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• Performance measures are
figures of merit that indicate how
well a system behaves

• Benchmarks can provide
performance measures for
specific areas of interest, e.g.,
– SPEC CPU2000 measures

performance of processor, memory,
compiler

– SPEC WEB99 measures
performance of web servers

– x11perf measures performance of X
servers
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• Monitors show general
resource use of programs
in a system, e.g.,
– ps, top and its graphical

front ends
– Windows Task Manager
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• Profilers show details of program
execution, e.g.,
– the profil() function, gprof, strace
– ParaSoft insure++, inuse
– Rational Quantify, WindRiver WindView,

RTI ScopeTools
– the Linux Trace Toolkit

• None of these specifically
address performance
measures for real-time
systems
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For us, performance measures
answer the question:

How can I tell that a real-time
operating system is able to satisfy my
application’s timing requirements?
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RT Performance Measures

• Real-time software must execute on time to be correct
• On time can mean:

– any time between now and a deadline
– within some interval around a target time

• For RT operating systems, performance measures should
indicate how well the RTOS satisfies on-time demands
– what is the shortest deadline by which the RTOS can guarantee a

task’s execution?
– what is the smallest interval around a target time within which the

RTOS can guarantee a task’s execution?
– how do these scale with task loading?
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Classic RTOS Performance Measures

• The shortest deadline measure applies to instances where an
event initiates code that must run before a deadline
– Typically the event is an interrupt, and the code is the interrupt

service routine (ISR)
– Worst-case ISR latency is the classic performance measure

• The smallest interval measure applies to instances where
code must execute as close as possible to a target time
– Typically the target time is one of a series of periodic timer

expirations
– Scheduling jitter is the classic performance measure
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Types of Testing

• External testing uses instrumentation not normally part of
the RT system to stimulate and measure RT response

– e.g., digital storage scopes, data acquisition systems
– advantages: equipment is part of experiment’s control;

entire RT system is tested; can include arbitrary features,
storage capacity, timing precision

– disadvantages: additional cost

• Internal testing uses native resources of the RT system
– e.g., processor time stamp counters
– advantages: no additional cost; tests can be incorporated

into RT application for continuous monitoring or
performance improvement

– disadvantages: as with students grading their tests,
“cheating” is possible; some effects will be invisible
(e.g., clock chip jitter)
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Testing Environment

• If test results from different systems are to be compared, the
testing environment must be adequately specified
– what components must be present, e.g., network and video cards
– what processes must be running; single v. multiuser mode
– what optimizations are allowed or disallowed, e.g., disabling floating

point support

• Hardware effects can be substantial, especially for general-
purpose processors
– optimizations like the cache introducing timing uncertainty
– hardware reference platforms are one answer to this problem, e.g.,

WinCE HARP
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• ISR latency is the time between the occurrence of an
interrupt and the execution of its service routine
– “execution” is vague: time the ISR begins? completes?
– maximum ISR latency is a system performance measure

• Latency contributors include:
– hardware effects: processor must finish current

instruction, and instruction lengths vary
– software effects: interrupt masking and priority
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• An ISR is written that
generates a measurable
output, e.g., setting a
parallel port bit high

• The interrupt is triggered
repeatedly and the output
is recorded on a digital
storage oscilloscope in
persistent display mode

• Pick latency off the
display

worst-case latency

best-case
latency

0 �sec               10 �sec                15 �sec



NIST  •  Manufacturing Engineering Laboratory  •  Intelligent Systems Division

• Use the programmable timer to down-count to zero from
a start count and generate an interrupt

• The timer automatically reloads the start count and
continues the down-counting

• The ISR is invoked
and reads the timer

• The latency is the start
count minus the reading

• WinCE “iltiming” tool
does this
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• Scheduling jitter is the variation in actual timing for a
periodic task

• Jitter contributors include:
– hardware effects: the cache
– software effects: variation in branch instruction lengths in the

scheduler

• External measurement technique:
– a periodic task is written that

generates a measurable output
– the output timing can be analyzed

with a hardware timing analyzer, e.g., LeCroy
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• See Phil Wilshire’s 2nd RTLW paper, “Real-Time Linux: Testing and
Evaluation”

• A single RT task is scheduled, which reads the Pentium Time Stamp
Counter (TSC) and logs readings into RAM

– the TSC is a 64-bit integer, incrementing
once per clock cycle (2.5 nanosec resolution
for a 400 megahertz clock)

• Pure periodic scheduling:
8254 Programmable Interval Timer (PIT)
chip generates an interrupt, the RT scheduler
is the interrupt service routine

