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Abstract. Constructing flash memory based storage, FTL (Flash Trans-
lation Layer) manages mapping between logical address and physical
address. Since FTL writes everydata to new region by itsmappingmethod,
the previous data is not overwritten by new write operation. When a jour-
naling file system is set up upon FTL, it duplicates data between the jour-
nal region and its home location for the file system consistency. However,
the duplication degrades the performance. In this paper, we present an ef-
ficient journal remap-based FTL. The proposed FTL, called JFTL, elimi-
nates the redundantdata duplication by remapping the journal region data
path to home location of file system. Thus, our JFTL can prevent from de-
grading write performance of file system while preserving file system con-
sistency.

1 Introduction

Flash Memory has become one of the major components of data storage since
its capacity has been increased dramatically during last few years. It is charac-
terized by non-volatile, small size, shock resistance, and low power consumption
[1]. The deployment of flash memory is spreading out ranging from consumer
electronic devices to general purpose computer architecture. In nonvolatile mem-
ories, NOR flash memory provides a fast random access speed, but it has high
cost and low density compared with NAND flash memory. In contrast to NOR
flash memory, NAND flash memory has advantages of a large storage capacity
and relatively high performance for large read/write requests. Recently, the ca-
pacity of a NAND flash memory chip became gigabyte stage, and the size will
be increased quickly. NAND flash memory chips are arranged into blocks, and
each block has a fixed number of pages. Currently, typical page size of NAND is
2 KB, and the block size is 128 KB.

For flash memory, many operations are hampered by its physical characteris-
tics. First, the most important feature, is that bits can only be cleared by erasing
a large block of flash memory, which means that in-place updates are not allowed.
It is called out-of-place update characteristics. When data are modified, the new
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Fig. 1. Layered Approach with FTL

data must be written to an available page in another position, and old page be-
comes dead page. As time passes, a large portion of flash memory is composed of
dead pages, and the system should reclaim the dead pages for writing operations.
The erase operation makes dead pages become available again. Second, erasing
count of each block has a limited number and erase operation itself gives much
overhead to system performance. Thus, the write operation is more important
than read operation when designing flash memory based systems.

Due to its limitations, data robustness and consistency is a crucial problem.
Since every data should be written to new place in flash memory, a sudden
power failure of system crash may do harm the file system consistency. There
are two approaches to address these problems. One approach would be possible
by designing a file system itself to support specific flash memory characteristics.
There are several native flash file system, such as JFFS [8] and YAFFS [9]. These
are log-structured based file system that sequentially stores the nodes containing
data and metadata in every free region, although their specific structures and
strategies are different from each other. These approach are available only on
board flash memory chips, and if it is desired to be used in PC systems, a flash
memory interfaces should be integrated into computer architecture.

The other approach is to introduce a special layer, called a Flash Translation
Layer (FTL), between existing file system and flash memory [4][5][6]. The FTL
remaps the location of the updated data from one page to another and manages
the current physical location of each data in the mapping table. FTL gives a
block device driver interface to file system by emulating a hard disk drive with
flash memory through its unique mapping algorithm. Figure 1 shows the layered
approach with FTL in flash memory based systems. This layered approach can
offload flash memory from processing unit by utilizing commonly used interfaces
such as SCSI or ATA between processor and flash memory chips. The removable
flash memory cards such as USB mass storage and compact flash are using this
approach. The advantage of it is that existing file systems can be used directly
on the FTL. When existing file systems use upon a FTL, journaling technique
is essential element to prevent from corrupting user data and enhance system
reliability, data consistency and robust. However, journaling method existing
file system itself degrades the system performance. Generally, journaling file
systems write a journal record of important file system data before processing
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write operation. Then this journal is re-written to real file system home location
to make clear consistent state. Due to out-of-place update characteristics of flash
memory, the journaling affects flash memory based system more than disk based
system.

In this paper, we present an efficient journaling interface between file system
and flash memory. The proposed FTL, called JFTL, eliminates the redundant
data copy by remapping the logical journal data location to real home location.
Our proposed method can prevent from degrading system performance while pre-
serving file system consistency. Our approach is layered approach, which means
that any existing file system can be setup upon our method with little modifica-
tion to provide file system consistency. In the implementation, we consider Ext3
file system among many kinds of journaling file systems because it is the main
root file system of Linux. The remainder of this paper is organized as follows.
Section 2 describes motivation and background. Section 3 describes the design
and implementation of our proposed technique, and Section 4 show experimental
results. We conclude in Section 5.

