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Abstract—One of the biggest bottlenecks in desktop-based
computing is the hard disk with I/O write latency being a
key contributor. 1/O write latency stems from the mechanicd Cache
nature of hard disks, with seek and rotational delays the majr
components. Hybrid disk drives place a small amount of flash ATA
memory (NVCache) on the drive itself which can be leveraged Interface

by the host and has the potential to increase 1/0O performance NV
and reduce hard disk power consumption. Cache

We present an I/O scheduling algorithm, "Flash-Backed 1/0
Requests”, which leverages the on-board flash to reduce wat
latency. Since flash memory and rotating media have differetl/O
characteristics, predominantly in random access contextan /O

scheduler can decide which media will most efficiently seree /0 of the already low profit margins in the disk drive industry,
requests. Our results show that with Flash-Backed I/O requsts, it isp't clear how much the NVCache will grow [5]. The
. ) .
overall write latency can be reduced by up to 70%. NVCache will have constant access time throughout its block
|. INTRODUCTION addr_ess space because of it_s non—mechanical_ nature, unlike
) ) ) rotating media.However, rotating media sequential thipug
Hard disks are slow mechanical storage devices. Howevgr,significantly faster than flash media. Table | shows the

because they are inexpensive and offer large capacities (g@neral trade-offs between flash memory and rotating media.
terabyte hard disks are available), they are typically used Hybrid disks present an opportunity to increase perforraanc
the back-end media for general purpose operating systeger traditional disk drives and reduce power consumption
Although disk capacities are expected to increase by arfatto while still minimizing the reliability and spin-up latency
16 by 2013, disk bandwidth and seek time are not expectediighact of spin-down algorithms. While the rotating media is
scale as much [1]. As a result, the gap between drive capag{n-down write requests can be redirected to the NVCache,

and performance will continue to grow. reducing contact start-stop operations and aggregateugpin
One of the key contributors to hard disk latency is Se%tency [6].
time, which is the penalty incurred when the head must move|/o scheduling algorithms are traditionally implemented
from one track location and settle on another. Seek time iS® minimize access time to rotating media. However, with
function of the inter-sector request distance and rangas fr hybrid drives such a presumption may no longer be most
a few milliseconds to 10s of milliseconds. efficient. In this paper we propose leveraging upcoming iaybr
Both operating systems and disk drives try to mitigatgrives to reduce 1/0 write latency through "Flash-Backe@l I/
the performance penalty rotating media imposes by redygequests”. Flash-backed I/O requests redirect write tque
ing 1/0s and coordinating their execution. Solutions infash media when it is more efficient to service an I/0 request
clude page caching, I/O scheduling, and file system alloGgith flash media rather than rotating media. The redirected
tion/defragmentation. Page caching attempts to keep the m@quest is kept in main memory until it can be written to
recently used data in memory, such as file and directogytating media without a significant write penalty. Redieet
data. Several I/O scheduling algorithms have been propoggd requests and their dirty pages still remain in main memor
to minimize 1/O latency [2], [3]. File system allocation antyata safety is preserved in the case of power-failure becaus
defragmentation policies try to minimize disk seeks by kegp the dirty pages are backed in the NVCache. Additionallcein

file data contiguous. Even with such performance enhangge flash and rotating media exist in the same enclosure data
ments, hard disks still remain the most significant botiéne separation is not possible.

in the 1/0O path.

Upcoming hybrid disks will place a small amount of flash Il. BACKGROUND AND MOTIVATION
memory (NVCache) next to the rotating media as shown inl/O write latency is responsible for a large portion of
Figure 1. The first hybrid disks will have several hundretbtal disk access time. File system allocation policies try
megabytes of NVCache in a 2.5inform-factor [4], but because minimize write latency by providing spatial locality of

Fig. 1. Hybrid Disk
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WR - 2K - flash media and rotating media device. This figure shows the
(b) SanDisk Ultra Il CF - Read  (c) SanDisk Ultra Il CF - Write potential benefit of utilizing a hybrid drive to reduce write
latency. By augmenting an 1/0O scheduler to be aware of the
access-time discrepancy between flash and rotating media, i
file data through contiguous file block allocation. Howevegan select which media is most efficient to service any

some file systems do not provide a high degree of inter-

file locality. For example, FFS-derived file systems, such &s Trace-Based Motivation

ext2/3, try to allocate files evenly across the entire addres We performed an analysis of access patterns for four block
space in block groups [7]. Additionally, user-initiatedefil |evel traces (shown in Table I1). The traces were gatheremh fr
system operations prevent sequential write operations frgjesktop systems and represent 7 days of activity. They span
occurring. For example, a read between two writes. Log®as@ur operating systems: Windows XP, Mac OS X, Linux, and

file systems which employ various versions of copy-on-writgpuX. Each system was used in a desktop environment and
can address this issue [8], [9]. However, such file systen® myescribed in more detail in Section IV-A.