• The TSC log is later analyzed for jitter
– logged values should be exactly one interrupt time apart
– variations in combined execution time of scheduler and task code will show

up as deviations from the nominal



NIST  •  Manufacturing Engineering Laboratory  •  Intelligent Systems Division

• If the TSC logging task were a square-wave pulse
generator, then jitter would appear as variations in
the pulse widths

• Two estimates of maximum jitter can be made
– cycle-to-cycle jitter: difference between longest and

shortest pulse
– period jitter: largest difference between actual start/end

of pulse and nominal expected
– for the same TSC log, cycle-to-cycle jitter will be about

twice the period jitter
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• Cycle-to-cycle jitter is calculated by differencing adjacent
points in the TSC log to get the intervals, then taking the
difference between the largest and smallest intervals

• With cycle-to-cycle jitter, a single late task invocation will
lengthen one pulse, and shorten the following pulse

• This jitter value is effectively double the scheduling delay
• If relative task timing is important, as for a square wave

pulse generator, the cycle-to-cycle jitter value is the most
meaningful
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shortest pulse

longest pulse

delay

oops, cache flushed,
need to refetch

Cycle-to-Cycle Jitter
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• Period jitter is calculated by computing best-fit line to TSC
log values, then taking the difference between the maximum
and minimum deviations from this line

• With period jitter, a single late task invocation will penalize
only a single pulse; the following pulse will occur on
schedule

• This jitter value is effectively equal to the scheduling delay,
and is about half the cycle-to-cycle value

• If synchronization with external triggers is important, the
period jitter value is the most meaningful
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cycle-to-cycle jitter = 502.55 - 496.89 = 5.66 �sec

10,000 points logged
from 500 �sec task

analysis for both plots
done from same TSC
log data

502.55

496.89

3.40

-0.20

period jitter = 3.40 - -0.20 = 3.60 �sec
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• Bands in the jitter plots
indicate a clustering of time
stamp deviations

• Histograms of the period
jitter values show this
clustering more clearly

• Clusters are consistent across
different tests, suggesting
common origins
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(smaller bins at higher jitter
values not shown)
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• As the processor is more heavily loaded, real-time
performance will suffer, if only due to cache displacement
of RT code
– the previous jitter measurements were done in single-user mode,

with minimal processor loading
– subsequent measurements of period jitter in loaded conditions

shows increased variation

• Surprisingly, for a given task period, faster processors will
show slower RT task times
– more non-RT code runs between RT tasks and dirties up the cache
– multiprocessor partitioning of RT, non-RT code helps
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normal loading (max is 7.46 �sec)

heavy disk loading (max is 8.30 �sec)

heavy network loading (max is 10.9 �sec)

period jitter bins, in microseconds

single-user test, for comparison
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period jitter bins, in microseconds

normal loading (max is 6.08 �sec)

heavy disk loading (max is 7.81 �sec)

heavy network loading (max is 6.92 �sec)
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• TSC can be used to reduce jitter, as proposed by Tomasz
Motylewski of the University of Basel

• A series of subtasks polls the TSC for the precise instant that
the time-critical code should execute
– most subtasks return immediately, since target TSC is farther in

future than the subtask period
– the final subtask cycle polls the TSC until the target is reached

• CPU load depends on time to service subtasks, and time
spent polling
– more frequent subtasks incur too much overhead from null cycles
– less frequent subtasks incur too much polling during final cycle
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Load analysis:

1. T/A subtask cycles
2. T/A-1 null cycles, 1 polling cycle
3. Time to service null cycles is (T/A-1) * S 
4. Worst case poll time is A
5. Load is

6. Minimizing with respect to A:

A

T/A subtask cycles

T
� �

T
ASATload ��

�

1

STA �min

T
SSTload �

�

2
min

S
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T = 500 �sec
S = 2 �sec estimated
Amin = 32 �sec 
loadmin = 12%
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uncompensated jitter: 3.60 µsec

compensated jitter: 0.098 µsec
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This task disables interrupts, and
tightly polls the TSC. After initial
caching, these 3 runs are identical.

jitter is about 0.02 �sec, one-fifth
of compensated value
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• Performance measures answer the question, “How can I tell
that a real-time operating system is able to satisfy my
application’s timing requirements?”

• Classic measures include interrupt service routine latency
and scheduling jitter

• Both external and internal techniques can be used to measure
these

• The testing environment is important if results are to be
compared

• Internal techniques can be adapted to reduce scheduling jitter
at the expense of processor time
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