2 Background

Ext3 [13] is a modern root file system of Linux that aims to keep complex
file system structures in a consistent state. All important file system updates
are first written to a log region called a journal. After the write of journal
are safely done, the normal write operations occur in its home locations of
file system layout. The journal region is recycled after the normal updates is
done. A central concept when considering a Ext3 file system is the transaction.
A transaction is the update unit of Ext3 file system, which contains the sets
of changes grouped together during an interval. A transaction exists in several
phases over its lifetime, running, commit, checkpoint and recovery. The detailed
operation of transaction is omitted due to the page limit. Please refer to other
papers.

The Ext3 file system offers three journaling operation modes: journaled mode,
ordered mode, and writeback mode. In journaled mode, all data and metadata
are written to the journal. This provides high consistency semantics including
user level data consistency. However, all are written twice to file system; first
to the journal region, second to its home location. Thus, its write performance
is extremely degraded. In ordered mode, only file’s metadata are written to the
journal, and file’s data are written directly to its home location. To provide
data consistency without double writes for file’s data, ordered mode guarantees
a strict ordering between two writes. The file’s data are should be written to
its home location before the corresponding metadata are written to the journal
when a transaction commits. This can guarantee that file metadata never indi-
cate a wrong data before it has been written. After the metadata logging to the
journal is done, they are re-written to its home location. In writeback mode, as
does ordered mode, only metadata are written to the journal, and file’s data are
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written directly to its home location. However, unlike ordered mode, there is
no strict write ordering between these two. A metadata indexes can point to
the wrong data block which wasn’t written to storage. It cannot guarantee data
consistency, but the journal can restore metadata.

The journaling operation of Ext3 can preserve file system consistency, at some
level for each mode. Regardless of the consistency level of each mode, the key
concept is that important information is first written to the journal, and then
written to home location. During these journaling operations, double writes oc-
cur. If Ext3 is mounted in flash memory based storage system, it is set up upon
FTL since FTL presents a block device interface to file system. The issue we
should take notice is system performance. Since write operation occurs twice,
write performance is degraded, since double writing occurs by a log manner in
the flash memory. The Figure 2(a) represents the problem of double writing in
FTL. However, if we make use of the FTL mapping management for journal-
ing technique, we can eliminate double writing overhead. Figure 2(b) shows the
JFTL that remaps the logical home location to the physical location of journal
that was written before. It can eliminate the redundant writes of home location.
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3 Design and Implementation

In this section, we describe our design and implementation of JFTL. The design
goal is to prevent from degrading system performance, while providing file system
consistency semantics. Our JFTL can be applied to all modes in Ext3 journaling,
we explain based on Ext3 journaled mode.

3.1 JFTL: Journaling Remap-Based FTL

In the Ext3 journaled mode, all updates including file data and metadata are
first written to journal region, then copied to home location. Transaction pro-
vides system consistency by writing all together or not included in a transac-
tion. This atomicity is possible to manage duplication between journal region
and home location, because original data remained in home location are not
corrupted by operations during transaction running. The duplication is crucial
feature in journaling. In view of this, if we look into FTL, FTL already uses
duplication by the mapping management. Every written blocks from file system
is written to another new flash pages by FTL not over-written. The problem
is that FTL has no idea about journaling. Specifically, it does not know what
data are associated with transactions, and the relationship between home loca-
tion and journal region. If we can manage these information within FTL, we can
eliminate double writing. In Ext3, these important information is stored in block
called descriptor. For a transaction, descriptor block contains list of addresses
of home location for each subsequent blocks to be written to journal region. The
list represents the blocks to be written to home location after the transaction
commit. During transaction commit phase, these are locked by journal trans-
action. The pdflush daemon of Linux may write journaled data to flash after
commit ends. Thus, all updated data are duplicated.

In the JFTL, blocks in the list of descriptor is not written again to flash
memory actually, but the JFTL remaps the physical location of journal region
to home location. For this, we make a dedicated interfaces between journaling
module and JFTL to pass these information. The lists recorded in descriptor are
passed through the interface from Ext3 journaling module to JFTL, and JFTL
uses these for updating the mapping table associated with blocks recorded in the
list. The overall write process of journal including our remapping of duplicated
blocks is as follows.

At first, when a new transaction is started, all updates are added and clustered
to some buffers, and these are linked and locked. In the Figure 3, the updates,
whose block numbers are 1 and 3, are clustered into running transaction.

Next, when the transaction expires, it enters commit phase where the clustered
buffers, made in running phase, are inserted into list, log list. These data are
written to journal region with two additional special blocks, descriptor and
commit. In the Figure 4, Journal region represents the list to be written to
journal region. In the journal, both descriptor and commit block have a magic
header and a sequence number to identify associated transaction. The descriptor
block records the home addresses of the list by checking their address of journal
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region, according to the order of subsequent blocks that are written to journal
region. For example, the block number of logging data within journal sequence is
1 and 3, so descriptor records the block number 1 and 3, which is associated to
the journal logging sequence. When descriptor block is made with the list, blocks
included in this transaction are flushed to block device layer. The submitted
blocks are written to flash memory through the JFTL, and the JFTL updates
the mapping table. The region are logically journal region, but physically new
free region. Up to now, journal data are flushed to storage.

