the NVCache pinned set. A host can
issue a command to pin one or more sectors in the NVCache;
any subsequent I/O to those sectors will be redirected to the
NVCache. A host specifies multiple sectors with an extent-like
interface, called LBA Range Entries. When pinning LBAs into
the NVCache the host specifies the source for that LBA range
entry: host or rotating media, by setting a Populate Immediate
bit. If set, those sectors are read from rotating media into the
NVCache, otherwise, a write operation from the host for those
sectors will go into the NVCache. Pinned sectors can also
be queried or removed from the NVCache. Finally, unpinned
sectors can be flushed from the NVCache to make room for
the pinning of additional sectors.

III. F LASH-BACKED I/O REQUESTS

Using hybrid disk drive technology, the goal of flash-backed
I/O requests is to reduce write latency. In order to do this,

we augment an I/O scheduler by adding an additional I/O
queue in which certain write requests (along with the data)
persist in main memory, but are backed in the NVCache.
Keeping such requests in main-memory provides additional
opportunities for normal I/O requests to be coalesced, and
read requests a higher chance of being satisfied from main-
memory. Although the I/O bottleneck is reduced, there is the
trade-off in additional memory consumption. It is important to
note that the redirected I/O requests are backed in non-volatile
flash memory, so data integrity is preserved in the event of a
power failure.

A. I/O Redirection

This section describes how I/O requests are redirected and
coalesced with Flash Backed I/O Requests. Figure 5(a) shows
how I/O requests are redirected. When a write request is
redirected, it is removed from the Request Queue, which exists
in main memory. The Request Queue refers to the traditional
I/O scheduling queue. After being removed from the Request
Queue, the request is added to two new request queues: the
main memory FQueue and a non-volatile FQueue (NVCache).
Adding the request to the main memory FQueue moves the
request reference between the two queues. Adding the request
to the non-volatile FQueue involves issuing an asynchronous
write request to it. However, before the write request is issued,
the host must pin the corresponding sectors and not set the
Populate Immediate bit. The pinning and unpinning operations
is very fast (microseconds) because the disk need only set bits
in its volatile memory to accomplish this.

Although the goal is to reduce write latency, we still must
push FQueue requests back to rotating media. As a result,
the volatile FQueue is fundamentally a cache for rotating
media, backed by non-volatile memory. Therefore, the content
of the two FQueues at any given time are identical—the sole
purpose of the flash FQueue is to prevent data loss from the
volatile FQueue in the case of power failure. Since the volatile
FQueue is akin to a cache, when requests are kept in memory
longer more opportunities exist to coalesce the volatile FQueue
contents with write and read requests from the Request Queue.

Figure 5(b) shows how I/O requests are coalesced. Coa-
lescing requests involves four steps: (1) unpin the non-volatile
FQueue data, (2) coalesce the request from the DRAM FQueue
with the current write request, (3) submitting the I/O write
request, and (4) removing request and data from the non-
volatile FQueue.

The first step is to use the ATA NVCache unpin command to
remove a particular set of LBAs from the NVCache. Step two
coalesces the in-memory requests data and step three submits
the requests with the modified request data and request itself to
reflect the new content. Since none of the LBAs in the request
are pinned, the request is directed entirely to rotating media
and not the NVCache. Finally the last step is to remove the
request and its data from the non-volatile FQueue.

It must be noted that the DRAM and flash size of the
FQueue for hybrid I/O scheduling must be the same. It doesn’t
make sense to have more or less DRAM FQueue than flash
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FQueue. If there is more DRAM FQueue memory, then safety
is lost because any requests in the DRAM FQueue may not be
backed by the NVCache. If there is more non-volatile FQueue,
the performance benefit of I/O redirection is mitigated because
fewer requests can be stored in the DRAM FQueue.

B. When to Redirect

The fundamental goal of flash-backed I/O request is to
reduce the overall I/O write bottleneck. To that end, only ifan
I/O request will reduce write latency should it be placed on
the volatile and non-volatile FQueues. In order to make such
a decision, the redirection algorithm relies on the inter-block
random access times of flash and rotating media. Since random
access time is a function of the inter-block distance for rotating
media, it is necessary to know the location of the last I/O (head
location). However for flash, such information is unnecessary
as it has constant random access time, as previously shown in
Figure 2.

