
ARES_DESTROY(3) ARES_DESTROY(3)

NAME
ares_destroy − Destroy a resolver channel

SYNOPSIS
#include <ares.h>

int ares_destroy(ares_channel channel)

DESCRIPTION
The ares_destroy function destroys the name service channel identified by channel, freeing all memory
and closing all sockets used by the channel. ares_destroy invokes the callbacks for each pending query on
the channel, passing a status of ARES_EDESTRUCTION. These calls give the callbacks a chance to
clean up any state which might have been stored in their arguments.

SEE ALSO
ares_init(3)

AUTHOR
Greg Hudson, MIT Information Systems
Copyright 1998 by the Massachusetts Institute of Technology.

23 July 1998 1

ARES_EXPAND_NAME(3) ARES_EXPAND_NAME(3)

NAME
ares_expand_name − Expand a DNS-encoded domain name

SYNOPSIS
#include <ares.h>

int ares_expand_name(const unsigned char *encoded,
const unsigned char *abuf, int alen, char **s,
int *enclen)

DESCRIPTION
The ares_expand_name function converts a DNS-encoded domain name to a dot-separated C string. The
argument encoded gives the beginning of the encoded domain name, and the arguments abuf and alen give
the containing message buffer (necessary for the processing of indirection pointers within the encoded
domain name). The result is placed in a NUL-terminated allocated buffer, a pointer to which is stored in
the variable pointed to by s. The length of the encoded name is stored in the variable pointed to by enclen
so that the caller can advance past the encoded domain name to read further data in the message.

RETURN VALUES
ares_expand_name can return any of the following values:

ARES_SUCCESS
Expansion of the encoded name succeeded.

ARES_EBADNAME
The encoded domain name was malformed and could not be expanded.

ARES_ENOMEM
Memory was exhausted.

SEE ALSO
ares_mkquery(3)

AUTHOR
Greg Hudson, MIT Information Systems
Copyright 1998 by the Massachusetts Institute of Technology.

23 July 1998 1

ARES_FDS(3) ARES_FDS(3)

NAME
ares_fds − Get file descriptors to select on for name service

SYNOPSIS
#include <ares.h>

int ares_fds(ares_channel channel, fd_set *read_fds,
fd_set *write_fds)

DESCRIPTION
The ares_fds function retrieves the set of file descriptors which the calling application should select on for
reading and writing for the processing of name service queries pending on the name service channel identi-
fied by channel. File descriptors will be set in the file descriptor sets pointed to by read_fds and write_fds
as appropriate. File descriptors already set in read_fds and write_fds will remain set; initialization of the
file descriptor sets (using FD_ZERO) is the responsibility of the caller.

RETURN VALUES
ares_fds returns one greater than the number of the highest socket set in either read_fds or write_fds. If no
queries are active, ares_fds will return 0.

SEE ALSO
ares_timeout(3), ares_process(3)

AUTHOR
Greg Hudson, MIT Information Systems
Copyright 1998 by the Massachusetts Institute of Technology.

23 July 1998 1

ARES_FREE_ERRMEM(3) ARES_FREE_ERRMEM(3)

NAME
ares_free_errmem − Free memory allocated by ares_strerror

SYNOPSIS
#include <ares.h>

void ares_free_errmem(char *errmem)

DESCRIPTION
The ares_free_errmem function frees any memory which might have been allocated by the ares_str-
error(3) function. The parameter errmem should be set to the variable pointed to by the memptr argument
previously passed to ares_strerror.

SEE ALSO
ares_strerror(3)

AUTHOR
Greg Hudson, MIT Information Systems
Copyright 1998 by the Massachusetts Institute of Technology.

23 July 1998 1

ARES_FREE_HOSTENT(3) ARES_FREE_HOSTENT(3)

NAME
ares_free_hostent − Free host structure allocated by ares functions

SYNOPSIS
#include <ares.h>

void ares_free_hostent(struct hostent *host)

DESCRIPTION
The ares_free_hostent function frees a struct hostent allocated by one of the functions ares_parse_a_reply
or ares_parse_ptr_reply.

SEE ALSO
ares_parse_a_reply(3), ares_parse_ptr_reply(3)

NOTES
It is not necessary (and is not correct) to free the host structure passed to the callback functions for
ares_gethostbyname or ares_gethostbyaddr. The ares library will automatically free such host structures
when the callback returns.

AUTHOR
Greg Hudson, MIT Information Systems
Copyright 1998 by the Massachusetts Institute of Technology.

