
Intelligent Systems Division
Manufacturing Engineering Laboratory

Frederick M. Proctor
Group Leader, Control Systems Group

National Institute of Standards and Technology

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

• Performance measures are
figures of merit that indicate how
well a system behaves

• Benchmarks can provide
performance measures for
specific areas of interest, e.g.,
– SPEC CPU2000 measures

performance of processor, memory,
compiler

– SPEC WEB99 measures
performance of web servers

– x11perf measures performance of X
servers

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

• Monitors show general
resource use of programs
in a system, e.g.,
– ps, top and its graphical

front ends
– Windows Task Manager

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

• Profilers show details of program
execution, e.g.,
– the profil() function, gprof, strace
– ParaSoft insure++, inuse
– Rational Quantify, WindRiver WindView,

RTI ScopeTools
– the Linux Trace Toolkit

• None of these specifically
address performance
measures for real-time
systems

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

For us, performance measures
answer the question:

How can I tell that a real-time
operating system is able to satisfy my
application’s timing requirements?

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

RT Performance Measures

• Real-time software must execute on time to be correct
• On time can mean:

– any time between now and a deadline
– within some interval around a target time

• For RT operating systems, performance measures should
indicate how well the RTOS satisfies on-time demands
– what is the shortest deadline by which the RTOS can guarantee a

task’s execution?
– what is the smallest interval around a target time within which the

RTOS can guarantee a task’s execution?
– how do these scale with task loading?

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

Classic RTOS Performance Measures

• The shortest deadline measure applies to instances where an
event initiates code that must run before a deadline
– Typically the event is an interrupt, and the code is the interrupt

service routine (ISR)
– Worst-case ISR latency is the classic performance measure

• The smallest interval measure applies to instances where
code must execute as close as possible to a target time
– Typically the target time is one of a series of periodic timer

expirations
– Scheduling jitter is the classic performance measure

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

Types of Testing

• External testing uses instrumentation not normally part of
the RT system to stimulate and measure RT response

– e.g., digital storage scopes, data acquisition systems
– advantages: equipment is part of experiment’s control;

entire RT system is tested; can include arbitrary features,
storage capacity, timing precision

– disadvantages: additional cost

• Internal testing uses native resources of the RT system
– e.g., processor time stamp counters
– advantages: no additional cost; tests can be incorporated

into RT application for continuous monitoring or
performance improvement

– disadvantages: as with students grading their tests,
“cheating” is possible; some effects will be invisible
(e.g., clock chip jitter)

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

Testing Environment

• If test results from different systems are to be compared, the
testing environment must be adequately specified
– what components must be present, e.g., network and video cards
– what processes must be running; single v. multiuser mode
– what optimizations are allowed or disallowed, e.g., disabling floating

point support

• Hardware effects can be substantial, especially for general-
purpose processors
– optimizations like the cache introducing timing uncertainty
– hardware reference platforms are one answer to this problem, e.g.,

WinCE HARP

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

• ISR latency is the time between the occurrence of an
interrupt and the execution of its service routine
– “execution” is vague: time the ISR begins? completes?
– maximum ISR latency is a system performance measure

• Latency contributors include:
– hardware effects: processor must finish current

instruction, and instruction lengths vary
– software effects: interrupt masking and priority

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

• An ISR is written that
generates a measurable
output, e.g., setting a
parallel port bit high

• The interrupt is triggered
repeatedly and the output
is recorded on a digital
storage oscilloscope in
persistent display mode

• Pick latency off the
display

worst-case latency

best-case
latency

0 �sec 10 �sec 15 �sec

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

• Use the programmable timer to down-count to zero from
a start count and generate an interrupt

• The timer automatically reloads the start count and
continues the down-counting

• The ISR is invoked
and reads the timer

• The latency is the start
count minus the reading

• WinCE “iltiming” tool
does this

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

• Scheduling jitter is the variation in actual timing for a
periodic task

• Jitter contributors include:
– hardware effects: the cache
– software effects: variation in branch instruction lengths in the

scheduler

• External measurement technique:
– a periodic task is written that

generates a measurable output
– the output timing can be analyzed

with a hardware timing analyzer, e.g., LeCroy

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

• See Phil Wilshire’s 2nd RTLW paper, “Real-Time Linux: Testing and
Evaluation”

• A single RT task is scheduled, which reads the Pentium Time Stamp
Counter (TSC) and logs readings into RAM

– the TSC is a 64-bit integer, incrementing
once per clock cycle (2.5 nanosec resolution
for a 400 megahertz clock)

• Pure periodic scheduling:
8254 Programmable Interval Timer (PIT)
chip generates an interrupt, the RT scheduler
is the interrupt service routine

• The TSC log is later analyzed for jitter
– logged values should be exactly one interrupt time apart
– variations in combined execution time of scheduler and task code will show

up as deviations from the nominal

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

• If the TSC logging task were a square-wave pulse
generator, then jitter would appear as variations in
the pulse widths

• Two estimates of maximum jitter can be made
– cycle-to-cycle jitter: difference between longest and

shortest pulse
– period jitter: largest difference between actual start/end

of pulse and nominal expected
– for the same TSC log, cycle-to-cycle jitter will be about

twice the period jitter

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

• Cycle-to-cycle jitter is calculated by differencing adjacent
points in the TSC log to get the intervals, then taking the
difference between the largest and smallest intervals