We have developed an algorithm to determine which re-
quests are redirected to the FQueue. The decision takes as
input the disk drive’s head location, current request informa-
tion, and information about the next request information. The
algorithm is shown in Figure 6. The first thing to notice is that
the algorithm first tries to coalesce the current request with
a request from the FQueue. If this is possible the algorithm
will not attempt to redirect I/O because the corresponding
FQueue request is able to piggy-back on the current request to
rotating media. Note that this algorithm is only entered on a
write request. If the request isn’t coalesced (coalesced = false)
we extract I/O access times for four possible requests for the
NVCache and rotating media. Given these access times, if the
inequality:

(h n+ n nn)≥ (fn+ h nn)
is true, the current request is redirected to the FQueues. In
this inequality,h n is the access time from the current LBA
location of the disk head to the current request’s LBA location.
Correspondingly,n nn is the access time from the current

/* Decision to redirect request */

REDIRECT_REQUEST(head, request):

    /* Attempt to coalesce request with data from dram fqueue */

    {coalesced, new_req} := COALESCE_WITH_FQUEUE(request)

    if (coalesced == true) then

        /* Remove coalesced data from flash */

        UNPIN_REQUEST_FROM_FLASH(request, new_req)

        /* Submit coalesced request */

        SUBMIT_COALESCED_REQUEST(new_req)

        /* Clear coalesced data from dram fqueue */

        CLEAR_DRAM_FQUEUE_REQUEST(request, new_req)

        return

    endif

    /*Get I/O access times*/

    h_n := ACCESS_TIME(head, request->lbn)

    n_nn := ACCESS_TIME(request->lbn, request->next->lbn)

    fn := FLASH_ACCESS_TIME(request->size)

    h_nn := ACCESS_TIME(head, request->next->lbn) 

    

    /*Should redirection occur*/

    if ((h_n + n_nn) > (fn + h_nn)) then

        /*pin request in flash*/

        PIN_REQUEST_IN_FLASH(request)

       

        /*add request to dram fqueue*/

        ADD_REQUEST_TO_DRAM_FQUEUE(request)

    endif

    /*submit redirected request*/   

    SUBMIT_REQUEST(request)        

Fig. 6. Algorithm for REDIRECTREQUEST

request’s LBA location to the next request’s LBA location.fn
is the flash access time for current request, which dependent
only on the request size, whileh n is the access time from
the current LBA location of the disk head to the next request’s
LBA location.

The goal of the redirection inequality is to redirect I/O
requests to the FQueues that will result in less disk head
seeking. In effect, this algorithm is looking into the future



to see whether redirecting the current request to the FQueues
is more efficient than sending it to rotating media because it
includes the access time of the next request into the redirection
decision.

For example, consider a request with a starting sector far
away from the head’s current location but in between several
requests spatially near each other. If the decision to redirect
is based solely on the head’s current position and the next
request, no consideration is given about the impact of the
decision on following requests. If the request is redirected to
flash, the head will remain at the same location. As a result,
the following requests (spatially near each other) will also be
redirected to flash because of the disk head’s relative location
to the spatially nearby requests, and cause the FQueue space
to quickly become polluted. However, since the following
requests are spatially near each other, it would have been more
efficient to service them with rotating media. In order to do
that, the scheduling algorithm needs to consider the following
request’s location when making a decision about whether or
not to redirect a given request. This is in effect what the
algorithm in Figure 6 does.

C. Idle-Time Processing

A benefit of flash-backed I/O requests is that the FQueue
requests act like a cache for disk requests, but are backed
by non-volatile storage. We propose that an operating system
leverage the FQueue to perform delayed I/O. By waiting
until the Request Queue is empty, and then flushing FQueue
requests back to rotating media, requests can be written to
rotating media asynchronously. From the user’s perspective,
any request that exists in the FQueue is considered completed
because it backed in non-volatile media, so no additional
time is incurred (from the client’s perspective) to move the
request data from the FQueue to rotating media. Therefore
flushing requests from the FQueue to rotating media while the
Request Queue is empty is considered Idle-Time Processing,
and another example application of Golding’s hypothesis that
idleness is not sloth [12].

