
Control Architecture

A great deal of work has been focused on the areas of behavior-based control and motion

planning, especially in the area of mobile robotics. However, research on humanoid

systems has been mostly focused on low-level controllers, in part due to the difficulty of

creating complex behaviors while maintaining balance stability and while complying

with joint limit and self collision constraints. The whole-body control methods we are

currently developing open new opportunities to create complex behaviors in humanoid

systems. In particular, our methods are capable of executing various control objectives

(both at the contact and non-contact levels) while maintaining balance stability and while

responding to dynamic events. In the future, we aim to connect our controllers to

perception and decision systems. However, a direct connection between execution and

behavioral layers is not obvious.

Control Diagram

While the main task of an execution layer is to create torque commands to accomplish

desired control objectives, the task of a behavioral layer is to sense the environment and

coordinate sets of actions to create desired responses. In Figure 1 we show a control

diagram involving execution and behavioral layers connected through an action layer

which embodies a library of whole-body behaviors.

Figure 1. Connection between behavior and execution layers: The execution layer operates at fast rates

with the objective of executing low-level tasks. The behavioral layer operates at low speeds sensing the

environment and determining the whole-body behaviors necessary to accomplish a global task. To interface

these two layers, we define an action layer which is responsible for providing access to whole-body

behavioral entities. These entities are meant to serve as the main units of action orchestrated by the

behavioral layer.

At Stanford, we have focused our work on the execution and action layers. Let’s see them

more in detail.

Execution Layer

In Figure 2 we depict our implementation of the execution layer. The centerpiece of this

diagram is our whole-body controller which has been designed to execute sets of tasks

and to monitor task feasibility. To create new tasks, we define control primitives that

characterize task representation and control policies. The instantiation of control

primitives leads to the creation of low-level behaviors associated with specific body parts

(i.e. task points).

Figure 2. Execution layer: The centerpiece of this layer is the whole-body controller described in previous

chapters. The definition and instantiation of low-level behaviors is supported by abstract entities called

control primitives.

Action Layer

In Figure 3 we illustrate the operation of the action layer. This layer defines whole-body

behavior representations. A whole-body behavior is a sequence of goal-oriented actions

coordinated to achieve a global behavior.

Figure 3. Operation of the movement layer: The centerpiece of this layer is a representation of whole-

body behaviors as sequences of actions implementing different movement phases.

Software Architecture

We have developed a software platform within our SAI simulation and control

framework that implements the above control architecture.

Robot Model

To support the creation of task and behavior primitives we have designed software

entities that described the physical parameters of the humanoid robot as well as its state

with respect to the surrounding environment. In the diagram shown in Figure 4 we depict

the implementation of modules that describe the physical robot. A robot model entity is

used as the sole interface with whole-body control modules. The robot model contains

descriptions of kinematic and dynamic quantities as well as the description of the contact

state of each part of the robot’s body. A kinematics module describes various quantities

at the joint and task levels. For instance, joint limits or proximity points between nearby

links are computed in this module. Moreover support to compute task quantities at the

kinematic level such as task coordinates and Jacobians are also provided in this module.

Figure 4. Robot model: UML class diagram describing robot kinematic and dynamic representations. The

robot model provides access to kinematic and dynamic quantities both in joint and task spaces. It also

contains a branching representation to compute these quantities recursively based on efficient kinematic

and dynamic algorithms.

The computation of dynamic quantities is divided into whole-body and task level

modules. This reflects the fact that every robot has a single whole-body representation

while there are multiple task points to describe the overall task. The computation of

kinematic and dynamic quantities is supported by a branching representation of the robot

characterizing the kinematic dependency of robot links and a set of efficient kinematic

and dynamic algorithms.

Whole-Body Control Modules

At the control level we have designed a variety of modules that implement the proposed

whole-body control architecture. In Figure 5 we depict a diagram of these modules.

Figure 5. UML diagram of control modules.