23 July 1998 1

ARES_FREE_STRING(3) ARES_FREE_STRING(3)

NAME
ares_free_string − Free strings allocated by ares functions

SYNOPSIS
#include <ares.h>

void ares_free_string(char *str)

DESCRIPTION
The ares_free_string function frees a string allocated by the ares_mkquery function.

SEE ALSO
ares_mkquery(3)

AUTHOR
Greg Hudson, MIT Information Systems
Copyright 2000 by the Massachusetts Institute of Technology.

4 January 2000 1

ARES_GETHOSTBYADDR(3) ARES_GETHOSTBYADDR(3)

NAME
ares_gethostbyaddr − Initiate a host query by address

SYNOPSIS
#include <ares.h>

typedef void (*ares_host_callback)(void *arg, int status,
struct hostent *hostent)

void ares_gethostbyaddr(ares_channel channel, const void *addr,
int addrlen, int family, ares_host_callback callback,
void *arg)

DESCRIPTION
The ares_gethostbyaddr function initiates a host query by address on the name service channel identified
by channel. The parameters addr and addrlen give the address as a series of bytes, and family gives the
type of address. When the query is complete or has failed, the ares library will invoke callback. Comple-
tion or failure of the query may happen immediately, or may happen during a later call to ares_process(3)
or ares_destroy(3).

The callback argument arg is copied from the ares_gethostbyaddr argument arg. The callback argument
status indicates whether the query succeeded and, if not, how it failed. It may have any of the following
values:

ARES_SUCCESS The host lookup completed successfully.

ARES_ENOTIMP The ares library does not know how to look up addresses of type family.

ARES_ENOTFOUND
The address addr was not found.

ARES_ENOMEM Memory was exhausted.

ARES_EDESTRUCTION
The name service channel channel is being destroyed; the query will not be com-
pleted.

On successful completion of the query, the callback argument hostent points to a struct hostent containing
the name of the host returned by the query. The callback need not and should not attempt to free the mem-
ory pointed to by hostent; the ares library will free it when the callback returns. If the query did not com-
plete successfully, hostent will be NULL.

SEE ALSO
ares_process(3)

AUTHOR
Greg Hudson, MIT Information Systems
Copyright 1998 by the Massachusetts Institute of Technology.

24 July 1998 1

ARES_GETHOSTBYNAME(3) ARES_GETHOSTBYNAME(3)

NAME
ares_gethostbyname − Initiate a host query by name

SYNOPSIS
#include <ares.h>

typedef void (*ares_host_callback)(void *arg, int status,
struct hostent *hostent)

void ares_gethostbyname(ares_channel channel, const char *name,
int family, ares_host_callback callback, void *arg)

DESCRIPTION
The ares_gethostbyname function initiates a host query by name on the name service channel identified by
channel. The parameter name gives the hostname as a NUL-terminated C string, and family gives the
desired type of address for the resulting host entry. When the query is complete or has failed, the ares
library will invoke callback. Completion or failure of the query may happen immediately, or may happen
during a later call to ares_process(3) or ares_destroy(3).

The callback argument arg is copied from the ares_gethostbyname argument arg. The callback argument
status indicates whether the query succeeded and, if not, how it failed. It may have any of the following
values:

ARES_SUCCESS The host lookup completed successfully.

ARES_ENOTIMP The ares library does not know how to find addresses of type family.

ARES_EBADNAME The hostname name is composed entirely of numbers and periods, but is not a valid
representation of an Internet address.

ARES_ENOTFOUND
The address addr was not found.

ARES_ENOMEM Memory was exhausted.

ARES_EDESTRUCTION
The name service channel channel is being destroyed; the query will not be com-
pleted.

On successful completion of the query, the callback argument hostent points to a struct hostent containing
the name of the host returned by the query. The callback need not and should not attempt to free the mem-
ory pointed to by hostent; the ares library will free it when the callback returns. If the query did not com-
plete successfully, hostent will be NULL.

SEE ALSO
ares_process(3)

AUTHOR
Greg Hudson, MIT Information Systems
Copyright 1998 by the Massachusetts Institute of Technology.