After journal flushing is done, journaling module of Ext3 sends the list to
JFTL through the dedicated interfaces for remapping. JFTL makes the remap
list, remap list, from using information sent from journaling module. the remap
list has not only home address but also journal address associated with it. For
one element of the list is composed of home address and journal address to be
updated, as shown in Figure 5. Specifically, the block number 1 of home location
is related to the block number 21 of journal region, and the block number 3
of home location is related to the block number 22 of journal region. For each
element, JFTL finds out the physical address of the journal region, and updates
mapping table of home location of the element with the physical address. Then,
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JFTL clears the physical address of journal region. This clearing indicates that
this region is obsoleted so it can be included in erase operation. In the Figure, in
case of element (1,21), the physical address of journal region (21) is remapped
to (18), so we link home location (1) to the physical address (18). Then we clear
the physical address of journal region (21). When crash occurs before the remap-
ping, this transaction journal data should be revoked and the file system status
should be rolled back to the older version. This can be properly operated by
recovering older version of mapping table. When crash occurs after the remap-
ping, the new version is pointed by home location although this transaction is
not properly completed. We don’t worry about the consistency since the remap-
ping can guarantee that all the journaling data in this transaction are written
to storage.

When updating of mapping table associated to this transaction is done by
remapping, the journaled data don’t need to be written to flash memory any
more, because all journal region are written out properly and the home loca-
tion of that now points to the newly written data by remapping of these. The
remaining job is to clear the buffers related to blocks of home location. This is
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possible by simply setting the BUFFER CLEAN flag of buffer head structure
of the blocks. By doing this, these are not flushed to flash by the pdflush daemon
because it only flushed the dirty blocks by its mechanism. After all is done, the
transaction is removed. Lastly, in JFTL, previous address of updated blocks
now can be considered as obsoleted, so these are marked as dead in the table
and can be included in erase operation.

3.2 Recovery

When system crashes, Ext3 performs checking of its superblock and journal su-
perblock, and scans the journal region to recover system corruption. When crash
occurs during journal writes, we should provide rollback mechanism for improp-
erly logged transaction. The improperly logged transaction represents that crash
occurs during this outstanding transaction write. The recovery of Ext3 with
JFTL proceeds as follows. When Ext3 is mounted, it checks the mount flag in
the superblock, and it finds that the system was crashed last. In this case, Ext3
checks journal superblock and identifies its consistency was corrupted by crash.
After finding crashes, it identifies the committed transactions with their sequence
number by scanning journal region. For the properly logged transactions, it reads
descriptor block that is marked as same sequence number of superblock, checks
the logged block addresses, and makes remap list for remapping these. The
remap list is sent to JFTL, and JFTL updates mapping table, as commit does
during runtime. Then, Ext3 scans more to find logged transactions and repeat-
edly performs the updating processes as described above. During the checking
of journal region, if Ext3 finds improperly committed transaction, it stops the
recovery process and returns. Lastly, Ext3 resets the journal region to be cleared
and used later for journaling.

Different from previous recovery process, in case of properly logged transac-
tion, our recovery policy doesn’t perform copies of logged data to permanent
home location, only remaps their addresses to the physical position of that by
updating JFTL mapping table, just like that of run-time commit policy. Even
though the amount of blocks to be recovered is small, our recovery mechanism
is efficient because we only remap the committed transactions without copies to
home locations.

4 Evaluation

The proposed Ext3 journaling mode with JFTL, will be compared to original
Ext3 ordered mode and journaled mode. we exclude the writeback mode since
it gives similar results of ordered mode. The experimental environment we use is
NAND flash memory simulator based PC system. We use nandsim simulator [6]
for the experiments. The nandsim can be configured with various NAND flash
devices with associated physical characteristics. The physical characteristics of
simulated the flash memory is as follows. Page size and block size of configured
flash memory is 512Bytes and 16KBytes, respectively. One page read time and
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Fig. 7. Bonnie Benchmark Performance. The left graph plots character write
performance, and the right graph plots block write performance as the
amount of data written increases along the x-axis.

programming time is configured to 25us and 100us, respectively. Block erase
time is set to 2ms. Those configured settings are accepted among many flash
memories. The reason we chose 512Bytes page size is to match with the sec-
tor size of disk. The capacity of nandsim is set to 128MB, which is allocated
in main memory. For the performance evaluation, we used two benchmark pro-
grams, Bonnie [15] and IOzone [16]. For the benchmark tests, we have tested
as follows, Ext3 ordered, Ext3 ordered with JFTL, Ext3 journaled, and Ext3
journaled with JFTL. Among many file system operations, we are interested
in write performance of file system since journaling gives overheads for write
performance. During all the experiments, we guarantee all the data are written
to flash memory, not be cached to main memory.