The order in which idle-time processing purges the FQueue
occurs is the same order as flushing—FIFO order with request
merging. Additionally, it should be noted that more opportuni-
ties to perform idle-time processing exist with larger FQueue
sizes, further reducing user perceived I/O latency. Perceived
I/O latency is the time to push an incoming user request to a
non-volatile media, be it flash or rotating media.

D. Flushing Requests

The volatile and non-volatile FQueues have a finite size. If
the rate at which requests are redirected to the FQueues is
higher than the coalescing rate, the FQueues will become full.
As a result FQueue requests need to be flushed. Fortunately,
because there is a copy of the FQueue request (and request
data) in volatile memory, only an unpin and write request
operation are needed—reading the redirected data from the
flash is unnecessary.

Flushing requests from the FQueue is comprised of three
steps: (1) when to flush, (2) how much to flush, and (3)
the order of request flushing. In order to minimize flushing
overhead, we use two watermarks (high and low) to guide
when to begin flushing and how much to flush. The high
watermark is used to initiate flushing of FQueue requests
back to rotating media. Requests are flushed from the FQueue
until a low watermark is reached. While flushing occurs, I/O
alternates between the FQueue and Request Queue with a 1:1
ratio. All I/O operations originating from the Request Queue
only execute the COALESCEWITH FQUEUE phase from
Figure 6 and are directed to rotating media. The goal of the low
watermark is that some requests always exist in the FQueue
and as a result there is always potential for I/O redirection. The
high-watermark prevents FQueue flushing from the blocking
Request Queue processing.

The order of request flushing from the FQueue is done
in FIFO order. FIFO is used because coalescing removal
is random access removal. This means the oldest FQueue
requests haven’t been coalesced yet and may be unlikely to
be coalesced with a Request Queue request. Therefore, such
requests should be removed from the FQueue to make room
for other FQueue requests. To minimize the total number
of FQueue requests issued back to rotating media, FQueue
flushing first attempts to merge any existing requests in the
FQueue with the next request scheduled to be written to
rotating media.

IV. EVALUATION

In order to evaluate the potential benefit of Hybrid I/O
scheduling, we implemented a hybrid disk simulator using
the I/O access times from a Hitachi EK1000 2.5 in drive
and a Sandisk Ultra II Compact Flash media card shown in
Figure 2. Using the access times from the two devices we
replayed several block-level I/O traces through an augmented
I/O scheduler. The following sections describe the workload
and results of flash-backed I/O requests.

A. Traces

To evaluate the proposed enhancements, we use block-level
access traces gathered from four different desktop machines,
which are shown in Table II. Each workload is a trace of
disk requests from a single disk, and each entry is contains:
I/O time, sector, sector length, and read or write. The first
workload, Eng, is a trace from the root disk of a Linux
desktop used for software engineering tasks; the ReiserFS file
system resides on the root disk. The trace was extracted by
instrumenting the disk driver to record all accesses for the
root disk to a memory buffer, and transfer it to userland
(via a system call) when it became full. A corresponding
userland application appended the memory buffer to a file
on a separate disk. The trace,HP, is from a single-user HP-
UX workstation [13]. TheWinPC trace is from an Windows
XP desktop used mostly for web browsing, electronic mail,
and Microsoft Office applications. The trace was extracted
through the use of a filter driver. The final trace,Mac is from



Name Type Duration Year

Eng Linux Engineering Workstation 7 days 2005
HP HP-UX Engineering Workstation 7 days 1992

WinPC Windows XP Desktop 7 days 2006
Mac Mac OS X 10.4 Powerbook 7 days 2006

TABLE II
BLOCK-LEVEL TRACE WORKLOADS

a Macintosh PowerBook running OS X 10.4. The trace was
recorded using the Macintosh command line tool, fsusage,
by filtering out file system operations and redirecting disk I/O
operations for the root disk to a USB thumb drive.