The operation of the whole-body controller is centered on the interaction between a servo

controller and a set of behavior primitives. Behavior primitives are entities that

encapsulate action representation and movement sequencing as we will later explain in

this document. Over time we have developed a variety of behavior primitives that allow a

humanoid robot to touch, mimic human captured sequences, jump, walk, and grab objects

with various goal positions. Behavior primitives are implemented as state machine where

each state is a set of control primitives (a.k.a. task primitives). At the same time, control

primitives define task points and task representations at the kinematic, dynamic, and

control levels. Users can create new behaviors by defining new movement states based on

our library of control primitives. For instance, a walk behavior involves a variety of states

defining single and double support phases. Each of these phases can be created by

defining a set of control primitives such as zmp control, feet control, posture control, et

cetera. To execute a desired behavior, we provide a user interface with buttons that

activate the different behaviors of our library. Once a behavior is chosen it becomes the

active behavior. The servo module executes the different phases of the behavior by

accessing a common register called the active task set. This object is a vector of control

primitives corresponding to the active phase being executed. At every instant of time, the

active behavior writes the active task in the register to be executed by the servo controller.

Therefore the task of the servo module is to read the task register and execute all

primitives according to the priorities that have being assigned. If one of these primitives

cannot be accomplished – because of the acting constraints – the servo module sends a

flag to the active behavior indicating infeasibility of the movement. This information is

used to modify behavior at runtime.

Develop more effective user interface for robot task programming

Figure 6. Task Decomposition: Figure (b) depicts a walking sequence from an actual experiment. Figure

(a) shows the task points, xi’s that need to be actively controlled to achieve the desired behavior. This

includes COG control (shown with a black and white symbol), position and orientation of the swinging foot

(shown with a blue cross), and orientation of the head (also shown with a blue cross). The stable foot acts

as a support constraint. Posture DOFs are shown with green lines and arrows.

To realize complex behaviors, a humanoid needs to simultaneously control multiple task

points. For example to create the walking behavior shown in Figure 6 the robot needs to

control the position or acceleration of the COG, the position and orientation of the

swinging foot (in the case of single support stance), the orientation of the head, and the

overall posture. Other tasks such as hand manipulation could also be simultaneously

controlled. To characterize the overall behavior, we consider the vector of task points

1

2

i

N

x

x
x

x

 
 
 =
 
 
 

M

where each xi describes the position and orientation of the ith task point and N is the
number of task points. To execute a desired movement, each task point is controlled to

accomplish a specific goal gi.

Figure 7. Manipulation behavior with screwgun: This sequence of images corresponds to an interactive

manipulation behavior. A screwgun is teleoperated to insert screws into the wooden beams. All other

aspects of the motion are automatically handled. In particular, the robot’s posture is based on two distinct

snapshots of human poses that will be later discussed and a switching policy between postures is

implemented.

Multi-task control is our approach to simplify the synthesis of whole-body behaviors.

When a behavior is sought, the individual actions that need to take place are first

determined. For example for a walking behavior, each phase involving a different

supporting leg is defined as a separate movement. The desired behavior emerges by

sequencing the movements. In this context individual movements are units of action

where each action corresponds to a fixed set of tasks simultaneously operated towards

individual goals.

Task Decomposition

Let us consider the interactive behavior shown in Figure 7. Here the objective is to place

screws at desired locations in the wooden beams, simulating insertion with a screwgun.

This behavior can be synthesized in realtime by controlling four separate operational

tasks and one postural task, each controlling a different aspect of the robot’s movement as

shown in Table 1. Moreover the two feet in contact with the ground provide the support

for balance stability. To guarantee feet stability, internal forces between legs are

controlled to vanish or to maintain the feet flat against the ground. For balance stability,

the robot’s COG horizontal position is controlled to stay above the feet stability polygon.