employ cleaner processes to make room for new writes. Figure 3 shows seek distance for write operations in gi-
Hybrid drives bring forth a new storage technology angdabytes as a function of time for each trace. Seek distance is
with it an opportunity to improve hard disk write performancthe difference in logical block address between two suceess
without the need for a log-structured file system allocatiorquests. Seeks for read requests are not shown in this figure
policies and the associated cleaner overhead. Hybridesiriand all seek distances are absolute values. The point oé thes
provide such a capability because two storage media are figures is to show the horizontal banding that occurs for
located with each other in the same enclosure and I/O candeweral seek distances for each trace. The horizontal hgindi
directed to either storage media. Having both storage mediarepresents potential I/0 redirection to flash media. Thelivan
the same enclosure is also important for data safety—data frthat occurs for large seek distances represents write sexjue
either media cannot be separated. This may not be true withich incur long seeks that can potentially be satisfied ley th
other upcoming technologies that also leverages flash ssictNavCache. These figures only show the first 24 hours of each
Intel Robson, in which flash is located on the motherboatthce so that the horizontal banding can be clearly seen.
instead of the drive [10]. File system integrity can be Idst i To further motivate the need for reducing write latency we
the drive is detached from the motherboard.. show the total 1/0O count as a function of the seek distance for
I/0 scheduler implementations provide different polides. the entire 7 days of each trace in Figure 4. In these figures

Fig. 2. Access Time with 99% Confidence Interval.
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we augment an /O scheduler by adding an additional 1/0
gueue in which certain write requests (along with the data)
persist in main memory, but are backed in the NVCache.
Keeping such requests in main-memory provides additional
opportunities for normal I/O requests to be coalesced, and

Count
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Seek Distance (MB) Seek Distance (MB) memory. Although the 1/O bottleneck is reduced, there is the
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0_'01 00 10000 oot 00 10000 This secthn describes how I/O requests are redirected and
Seek Distance (MB) Seek Distance (MB) coalesced with Flash Backed I/0 Requests. Figure 5(a) shows
(¢) Windows (d) HPLIW hovy I/O reggests are redirected. When a write re.quest. is
redirected, it is removed from the Request Queue, whichexis
Fig. 4. Seek Distance Count in main memory. The Request Queue refers to the traditional

only write operations contribute to the total count, andgbek I Cjesucehet(:]ue“rr]g %Zi??s ggz;gag%vciﬂ%\ﬁ?;r%rgsttheuzﬁgg_ej:‘:‘e
distance is again an absolute value. This figure shows thstt mg o q . q q )
ain memory FQueue and a non-volatile FQueue (NVCache).

frequent write operations occur for short seek distances a dina th t to th . E "
the frequency continues to decrease until roughly a 1MB see ing the request to the main memory FQueue moves the

distance. After reaching 1MB, the 1/O frequency at a paléicu renteSt referelngle b;tween t.he t;/vo queues. Adding thﬁ eques
seek distance remains relatively constant. We also consi e non-volatile FQueue involves issuing an asynchrenou

write operations after 1MB ideal candidates flash-backéd |JVrite request to it However, before_the write request igest
requests. the host must pin the corresponding sectors and not set the