25 July 1998 1

ARES_INIT(3) ARES_INIT(3)

NAME
ares_init, ares_init_options − Initialize a resolver channel

SYNOPSIS
#include <ares.h>

int ares_init(ares_channel *channel)
int ares_init_options(ares_channel *channel,

struct ares_options *options, int optmask)

cc file.c -lares

DESCRIPTION
The ares_init function initializes a communications channel for name service lookups. If it returns suc-
cessfully, ares_init will set the variable pointed to by channel to a handle used to identify the name service
channel. The caller should invoke ares_destroy(3) on the handle when the channel is no longer needed.

The ares_init_options function also initializes a name service channel, with additional options useful for
applications requiring more control over name service configuration. The optmask parameter specifies
which fields in the structure pointed to by options are set, as follows:

ARES_OPT_FLAGS
int flags;
Flags controlling the behavior of the resolver. See below for a description of possi-
ble flag values.

ARES_OPT_TIMEOUT
int timeout;
The number of seconds each name server is given to respond to a query on the first
try. (After the first try, the timeout algorithm becomes more complicated, but scales
linearly with the value of timeout.) The default is five seconds.

ARES_OPT_TRIES
int tries;
The number of tries the resolver will try contacting each name server before giving
up. The default is four tries.

ARES_OPT_NDOTS
int ndots;
The number of dots which must be present in a domain name for it to be queried for
"as is" prior to querying for it with the default domain extensions appended. The
default value is 1 unless set otherwise by resolv.conf or the RES_OPTIONS environ-
ment variable.

ARES_OPT_PORT unsigned short port;
The port to use for queries (both TCP and UDP), in network byte order. The default
value is 53 (in network byte order), the standard name service port.

ARES_OPT_SERVERS
struct in_addr *servers;
int nservers;
The list of servers to contact, instead of the servers specified in resolv.conf or the
local named.

ARES_OPT_DOMAINS
char **domains;
int ndomains;
The domains to search, instead of the domains specified in resolv.conf or the domain
derived from the kernel hostname variable.

21 July 1998 1

ARES_INIT(3) ARES_INIT(3)

ARES_OPT_LOOKUPS
char *lookups;
The lookups to perform for host queries. lookups should be set to a string of the
characters "b" or "f", where "b" indicates a DNS lookup and "f" indicates a lookup in
the hosts file.

The flags field should be the bitwise or of some subset of the following values:

ARES_FLAG_USEVC Always use TCP queries (the "virtual circuit") instead of UDP queries. Nor-
mally, TCP is only used if a UDP query yields a truncated result.

ARES_FLAG_PRIMARY
Only query the first server in the list of servers to query.

ARES_FLAG_IGNTC If a truncated response to a UDP query is received, do not fall back to TCP;
simply continue on with the truncated response.

ARES_FLAG_NORECURSE
Do not set the "recursion desired" bit on outgoing queries, so that the name
server being contacted will not try to fetch the answer from other servers if it
doesn’t know the answer locally.

ARES_FLAG_STAY OPEN
Do not close communciations sockets when the number of active queries drops
to zero.

ARES_FLAG_NOSEARCH
Do not use the default search domains; only query hostnames as-is or as
aliases.

ARES_FLAG_NOALIASES
Do not honor the HOSTALIASES environment variable, which normally spec-
ifies a file of hostname translations.

ARES_FLAG_NOCHECKRESP
Do not discard responses with the SERVFAIL, NOTIMP, or REFUSED
response code or responses whose questions don’t match the questions in the
request. Primarily useful for writing clients which might be used to test or
debug name servers.

RETURN VALUES
ares_init or ares_init_options can return any of the following values:

ARES_SUCCESS
Initialization succeeded.

ARES_EFILE A configuration file could not be read.

ARES_ENOMEM
The process’s available memory was exhausted.

SEE ALSO
ares_destroy(3)

AUTHOR
Greg Hudson, MIT Information Systems
Copyright 1998 by the Massachusetts Institute of Technology.

21 July 1998 2

ARES_MKQUERY(3) ARES_MKQUERY(3)

NAME
ares_mkquery − Compose a single-question DNS query buffer

SYNOPSIS
#include <ares.h>

int ares_mkquery(const char *name, int dnsclass, int type,
unsigned short id, int rd, char **buf,
int *buflen)

DESCRIPTION
The ares_mkquery function composes a DNS query with a single question. The parameter name gives the
query name as a NUL-terminated C string of period-separated labels optionally ending with a period; peri-
ods and backslashes within a label must be escaped with a backlash. The parameters dnsclass and type
give the class and type of the query using the values defined in <arpa/nameser.h>. The parameter id gives
a 16-bit identifier for the query. The parameter rd should be nonzero if recursion is desired, zero if not.
The query will be placed in an allocated buffer, a pointer to which will be stored in the variable pointed to
by buf , and the length of which will be stored in the variable pointed to by buflen. It is the caller’s respon-
sibility to free this buffer using ares_free_string when it is no longer needed.