Hand teleoperation is achieved by controlling the 6-D spatial position of the hand. The

teleoperated reference point is shown as a small red sphere located at the center of the

right hand in Figure 7. Head orientation is achieved by controlling the two orientation

coordinates associated with the robot’s gaze (i.e. the ray emerging forward from the head

in the direction of the eyes). In our example the desired orientation corresponds to

aligning the robot’s gaze with the teleoperated point. Notice that both the robot’s right

hand and its head are commanded to track in realtime the teleoperated point. Although

the function of the tasks discussed for the above example is straightforward, the posture

behavior involves perhaps the most complex control. We control it to mimic human poses.

Table 1. Task decomposition for the manipulation behavior shown in Figure 7.

Control Primitives

Control primitives are software abstractions that support the creation of low-level tasks.

These abstractions encapsulate task representation and control policies, serving as basic

units of control. To support the implementation of control primitives we define software

interfaces associated with the different types of tasks, as shown in Figure 8. Three

interfaces are shown here: an interface to implement constraint-handling tasks, an

interface to implement operational tasks, and an interface to implement postural tasks.

Control primitives are created as part of the description of whole-body behaviors,

encapsulating the representation and functionality of different body parts.

Figure 8. Control primitives: This figure shows software interfaces designed to create a variety of control

primitives.

Table 2. Library of control primitives: In this table we list some control primitives we have created to

support the creation of whole-body behaviors.

However, specific goals and control parameters do not need to be pre-programmed.

Instead this information can be passed by the sensory layer at runtime. Using similar

modules we have built an extensive library of control primitives to address the control of

different body parts. Some of them are shown in Table 2Erro! A origem da referência

não foi encontrada..

Figure 9. Relative importance of task categories: The above categories indicate the relative importance

between tasks and are used to assign control priorities. The left most category has the highest priority since

constraint-handling tasks ensure that the robot structure and the surrounding environment are not damage,

while the right most category corresponds to the lowest priority level associated with the execution of

postures.

Task Creation

Task creation is the process of instantiating control primitives and assigning control

parameters. In Figure 6 we illustrated a whole-body walking behavior and the task

structures associated with it. The instantiation of low-level tasks involves creating task

objects and passing associated control parameters. For instance, to instantiate a hand

position control task we execute the following C++ statements

PositionPrimitive* handTask;
handTask = new PositionPrimitive(robotModel, "right-hand");

Here, PositionPrimitive is an abstraction that encapsulates position representations of

arbitrary parts and PD control policies of desired position commands. A class structure is

associated with this primitive, containing a constructor that takes as input the robot model

and the desired body part to be controlled. The robot model is characterized by the UML

diagram shown in Figure 4. After instantiating a task, the next step is to pass desired

control parameters. For instance, to use the PD control law with velocity and acceleration

saturation we pass the following parameters: kp = 400s^2 for the control gain, νv = 0.5 m/s
for the velocity saturation value, and νa = 3m/s^2 for the acceleration saturation value. This

can be done by accessing the task interfaces described in Figure 8, i.e.

handTask→maxVelocity(0.5);
handTask→maxAcceleration(3);

handTask→gain(400);

We also need to pass the desired task goal. For instance, if the goal is a teleoperated point

we make the following calls

PrVector opGoal = worldModel→teleoperatedPoint();
handTask→goal(opGoal);

Here PrVector is an algebraic vectorial abstraction defined in our math library and worldModel

is a pointer to a software module created to describe the robot’s environment. In the

above case, a haptic device is used to command desired hand positions with respect to a

global frame of reference. To finalize the instantiation of the task, we also need to

indicate the desired priority level with respect to other operating tasks. This ordering will

allow the controller to create prioritized control structures based on the algorithms we

described in previous chapters. To indicate the priority we make the following call

handTask→priorityLevel(level);

We assign priorities based on the relative importance of each task with respect to the

others. In general we divide primitives into different categories, each emphasizing its

relative importance with respect to other categories. For instance, we consider the

clustering of tasks shown in Figure 9 listed in decreasing order: (1) constraint handling

primitives, (2) balance primitives, (3) operational primitives, and (4) posture primitives.