• With cycle-to-cycle jitter, a single late task invocation will
lengthen one pulse, and shorten the following pulse

• This jitter value is effectively double the scheduling delay
• If relative task timing is important, as for a square wave

pulse generator, the cycle-to-cycle jitter value is the most
meaningful

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

shortest pulse

longest pulse

delay

oops, cache flushed,
need to refetch

Cycle-to-Cycle Jitter

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

Cycle-to-Cycle Jitter
di

ffe
re

nc
e

be
tw

ee
n

cy
cl

es
, m

ic
ro

se
co

nd
s

sample number

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

• Period jitter is calculated by computing best-fit line to TSC
log values, then taking the difference between the maximum
and minimum deviations from this line

• With period jitter, a single late task invocation will penalize
only a single pulse; the following pulse will occur on
schedule

• This jitter value is effectively equal to the scheduling delay,
and is about half the cycle-to-cycle value

• If synchronization with external triggers is important, the
period jitter value is the most meaningful

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

di
ffe

re
nc

e
fro

m
 n

om
in

al
, m

ic
ro

se
co

nd
s

sample number

di
ffe

re
nc

e
fro

m
 n

om
in

al
, m

ic
ro

se
co

nd
s

cycle-to-cycle jitter = 502.55 - 496.89 = 5.66 �sec

10,000 points logged
from 500 �sec task

analysis for both plots
done from same TSC
log data

502.55

496.89

3.40

-0.20

period jitter = 3.40 - -0.20 = 3.60 �sec

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

• Bands in the jitter plots
indicate a clustering of time
stamp deviations

• Histograms of the period
jitter values show this
clustering more clearly

• Clusters are consistent across
different tests, suggesting
common origins

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

50 µsec

100 µsec

200 µsec

300 µsec

400 µsec

500 µsec

no
m

in
al

 ta
sk

 p
er

io
d

fo
r e

ac
h

ru
n

period jitter bins, in microseconds

(smaller bins at higher jitter
values not shown)

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

• As the processor is more heavily loaded, real-time
performance will suffer, if only due to cache displacement
of RT code
– the previous jitter measurements were done in single-user mode,

with minimal processor loading
– subsequent measurements of period jitter in loaded conditions

shows increased variation

• Surprisingly, for a given task period, faster processors will
show slower RT task times
– more non-RT code runs between RT tasks and dirties up the cache
– multiprocessor partitioning of RT, non-RT code helps

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

normal loading (max is 7.46 �sec)

heavy disk loading (max is 8.30 �sec)

heavy network loading (max is 10.9 �sec)

period jitter bins, in microseconds

single-user test, for comparison

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

period jitter bins, in microseconds

normal loading (max is 6.08 �sec)

heavy disk loading (max is 7.81 �sec)

heavy network loading (max is 6.92 �sec)

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

• TSC can be used to reduce jitter, as proposed by Tomasz
Motylewski of the University of Basel

• A series of subtasks polls the TSC for the precise instant that
the time-critical code should execute
– most subtasks return immediately, since target TSC is farther in

future than the subtask period
– the final subtask cycle polls the TSC until the target is reached

• CPU load depends on time to service subtasks, and time
spent polling
– more frequent subtasks incur too much overhead from null cycles
– less frequent subtasks incur too much polling during final cycle

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

Load analysis:

1. T/A subtask cycles
2. T/A-1 null cycles, 1 polling cycle
3. Time to service null cycles is (T/A-1) * S
4. Worst case poll time is A
5. Load is

6. Minimizing with respect to A:

A

T/A subtask cycles

T
� �

T
ASATload ��

�

1

STA �min

T
SSTload �

�

2
min

S

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

T = 500 �sec
S = 2 �sec estimated
Amin = 32 �sec
loadmin = 12%

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

uncompensated jitter: 3.60 µsec

compensated jitter: 0.098 µsec

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

This task disables interrupts, and
tightly polls the TSC. After initial
caching, these 3 runs are identical.

jitter is about 0.02 �sec, one-fifth
of compensated value

NIST • Manufacturing Engineering Laboratory • Intelligent Systems Division

• Performance measures answer the question, “How can I tell
that a real-time operating system is able to satisfy my
application’s timing requirements?”

• Classic measures include interrupt service routine latency
and scheduling jitter

• Both external and internal techniques can be used to measure
these

• The testing environment is important if results are to be
compared

• Internal techniques can be adapted to reduce scheduling jitter
at the expense of processor time

	Measuring Performance in Real-Time Linux
	Performance Measures
	RT Performance Measures
	Classic RTOS Performance Measures
	Types of Testing
	Testing Environment
	ISR Latency
	External Latency Measurement
	Internal Latency Measurement
	Scheduling Jitter
	Internal Jitter Measurement
	Interpreting Jitter
	Cycle-to-Cycle Jitter
	Period Jitter
	Jitter Bands
	Effects of Processor Load
	RTL Loading
	RTAI Loading
	A Method to Reduce Jitter
	Optimal Subtask Scheduling
	Optimal Example
	Best Case
	Summary