Populate Immediate bit. The pinning and unpinning openatio

B. Hybrid Drives is very fast (microseconds) because the disk need only et bi

The NVCache on hybrid disks can be controlled throudR its volatile memory to accomplish this.
new ATA commands specified in the ATA8 specification [11]. Although the goal is to reduce write latency, we still must
The NVCache does not extend a disk’s capacity, ratherAtsh FQueue requests back to rotating media. As a result,
can store particular sectors. Sectors stored in the NvVCadhge Volatile FQueue is fundamentally a cache for rotating
are either pinned or unpinned, which when referred to #edia, backed by non-volatile memory. Therefore, the gunte
a collection are known as the pinned and unpinned s6f the two FQueues at any given time are identical—the sole
respectively. The host manages the pinned set, while the di8/rpose of the flash FQueue is to prevent data loss from the
manages the unpinned set. The disk uses the unpinned setR!atile FQueue in the case of power failure. Since the uelat
new power mode, NV Cache Power Mode, in which the drieQueue is akin to a cache, when requests are kept in memory
will redirect all /O to the NVCache if possible and use atPnger more opportunities exist to coalesce the volatile&i@
aggressive disk spin-down policy. contents with write and read requests from the Request Queue

The host controls I/O to the NVCache pinned set. A host canFigure 5(b) shows how I/O requests are coalesced. Coa-
issue a command to pin one or more sectors in the NVCaclscing requests involves four steps: (1) unpin the noatilel
any subsequent I/O to those sectors will be redirected to th@ueue data, (2) coalesce the request from the DRAM FQueue
NVCache. A host specifies multiple sectors with an exte-lj With the current write request, (3) submitting the 1/O write
interface, called LBA Range Entries. When pinning LBAs intéeduest, and (4) removing request and data from the non-
the NVCache the host specifies the source for that LBA rany@latile FQueue.
entry: host or rotating media, by setting a Populate Imntedia The first step is to use the ATA NVCache unpin command to
bit. If set, those sectors are read from rotating media inéo tremove a particular set of LBAs from the NVCache. Step two
NVCache, otherwise, a write operation from the host for ¢ho§oalesces the in-memory requests data and step three submit
sectors will go into the NVCache. Pinned sectors can aldae requests with the modified request data and requesttdsel
be queried or removed from the NVCache. Finally, unpinnégflect the new content. Since none of the LBAs in the request
sectors can be flushed from the NVCache to make room € pinned, the request is directed entirely to rotatingiened

the pinning of additional sectors. and not the NVCache. Finally the last step is to remove the
request and its data from the non-volatile FQueue.
Il. FLASH-BACKED I/O REQUESTS It must be noted that the DRAM and flash size of the

Using hybrid disk drive technology, the goal of flash-backeldQueue for hybrid /0 scheduling must be the same. It doesn’t
I/O requests is to reduce write latency. In order to do thisjake sense to have more or less DRAM FQueue than flash
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FQueue. If there is more DRAM FQueue memory, then safe ;;“]g)eﬁi;]i;g;o ggif%tlzrg%uﬁst’;/
is lost because any requests in the DRAM FQueue may not -REQ (head, request):

. } /* Attempt to coalesce request with data from dram fqueue */
backed by the NVCach_e. If there is more r)on—yplanle FQUEU| (coalesced, new_req} := COALESCE_WITH_FQUEUE(request)
the performance benefit of I/O redirection is mitigated hsea

fewer requests can be stored in the DRAM FQueue. if (coalesced == true) then
/* Remove coalesced data from flash */

B. When to Redirect UNPIN_REQUEST_FROM_FLASH(request, new_req)

The fundamental goal of flash-backed 1/O request is 1 /* Submit coalesced request */
reduce the overall /0 write bottleneck. To that end, onlgrif SUBMIT_COALESCED_REQUEST (new._req)

I/O request will reduce write latency should it be placed o /* Clear coalesced data from dram fqueue */

the volatile and non-volatile FQueues. In order to make suc CLEAR_DRAM_FQUEUE_REQUEST (request, new_req)
a decision, the redirection algorithm relies on the inteck return

random access times of flash and rotating media. Since rand| "%

access time is a function of the inter-block distance foating J*Get 1/O access times™/

media, it is necessary to know the location of the last I/G¢he | h_n := ACCESS_TIME(head, request->Ibn)
location). However for flash, such information is unnecgssa ;‘I:‘}fE’}A(ngE:(S:—CTEUS“SE(Trle&lg(S::L‘LI;_ieg;':)st'meXt'>“m)
E'S it ha; constant random access time, as previously showr| " " Es TIME(head. reguest_>next_>lbn)
igure 2.