Since main memory is a resource that will be directly
consumed by flash-backed I/O requests, it is important to know
how much memory each system had at the time the trace was
taken. The Mac and Eng systems both had 1GB of DRAM,
while the WinPc had 512MB of memory. We do not know
how much memory HP had at the time the traces were taken.
Therefore, for those systems in which we are aware of the
memory capacity, 100 megabytes for flash-backed I/O request
is a 10–20% overhead.

In this section we present results for flash-backed I/O
requests. We use several I/O schedulers for the Request Queue:
FCFS, SSTF, and CLOOK. Figure 7 shows the normalized
write access time for each trace using the three I/O schedulers.
Each scheduler is normalized to itself without flash-backed
I/O requests. This figure shows two things: (1) there is a
significant decrease in write latency when using flash-backed
I/O requests, and (2) the relative performance of individual I/O
schedulers does not differ significantly. Although the relative
performance of each I/O scheduler does not change, the raw
numbers do. Since the Request Queue scheduling algorithm
does not significantly impact performance, for the remainder of
the paper we only show results for CLOOK, a fair and efficient
I/O scheduler [14]. One additional thing to note about these
figures is that flash-backed I/O request performance varies
significantly from workload to workload, even though they
are each classified as desktop computing.

One reason flash-backed I/O requests can reduce write
latency by up to 70% is that flash-backed I/O request syn-
chronization (back to rotating media) can be deferred untilthe
Request Queue is empty. The initial I/O writing to flash can be
faster than writing to rotating media when there is a significant
seek penalty on the rotating media.. Figure 8(a) shows the
total time spent synchronizing flash-backed I/O requests to
rotating media relative to total write-latency without flash-
backed I/O requests. This figure shows that at least 20% of
total write latency work is performed by idle-time processing,
and 90% of the HP workload is synchronized with only 10MB
of FQueue. The significance of this result is that with the
proposed redirection algorithm we can defer writing to the
disk until the Request Queue is empty without any outstanding
I/O requests.

The next figure, Figure 8(b), shows the percentage of I/O
that occurs due to flush-back I/O. As the number of flush
operations increases the benefit of I/O redirection decreases. In
these figures we don’t flush the entire FQueue, rather, we only
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including idle-time request purging

flush 1/10th of the FQueue, and since we flush in FIFO order,
we flush the oldest requests first, which weren’t overwritten
or removed through a coalesced I/O.

It is also useful to see what the total write latency is when
idle-time processing is included, as it shows total write latency
for data to be committed on rotating media. The results of this
experiment are shown in Figure 9, and normalized to the total
write-latency without flash-backed I/O requests. This figure
shows that, if idle-time processing is included in the write
latency, the benefit of flash-backed I/O requests is workload
dependent. The Eng and HP workloads show that write latency
decreases by 30–50%, while the Mac and Win trace actually
increase write latency. The increase in write-latency occurs
because the cost of pushing requests out of flash and then
back rotating media negates the benefit of redirecting to flash
in the first place.

In order to assess the impact of using the NVCache for
selective write caching, we measured how many erase op-
erations occur during the 7 day traces, and then use the
observed frequency to extrapolate the number of years to
exceed an NVCache with 100,000 block erase count. We
assume an optimal wear-leveling algorithm which spreads
all writes across the entire device’s physical address space.
Figure 10 shows the results of this experiment. This figure
shows that the flash endurance increases linearly with respect
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Fig. 7. Normalized I/O write access with flash-backed I/O requests

to the flash size, and that there is a 10/1 ratio between the
NVCache size (MB) and endurance years.
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Figure 12 shows the percentage of DRAM FQueue over-
writes. This is an important figure because it shows what
percentage of redirected I/Os that do not have to be coalesced
or flushed back to rotating media. This figure shows that as the
size of the FQueue grows more operations that are redirected
to the FQueue result in overwrites - at most 15% of all writes
are redirected.. If all I/Os were cached in the FQueue, this
fraction would be 100% higher but would also contribute to a
significantly larger access time.