At every servo loop we update task representations and low-level controllers by making

the following call

handTask→update();

which in turn executes the following calculations,

void positionPrimitive::update() {
calculateTaskState();
calculateJacobian();
calculateTaskDynamics();
calculateControlRef();

}

In other words, it updates kinematic, dynamic, and control quantities calculates the

control policy using the function calculateControlRef().

Task Execution

While control primitives encapsulate task representation and control policies, the main

task of the servo loop in the execution layer (see Figure 2) is to calculate control torques of

all operating tasks and aggregate them together to create the desired whole-body behavior.

To execute each task the following calls are made

handTask→jacobian(jacobian);
handTask→dynamicQuantities(inertia, ccForces, gravityForces);
handTask→priorityLevel(level);
handTask→controlRef(refAccel);

Here, kinematic and dynamic quantities are first obtained from the task primitive at hand,

and the associated control policy is used to obtained the desired acceleration reference.

For instance, for the previous hand position task where the priority level is equal to 3

according to the category ordering shown in Figure 9, the associated torque control vector

is

where the subscript {hand|p(3)} means that the hand task is controlled provided that

balance and the acting constraints are first fulfilled and arefhand is the acceleration

reference for right hand control based on the previous PD control law implementing

velocity and acceleration saturation. In general, when a set of low-level tasks are

controlled as part of a whole-body behavior, the execution layer will produce the

following torque output

where each task will be instantiated and used as an individual object as we did for the

previous hand task.

Example

In Figure 10 we show the user interface we have developed in SAI to visualize and

control task primitives. Task primitives are low level modules that allow controlling the

different parts of the robot’s body. This includes operational task points, balance criteria,

constraint handling tasks, and postural tasks.

Figure 10. User interface for task programming: In these images we depict a list of task primitives that

we use to create interactive behaviors such as touching the interior of a race car.

For instance, for the above interactive behavior, we select the following set of tasks, as

illustrated in the task list on the left side of the above figure:

� Center of mass position control.

� Head orientation control

� Right hand position control

� Posture control to mimic a default pose

� Contact control on both feet

New behaviors can be created by dragging and dropping task labels from the right hand

side of the above task panel.

Compose complex behavior library from motion primitives using the
Behavior Editor

As part of our work on whole-body behaviors we have developed computational entities

for the composition and creation of whole-body behaviors. When properly coordinated,

these entities will serve as the main units of action of a high level controller. The goal of

this section is to abstract the representation of whole-body behaviors. This level of

abstraction is aimed at providing meaningful units of action that encapsulate task

decomposition and movement sequencing. Whole-body behaviors allow us to define,

aggregate, and sequence collections of tasks into single units of action.

In Figure 3 we illustrated the operation of the action layer. This layer defines whole-body

behavior representations. A whole-body behavior is a sequence of goal-oriented actions

coordinated to achieve a global behavior. For instance, the volleyball jumping behavior

shown in Figure 3 consists on five unique movement phases: (1) stand-up, (2) move the

hip down, (3) accelerate the hip upwards, (4) hit the target, (5) prepare to land, and go

back to standing up (1). Transitions between movements are predetermined and triggered

by sensory events. Action primitives encapsulate task decomposition and coordination.

For instance, a primitive used to accelerate the robot’s body upwards as in the previous

example would involve simultaneously coordinating balance, hand position and

orientation, head control, and posture control.

Action Primitives

An action primitive is an abstraction that encapsulates task decomposition and coordination.

For instance, the primitive shown in the table below is used to create the previous

jumping behavior. Here, dsafe stands for a safety threshold to arbitrary obstacles, Cfeet

represents the center of the feet supporting polygon, Uball is the direction of sight towards

the ball, Uupright is an upright orientation vector, Qhuman is a captured human pose, and the

symbol in means an input parameter provided at runtime by the sensory layer.