We have developed an algorithm to determine which r¢ /*Should redirection occur*/
quests are redirected to the FQueue. The decision takes| If (hn+n_nm)> (in +h_nn)) then
input the _disk driv_e’s head location, current request mfm ;,&igg;}ég?j;ﬁn ASH(request)
tion, and information about the next request informatione T
algorithm is shown in Figure 6. The first thing to notice isttha /*add request to dram fqueue*/
the algorithm first tries to coalesce the current requesh wi|  APP_REQUEST_TO_DRAM_FQUEUE(request)
a request from the FQueue. If this is possible the algorithi endif
will not attempt to redirect /O because the correspondin| /+submit redirected request*/
FQueue request is able to piggy-back on the current reqoiesi|__ SUBMIT_REQUEST (request)
rotating media. Note that this algorithm is only entered on a Fig. 6. Algorithm for REDIRECTREQUEST
write request. If the request isn’t coalesceda{esced = false)
we extract 1/0 access times for four possible requests fer ttequest’s LBA location to the next request’s LBA locatidm.
NVCache and rotating media. Given these access times, if inghe flash access time for current request, which dependent
inequality: only on the request size, while_n is the access time from

(h_n+n_nn) > (fn+ h_nn) the current LBA location of the disk head to the next reqsest’
is true, the current request is redirected to the FQueues.UBA location.
this inequality,h_n is the access time from the current LBA The goal of the redirection inequality is to redirect I/O
location of the disk head to the current request’'s LBA lamati requests to the FQueues that will result in less disk head
Correspondinglyn_nn is the access time from the currenseeking. In effect, this algorithm is looking into the fugur




to see whether redirecting the current request to the FQ@ueueFlushing requests from the FQueue is comprised of three
is more efficient than sending it to rotating media becausesieps: (1) when to flush, (2) how much to flush, and (3)
includes the access time of the next request into the rditirec the order of request flushing. In order to minimize flushing
decision. overhead, we use two watermarks (high and low) to guide
For example, consider a request with a starting sector fathen to begin flushing and how much to flush. The high
away from the head’s current location but in between severghtermark is used to initiate flushing of FQueue requests
requests spatially near each other. If the decision to eetlirback to rotating media. Requests are flushed from the FQueue
is based solely on the head’s current position and the nexttil a low watermark is reached. While flushing occurs, 1/0
request, no consideration is given about the impact of th#ernates between the FQueue and Request Queue with a 1:1
decision on following requests. If the request is redirgédte ratio. All /O operations originating from the Request Qaeu
flash, the head will remain at the same location. As a resuinly execute the COALESCERVITH_FQUEUE phase from
the following requests (spatially near each other) wilbate Figure 6 and are directed to rotating media. The goal of tive lo
redirected to flash because of the disk head'’s relativeilmtatwatermark is that some requests always exist in the FQueue
to the spatially nearby requests, and cause the FQueue spgaubas a result there is always potential for I/O redirecfidre
to quickly become polluted. However, since the followindnigh-watermark prevents FQueue flushing from the blocking
requests are spatially near each other, it would have bees m8equest Queue processing.
efficient to service them with rotating media. In order to do The order of request flushing from the FQueue is done
that, the scheduling algorithm needs to consider the fafigw in FIFO order. FIFO is used because coalescing removal
request’s location when making a decision about whether isr random access removal. This means the oldest FQueue
not to redirect a given request. This is in effect what theequests haven't been coalesced yet and may be unlikely to

algorithm in Figure 6 does. be coalesced with a Request Queue request. Therefore, such
requests should be removed from the FQueue to make room

C. Idle-Time Processing for other FQueue requests. To minimize the total number
of FQueue requests issued back to rotating media, FQueue

A benefit of flash-backed I/O requests is that the FQueye ) - .
requests act like a cache for disk requests, but are baclggghmg first attempts to merge any existing requests in the

. . ueue with the next request scheduled to be written to
by non-volatile storage. We propose that an operating BySt?otatin media
leverage the FQueue to perform delayed 1/O. By waiting 9 '
until the Request Queue is empty, and then flushing FQueue IV. EVALUATION
requ_ests bac_k to rotating media, requests car] be wnttery tcfn order to evaluate the potential benefit of Hybrid 1/10
rotating media asynchronously. From the user’'s perspsctiv

any request that exists in the FQueue is considered cordpleﬁfei:hedu“ng’ we implemented a hybrid disk simulator using

because it backed in non-volatile media, so no additionae VO access times from a Hitachi EK1000 2.5in drive
' and a Sandisk Ultra Il Compact Flash media card shown in

time is incurred (from the client's perspective) to move th'e_.. i . )
: . igure 2. Using the access times from the two devices we
request data from the FQueue to rotating media. Therefor layed several block-level I/O traces through an augeent