Figure 13(a) shows total disk time, which can be translated
into duty cycle. These results are also normalized to no
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FQueue. One of the benefits of redirecting I/O to flash, in
addition to reducing write latency, is that we can increase the
chances of coalescing and overwrite operations, thus reducing
the effective rotating media duty cycle (one of many variables
that dictate hard disk reliability). Figure 13(b) shows the
total disk writes normalized to total disk writes without an
FQueue, which can also be interpreted as a form of duty
cycle. These results show that total normalized disk writes
decreases slightly which means that by adding the FQueue,
more requests are merged or forgotten because of FQueue use.

V. RELATED WORK

There are several works that propose or leverage a non-
volatile cache to reduce disk I/O. Ruemmler and Wilkes [13],
Baker et al. [15], and Huet al. [16] have all argued that
NVRAM can be used to reduce disk I/O. Hu’s Rapid-Cache
leverages NVRAM to aggregate larger writes to a log-disk,
whose content is eventually written out to a backing store.



This 2-level hierarchical caching model improves upon other
systems which also use NVRAM, such as WAFL [9].

Haining et al. also investigated the use of non-volatile
caches to buffer disk I/O [17], [18]. Their primary focus was
on NVRAM cache replacement policies. Their most successful
algorithm leveraged track-layout knowledge along with spatial
and temporal locality to reduce disk I/O. Our work differs in
that we are selective about what I/O is redirected to the non-
volatile backing store. Therefore this work is complementary
to our own.

Hybrid disks place a small amount of flash memory log-
ically adjacent to the rotating media. Interfaces to leverage
the NVCache are specified in the ATA8 specification [11].
However, implementation functionality is largely left to the
manufacturer. Unfortunately, this means most manufacturer
hybrid disk technology will not be published. Therefore, it
is our goal in this work to propose functionality leveraging
hybrid disk technology.

Hybrid disks also present potential optimizations in the area
of power consumption [6]. This work leverages hybrid disks
in the OS to reduce power consumption, spin-up latency, and
wear-leveling impact. It presents four algorithms exploiting
I/O that occurs while the rotating media is spun-down.

There are several I/O schedulers in literature which increase
performance. Tangential to our work is Disk Mimic. Disk
Mimic develops an I/O scheduler by using shortest-mimicked-
time-first (SMTF). Disk Mimic records access time given a
set of input parameters such as I/O type and logical sector
distance from previous requests and uses the recorded access
times to schedule and predict future request service times [2].
The Anticipatory I/O scheduler also improves I/O performance
by pausing briefly before servicing a request from another
process, as many applications have very short idle-times be-
tween I/O requests [3]. If the application issues an I/O within
that time-window, the anticipatory scheduler will servicethat
request first.

VI. CONCLUSIONS

Disk write latency is a significant component of the overall
I/O bottleneck because applications often request acknowledg-
ment that written data is safely placed on non-volatile media.
Upcoming disk drives (hybrid disks) will place a small amount
of flash adjacent to the rotating media, which can be used
to store specific sectors on an alternative non-volatile media.
Since flash memory I/O characteristics differ from that of
rotating media, an operating system can exploit both media
types to reduce write latency of hybrid disks.

In this paper we have proposed to use the flash memory to
reduce write latency by selectively caching write requeststo
the NVCache. Writes are cached to flash if it results in lower
access time than servicing it with rotating media. The redi-
rection algorithm also considers the location of other requests
in the queue to ensure that the rotating media does service
requests. Fundamentally, the NVCache cached write content
serves as a backup as it also persists in the main-memory
request queue. Cached writes are written to rotating media

when they can be coalesced with normal write requests going
to rotating media. If the NVCache becomes full, redirected
requests are flushed to rotating media, but because data is still
located in DRAM, a read request from flash is unnecessary.

Our results show that by using flash-backed I/O requests, we
can significantly reduce the write latency by up to 70% with
80MB of both NVCache and DRAM. A major contributor
to this performance improvement is idle-processing capability
flash-backed I/O requests introduces.
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