Figure 11. Instantiation of movements: By providing different input parameters we synthesize different

type of movements at runtime.

In fact, action primitives serve as platforms to implement a variety of movements

depending on the desired goals as shown in Figure 11.

Whole-Body Behaviors

We create whole-body behaviors by sequencing action primitives. With the proper

sequencing and goals, the desired behavior emerges. For instance, let us consider the two

movements shown in Figure 12 which are part of the jumping behavior shown in Figure 3.

To accelerate the hip upwards we use an action primitive that involves the control of the

hip’s vertical position as part of the overall movement. When the knees reach full stretch,

the next phase is triggered loading a new action to hit the ball in mid air. This second

action implements control of the robot’s right hand. The goals to accelerate the hip

upwards and to hit the ball in mid air are provided at runtime by the sensory layer.

Figure 12. Action sequencing: This figure illustrates two actions used to create a jumping behavior.

Initially an action primitive to accelerate the hip upwards is used. When the knees are fully stretched, a new

action is loaded to control the body in mid air.

Behavior Feasibility

In previous chapters we discussed behavior feasibility and proposed metrics to measure it.

For instance, when jumping in the previous example the task becomes infeasible if joint

limits are reached while accelerating the body upwards. To modify the robot’s behavior

in case of conflicting situations such as the previous one we create additional safety

procedures. For instance, in Figure 13 we illustrate a more elaborated state machine

where safety actions are implemented to land safely in case of conflict.

Figure 13. Handling infeasible tasks: The two upper actions in the above figure are equivalent to the

actions described in Figure 7.9. However, an additional state is added to handle conflicting scenarios where

joint limits on the knees are reached while moving upwards.

Behavior Editor

In our current implementation of SAI behaviors are defined at the source level by

implementing a common interface called Behavior Description. The behavior description

module is a simple entity whose function is to specify movement representation and

action sequencing as shown below.

The function DefineMovementPrimitives() defines all movement phases and assigns task primitives to each phase. A
simple example is shown below,

DefineMovementPrimitives() {

phase0 = new TaskSet();
phase1 = new TaskSet();
…

balanceControl = new COMHorizontalTask();
handControl = new PositionTask(“right-foot”);

// Phase 0 primitives
phase0->addTask(balanceControl);
…

// Phase 1 primitives
phase1->addTask(balanceControl);
phase1->addTask(FootControl);
…

}

Movement sequencing is done through the OnUpdate() function. An example for a walking

behavior is shown below,

OnUpdate() {

swith(currentPhase_) {

case 0: // shift weight to left foot

wholeBodyController_->activeTaskSet(phase0);
if(COM is on left foot) currentPhase_ = 1;
break;

 case 1: // right foot forward

 wholeBodyController_->activeTaskSet(phase1);
 if(right foot in place) currentPhase_ = 2;
 break;

 …

}

}

Although the above representation describes the basic form of behaviors, new goals can

be provided at runtime manually or via a sensory layer. For instance, the position of the

foot could be provided at runtime. In Figure 14 we show an interactive manipulation

behavior where the goal of the hand is provided at runtime and corresponds to the

position of the red sphere. Therefore our behavior implementation defines the

representation of tasks but not necessarily the goals and trajectories. It is up to the user to

preprogrammed all aspects of motion or to pass the desired goals at runtime.

Figure 14. Interactive behavior.

Behavior Library

Over time we have created a variety of behaviors including whole-body interactive touch

control, mimicking captured sequences, walking, and jumping among others. These

behaviors can be selected through a user interface we have built in SAI, shown in Erro!

A origem da referência não foi encontrada.. When the different buttons are activated,

new behaviors are created. Below the behavior panel of Erro! A origem da referência

não foi encontrada. we show examples of interactive touch.