. N . . e
flushing requests_ from the_FQueug to rotating r_nedla while t /‘EF)) scheduler. The following sections describe the worétloa
Request Queue is empty is considered Idle-Time Processin

and another example application of Golding’s hypothesis tha'qd results of flash-backed 1/O requests.
idleness is not sloth [12]. A. Traces

The order in which idle-time processing purges the FQueueTo evaluate the proposed enhancements, we use block-level
occurs is the same order as flushing—FIFO order with requ%%t '

. - ; . cess traces gathered from four different desktop maghine
merging. Additionally, it should be noted that more oppoitu which are shown in Table Il. Each workload is a trace of
ties to perform idle-time processing exist with larger FQeie . . . . o

) X - - disk ts f le disk, and h ent tains:
sizes, further reducing user perceived I/O latency. Peecei ISK TeqUES's Trom a single cISk, and each entry 1S contains

. . . . I/O time, sector, sector length, and read or write. The first
I/O latency is the time to push an incoming user request tovs?orkload Eng, is a trace from the root disk of a Linux
non-volatile media, be it flash or rotating media. ’ y

desktop used for software engineering tasks; the Reiseld-S fi
system resides on the root disk. The trace was extracted by
instrumenting the disk driver to record all accesses for the
The volatile and non-volatile FQueues have a finite size.dfot disk to a memory buffer, and transfer it to userland
the rate at which requests are redirected to the FQueuegvia a system call) when it became full. A corresponding
higher than the coalescing rate, the FQueues will beconhe fulserland application appended the memory buffer to a file
As a result FQueue requests need to be flushed. Fortunatety,a separate disk. The tradéP, is from a single-user HP-
because there is a copy of the FQueue request (and requbstworkstation [13]. TheWinPC trace is from an Windows
data) in volatile memory, only an unpin and write reques(P desktop used mostly for web browsing, electronic mail,
operation are needed—reading the redirected data from #Hral Microsoft Office applications. The trace was extracted
flash is unnecessary. through the use of a filter driver. The final tradéac is from

D. Flushing Requests



[ Name | Type [ Duration [ Year |

Eng Linux Engineering Workstation| 7 days | 2005
HP | HP-UX Engineering Workstatior] 7 days | 1992

WinPC Windows XP Desktop| 7 days | 2006
Mac Mac OS X 10.4 Powerbook 7 days | 2006
TABLE Il

BLOCK-LEVEL TRACE WORKLOADS

a Macintosh PowerBook running OS X 10.4. The trace was.
recorded using the Macintosh command line toolutage,

by filtering out file system operations and redirecting di€k |
operations for the root disk to a USB thumb drive.

Since main memory is a resource that will be directly
consumed by flash-backed I/O requests, it is important tevkno

Access Time (%

Access Time(%)

o >
0.01 0.1 1 10 100

ac —+— HP ---%---

how much memory each system had at the time the trace was i e W e
taken. The Mac and Eng systems both had 1GB of DRAM, (@) ldle-ime FQueue purging (b) FQueue flush purging
while the WinPc had 512MB of memory. We do not know Fig. 8. Normalized /O write access times
how much memory HP had at the time the traces were taken. 110 S——
Therefore, for Fhose systems in which we are aware of the € 100 0888 0000 0900 9
memory capacity, 100 megabytes for flash-backed I/0 request " go | m
is a 10-20% overhead. £ g0 WM

In this section we present results for flash-backed 1/0 U |
requests. We use several I/O sc_hedulers for the RequesEQ_ueu § 60 L x%%*%){%%%%*
FCFS, SSTF, and CLOOK. Figure 7 shows the normalized 2 50 L |
write access time for each trace using the three 1/0 schedule T AT AN I AT
Each scheduler is normalized to itself without flash-backed 0.01 0.1 1 10 100
I/O requests. This figure shows two things: (1) there is a Flash-Backed Volatile Memory (MB)
significant decrease in write latency when using flash-bécke
I/O requests, and (2) the relative performance of individi@ '\é'ﬁg e V'V"iﬁ ff,fféfff’

schedulers does not differ significantly. Although the tieéa
performance of each 1/O scheduler does not change, the My 9. Normalized /O write latency with flash-backed I/Oquests,
numbers do. Since the Request Queue scheduling algorititiding idle-time request purging

does not significantly impact performance, forth_e remaiqtﬂg flush 1/10th of the FQueue, and since we flush in FIFO order,
the paper we only show results for CLOOK, a fair and efficiery e flush the oldest requests first, which weren’t overwritten