RETURN VALUES
ares_mkquery can return any of the following values:

ARES_SUCCESS
Construction of the DNS query succeeded.

ARES_EBADNAME
The query name name could not be encoded as a domain name, either because it con-
tained a zero-length label or because it contained a label of more than 63 characters.

ARES_ENOMEM
Memory was exhausted.

SEE ALSO
ares_expand_name(3), ares_free_string(3)

AUTHOR
Greg Hudson, MIT Information Systems
Copyright 1998, 2000 by the Massachusetts Institute of Technology.

4 January 2000 1

ARES_PARSE_A_REPLY(3) ARES_PARSE_A_REPLY(3)

NAME
ares_parse_a_reply − Parse a reply to a DNS query of type A into a hostent

SYNOPSIS
#include <ares.h>

int ares_parse_a_reply(const unsigned char *abuf, int alen,
struct hostent **host);

DESCRIPTION
The ares_parse_a_reply function parses the response to a query of type A into a struct hostent. The
parameters abuf and alen give the contents of the response. The result is stored in allocated memory and a
pointer to it stored into the variable pointed to by host. It is the caller’s responsibility to free the resulting
host structure using ares_free_hostent(3) when it is no longer needed.

RETURN VALUES
ares_parse_a_reply can return any of the following values:

ARES_SUCCESS
The response was successfully parsed.

ARES_EBADRESP
The response was malformatted.

ARES_ENODAT A
The response did not contain an answer to the query.

ARES_ENOMEM
Memory was exhausted.

SEE ALSO
ares_gethostbyname(3), ares_free_hostent(3)

AUTHOR
Greg Hudson, MIT Information Systems
Copyright 1998 by the Massachusetts Institute of Technology.

25 July 1998 1

ARES_PARSE_PTR_REPLY(3) ARES_PARSE_PTR_REPLY(3)

NAME
ares_parse_ptr_reply − Parse a reply to a DNS query of type PTR into a hostent

SYNOPSIS
#include <ares.h>

int ares_parse_ptr_reply(const unsigned char *abuf, int alen,
const void *addr, int addrlen, int family,

struct hostent **host);

DESCRIPTION
The ares_parse_ptr_reply function parses the response to a query of type PTR into a struct hostent. The
parameters abuf and alen give the contents of the response. The parameters addr, addrlen, and family
specify which address was queried for; they are not used to verify the response, merely used to fill in the
address of the struct hostent. The resulting struct hostent is stored in allocated memory and a pointer to
it stored into the variable pointed to by host. It is the caller’s responsibility to free the resulting host struc-
ture using ares_free_hostent(3) when it is no longer needed.

RETURN VALUES
ares_parse_ptr_reply can return any of the following values:

ARES_SUCCESS
The response was successfully parsed.

ARES_EBADRESP
The response was malformatted.

ARES_ENODAT A
The response did not contain an answer to the query.

ARES_ENOMEM
Memory was exhausted.

SEE ALSO
ares_gethostbyaddr(3), ares_free_hostent(3)

AUTHOR
Greg Hudson, MIT Information Systems
Copyright 1998 by the Massachusetts Institute of Technology.

25 July 1998 1

ARES_PROCESS(3) ARES_PROCESS(3)

NAME
ares_process − Process events for name resolution

SYNOPSIS
#include <ares.h>

void ares_process(ares_channel channel, fd_set *read_fds,
fd_set *write_fds)

DESCRIPTION
The ares_process function handles input/output events and timeouts associated with queries pending on the
name service channel identified by channel. The file descriptor sets pointed to by read_fds and write_fds
should have file descriptors set in them according to whether the file descriptors specified by ares_fds(3)
are ready for reading and writing. (The easiest way to determine this information is to invoke select with a
timeout no greater than the timeout given by ares_timeout(3)).

The ares_process function will invoke callbacks for pending queries if they complete successfully or fail.