We begin our performance evaluation with Bonnie benchmark [15]. Bonnie
performs a series of tests one file of known size. The series of tests are composed of
character write/read, block write/read/rewrite, and random write. Among these,
we plots character write and block write performance as file size increases. The
Figure 7 shows their results. First of all, we can identify throughout the graphs
that the bandwidth of each mode does not changed largely as the written file size
increases. It is from distinct feature of flash memory. Flash memory is electrical
device and does not affected by any geometry structure. Thus, flash memory
is free from complex scheduling overhead like disk scheduling. Instead of, flash
memory is affected by garbage collection issue.

The left graph of Figure 7 plots character write performance, and the right
graph of Figure 7 represents block write performance of Bonnie. The charac-
ter write operation indicates that file is written using the putc() stdio. In block
writes, file is written using write() calls with the amount of block size, 4KB.
They show similar results of write trends without average bandwidth rate val-
ues. In the graphs, among two ordered modes, the ordered with JFTL slightly
outperforms the ordered mode. It is the effect of remapping of metadata not
real writing to home location. However, compared to large amount of data, the
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Fig. 8. IOzone Benchmark Performance. The Left graph plots write performance,
and the right graph plots rewrite performance as write request size per
write operation increases along the x-axis.

amount of metadata is negligible, so the performance gap is small. If we compare
two journaled modes, journaled mode with JFTL greatly outperforms the pure
journaled mode, as we expect. In case of journaled mode, bandwidth is slowly
down as file size increases, which is due to the number of descriptors in the jour-
nal transactions. As the written data is increased within a transaction interval,
number of descriptors is also increased. If journaled with JFTL is compared
with ordered modes, bandwidth degradation of the journaled with JFTL is not
a serious problem. The journaled with JFTL mode can give similar performance
to ordered mode while preserving strict data consistency.

Next benchmark program we tested is IOzone benchmark [16]. It generates
and measures a variety of file operations including write/rewrite, read/reread,
aio read/write, and so on. Among these, we plot write performance verifying
that data is actually written to flash memory. we have experimented write op-
eration while varying the write request size per write operation from 4KBytes
to 4096KBytes when file, whose size is 4096KBytes, is created and written. It
means that 1024 write operation occurs for 4KBytes write size, whereas only
one write operation occurs for 4KBytes write size, when 4096KBytes file is writ-
ten. In the Figure 8, left graph plots write performance, and right graph plots
rewrite performance as write size per write operation increases along the x-axis.
The difference between write and rewrite is that write means new data is writ-
ten and rewrite means the update of previous data. From the left graph, we
identify that throughput of new data increases as the write size increases, which
is due to the metadata update between each write intervals, such as free block
allocation. For small write request size, performance is much degraded in both
ordered mode and journaled mode. It results from the fact that free block allo-
cation and metadata operation is performed for each write operation. As write
request size increases, throughput is increased since metadata operation number
is decreased. However, it is not required to allocate free blocks when the data
is rewritten, which means metadata operation decreases. Thus, throughput of
ordered mode is constant through the request sizes, as we see from the right
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graph. In all experiments, we can identify that the performance of ordered with
JFTL mode and journaled with JFTL outperforms its comparison.

From the experiments, we note several results. First, journaling itself gives
overhead to system while providing consistency. Second, when ordered mode is
used, the performance of JFTL is slightly better than original with the help of
remapping. Third, the journaled mode downs system performance extremely,
at least half of the throughput and latency, even if it provides strict data con-
sistency. Whereas, the journaled with JFTL does not harm largely, and gives
little overhead to the system, while providing strict data consistency.

5 Conclusion

Flash Memory has become one of the major components of data storage since
its capacity has been increased dramatically during last few years. Although it
has many advantages for data storage, many operations are hampered by its
physical characteristics. The major drawbacks of flash memory are that bits can
only be cleared by erasing a large block of memory and the erasing count of
each block has a limited number. Considering a journaling file system on the
FTL, the duplication of data between the journal region and its home location
is crucial for the file system consistency. However, the duplication degrades the
file system performance.

In this paper, we present an efficient journaling interface between file system
and flash memory. The proposed FTL, called JFTL, eliminates the redundant
data copy by remapping the logical journal data location to real home location.
Our proposed method can prevent from degrading system performance while pre-
serving file system consistency. Our approach is layered approach, which means
that any existing file system can be setup upon our method with little modifica-
tion to provide file system consistency. In the implementation, we consider Ext3
file system among many kinds of journaling file systems because it is the main
root file system of Linux.
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