I/O scheduler [14]. One additional thing to note about the%e; removed through a coalesced 1/O
figures is that flash-backed /O request performance varie§; s o156 yseful to see what the total write latency is when

significantly frqr_n workload to workloaq, even though theYdle—time processing is included, as it shows total writeriay
are each classified as desktop computing. for data to be committed on rotating media. The results &f thi
One reason flash-backed 1/O requests can reduce Weigyeriment are shown in Figure 9, and normalized to the total
latency by up to 70% is that flash-backed I/O request Sy@rite-latency without flash-backed I/O requests. This figur
chronization (back to rotating media) can be deferred tinéll shows that, if idle-time processing is included in the write
Request Queue is empty. The initial I/O writing to flash can hgtency, the benefit of flash-backed 1/0 requests is workload
faster than writing to rotating media when there is a sigaific gependent. The Eng and HP workloads show that write latency
seek penalty on the rotating media.. Figure 8(a) shows thgcreases by 30-50%, while the Mac and Win trace actually
total time spent synchronizing flash-backed I/O requests jizrease write latency. The increase in write-latency oecu
rotating media relative to total write-latency without flas pecause the cost of pushing requests out of flash and then

backed I/O requests. This figure shows that at least 20% ©{ck rotating media negates the benefit of redirecting td flas
total write latency work is performed by idle-time processi in the first place.

and 90% of the HP workload is Synchronized with Only 10MB In order to assess the impact of using the NVCache for
of FQUeUe. The Signiﬁcance of this result is that with th§e|ective write Caching' we measured how many erase op-
proposed redirection algorithm we can defer writing to thgrations occur during the 7 day traces, and then use the
disk until the Request Queue is empty without any outstandigpserved frequency to extrapolate the number of years to
/O requests. exceed an NVCache with 100,000 block erase count. We
The next figure, Figure 8(b), shows the percentage of I/@&sume an optimal wear-leveling algorithm which spreads
that occurs due to flush-back 1/0. As the number of fluskll writes across the entire device’'s physical addressespac
operations increases the benefit of I/O redirection deesedis Figure 10 shows the results of this experiment. This figure
these figures we don't flush the entire FQueue, rather, we oslyows that the flash endurance increases linearly with cespe
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FQueue. One of the benefits of redirecting 1/0 to flash, in

1 15 2 25 3 35 4 45 5 addition to reducing write latency, is that we can incredmse t

Flash Write Performance Factor chances of coalescing and overwrite operations, thus iegluc
ac —— HP % the effgctive rotating_ medig du.t.y cyclg (one of many vaeabl
Eng ---x--- Win g that dictate hard disk reliability). Figure 13(b) shows the

total disk writes normalized to total disk writes without an
FQueue, which can also be interpreted as a form of duty
Figure 12 shows the percentage of DRAM FQueue ovegycle. These results show that total normalized disk writes
writes. This is an important figure because it shows whdecreases slightly which means that by adding the FQueue,
percentage of redirected I/Os that do not have to be coalesogore requests are merged or forgotten because of FQueue use.
or flushed back to rotating media. This figure shows that as the
size of the FQueue grows more operations that are redirected V. RELATED WORK
to the FQueue result in overwrites - at most 15% of all writes There are several works that propose or leverage a non-
are redirected.. If all 1/0Os were cached in the FQueue, thislatile cache to reduce disk I/0. Ruemmler and Wilkes [13],
fraction would be 100% higher but would also contribute to Baker et al. [15], and Huwet al. [16] have all argued that
significantly larger access time. NVRAM can be used to reduce disk 1/0. Hu's Rapid-Cache
Figure 13(a) shows total disk time, which can be translatéeverages NVRAM to aggregate larger writes to a log-disk,
into duty cycle. These results are also normalized to mehose content is eventually written out to a backing store.

Fig. 11. Scaling Flash Write Performance with 100MB



This 2-level hierarchical caching model improves upon othevhen they can be coalesced with normal write requests going
systems which also use NVRAM, such as WAFL [9]. to rotating media. If the NVCache becomes full, redirected

Haining et al. also investigated the use of non-volatileequests are flushed to rotating media, but because dath is st
caches to buffer disk 1/0 [17], [18]. Their primary focus wasocated in DRAM, a read request from flash is unnecessary.
on NVRAM cache replacement policies. Their most successfulOur results show that by using flash-backed I/O requests, we
algorithm leveraged track-layout knowledge along withtigha can significantly reduce the write latency by up to 70% with
and temporal locality to reduce disk I/O. Our work differs iBOMB of both NVCache and DRAM. A major contributor
that we are selective about what 1/O is redirected to the naw-this performance improvement is idle-processing cdipabi
volatile backing store. Therefore this work is complementaflash-backed 1/0 requests introduces.
to our own.

Hybrid disks place a small amount of flash memory log-
ically adjacent to the rotating media. Interfaces to legera [l M. Kryder, “Future storage technologies: A look beyort thorizon,”
the NVCache are specified in the ATA8 specification [11] gggg/www.snwusa.com/documents/ presentations-sa@f{kryder.pdf,
However, implementation functionality is largely left thet [2] F 1. bopovici, A. C. Arpaci-Dusseau, and R. H. Arpacid3eau, “Ro-
manufacturer. Unfortunately, this means most manufacture bust, Portable /O Scheduling with the Disk Mimic,” Rroceedings of
hvbrid disk technol il t b blished. Theref it the USENIX Annual Technical Conference (USENIX '03), San Antonio,
hybrid disk technology will not be published. Therefore, it o,ac 3un 2003, pp. 297-310.
is our goal in this work to propose functionality leveraging[3] S. Iyer and P. Druschel, “Anticipatory scheduling: akdischeduling
hybrid disk technology. framework to overcome deceptive idleness in synchrond@$ 8 GOPS

Hvbrid disks al t potential optimizati in thesa Operating Systems Review, vol. 35, no. 5, pp. 117-130, Dec 2001.

yornd disks also .presen po_ ental opumizalions 'n. ) ' [4] samsung, “Samsung to unveil first commercial, hybrid dharive
of power consumption [6]. This work leverages hybrid disks ~ prototype for windows vista at winhec,” http://www.samguom, May
in the OS to reduce power consumption, spin-up latency, and 2006.
| l . t It ts f | ith it 5] R. E. Born, “The low-profit trap in hard disk drives, andvh¢o get out
wear-leveling impact. It presents four algorithms exphy of it” Apr 2001.
I/O that occurs while the rotating media is spun-down. [6] T. Bisson, S. A. Brandt, and D. D. Long, “A hybrid disk-ameaspin-
There are several I/O schedulers in literature which iregea  down algorithm with 1/O subsystem support,” Proceedings of the
. . . - . 26th |EEE International Performance, Computing and Communications

performance. Tangential to our work is Disk Mimic. Disk G terence Apr 2007.
Mimic develops an I/O scheduler by using shortest-mimieked7] s. C. Tweedie, “Journaling the linux ext2fs file systerim,Proceedings
time-first (SMTF). Disk Mimic records access time given a__ of the Fourth Annual Linux Expo, May 1998.

fi h /O d logical (Bsr] M. Rosenblum and J. K. Ousterhout, “The design and impletation of
S?t of input param_eters such as type and logical sector , log-structured file systemACM Transactions on Computer Systems,
distance from previous requests and uses the recordedsacces vol. 10, no. 1, pp. 26-52, Feb 1992. . _
times to schedule and predict future request service ti2les [ [ D. Hitz, J. Lau, and M. A. Malcolm, “File system design fan NFS file
The Anticipatory I/O scheduler also improves I/O perforican server appliance,’ ifr Ings of the USENIX Winter 1994 Technical

e Cipatory 1S p p Conference, Jan 1994, pp. 235-246.
by pausing briefly before servicing a request from anothpo] M. Trainor, “Overcoming disk drive access bottlenecksith

process, as many applications have very short idle-times be intel  robson ~ technology  http:/www.intel.com/techagy/
magazine/computing/robson-1206.htm, 2007.

tween I/0 requests [3]. If the application issues an 1/O it 11) ¢ “stevens, “At Attachment 8 - ATA/ATAPI Command S&TAS-
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