EXAMPLE
The following code fragment waits for all pending queries on a channel to complete:

int nfds, count;
fd_set readers, writers;
struct timeval tv, *tvp;

while (1)
{
FD_ZERO(&readers);
FD_ZERO(&writers);
nfds = ares_fds(channel, &readers, &writers);
if (nfds == 0)
break;

tvp = ares_timeout(channel, NULL, &tv);
count = select(nfds, &readers, &writers, NULL, tvp);
ares_process(channel, &readers, &writers);

}

SEE ALSO
ares_fds(3), ares_timeout(3)

AUTHOR
Greg Hudson, MIT Information Systems
Copyright 1998 by the Massachusetts Institute of Technology.

25 July 1998 1

ARES_QUERY(3) ARES_QUERY(3)

NAME
ares_query − Initiate a single-question DNS query

SYNOPSIS
#include <ares.h>

typedef void (*ares_callback)(void *arg, int status,
unsigned char *abuf, int alen)

void ares_query(ares_channel channel, const char *name,
int dnsclass, int type, ares_callback callback,

void *arg)

DESCRIPTION
The ares_query function initiates a single-question DNS query on the name service channel identified by
channel. The parameter name gives the query name as a NUL-terminated C string of period-separated
labels optionally ending with a period; periods and backslashes within a label must be escaped with a back-
slash. The parameters dnsclass and type give the class and type of the query using the values defined in
<arpa/nameser.h>. When the query is complete or has failed, the ares library will invoke callback. Com-
pletion or failure of the query may happen immediately, or may happen during a later call to ares_pro-
cess(3) or ares_destroy(3).

The callback argument arg is copied from the ares_query argument arg. The callback argument status
indicates whether the query succeeded and, if not, how it failed. It may have any of the following values:

ARES_SUCCESS The query completed successfully.

ARES_ENODAT A The query completed but contains no answers.

ARES_EFORMERR The query completed but the server claims that the query was malformatted.

ARES_ESERVFAIL The query completed but the server claims to have experienced a failure. (This
code can only occur if the ARES_FLAG_NOCHECKRESP flag was specified at
channel initialization time; otherwise, such responses are ignored at the
ares_send(3) level.)

ARES_ENOTFOUND
The query completed but the queried-for domain name was not found.

ARES_ENOTIMP The query completed but the server does not implement the operation requested by
the query. (This code can only occur if the ARES_FLAG_NOCHECKRESP flag
was specified at channel initialization time; otherwise, such responses are ignored at
the ares_send(3) level.)

ARES_EREFUSED The query completed but the server refused the query. (This code can only occur if
the ARES_FLAG_NOCHECKRESP flag was specified at channel initialization
time; otherwise, such responses are ignored at the ares_send(3) level.)

ARES_EBADNAME The query name name could not be encoded as a domain name, either because it
contained a zero-length label or because it contained a label of more than 63 char-
acters.

ARES_ETIMEOUT No name servers responded within the timeout period.

ARES_ECONNREFUSED
No name servers could be contacted.

ARES_ENOMEM Memory was exhausted.

ARES_EDESTRUCTION
The name service channel channel is being destroyed; the query will not be com-
pleted.

If the query completed (even if there was something wrong with it, as indicated by some of the above error
codes), the callback argument abuf points to a result buffer of length alen. If the query did not complete,

24 July 1998 1

ARES_QUERY(3) ARES_QUERY(3)

abuf will be NULL and alen will be 0.

SEE ALSO
ares_process(3)

AUTHOR
Greg Hudson, MIT Information Systems
Copyright 1998 by the Massachusetts Institute of Technology.

24 July 1998 2

ARES_SEARCH(3) ARES_SEARCH(3)

NAME
ares_search − Initiate a DNS query with domain search

SYNOPSIS
#include <ares.h>

typedef void (*ares_callback)(void *arg, int status,
unsigned char *abuf, int alen)

void ares_search(ares_channel channel, const char *name,
int dnsclass, int type, ares_callback callback,

void *arg)

DESCRIPTION
The ares_search function initiates a series of single-question DNS queries on the name service channel
identified by channel, using the channel’s search domains as well as a host alias file given by the HOSTAL-
IAS environment variable. The parameter name gives the alias name or the base of the query name as a
NUL-terminated C string of period-separated labels; if it ends with a period, the channel’s search domains
will not be used. Periods and backslashes within a label must be escaped with a backslash. The parameters
dnsclass and type give the class and type of the query using the values defined in <arpa/nameser.h>.
When the query sequence is complete or has failed, the ares library will invoke callback. Completion or
failure of the query sequence may happen immediately, or may happen during a later call to ares_pro-
cess(3) or ares_destroy(3).

The callback argument arg is copied from the ares_search argument arg. The callback argument status
indicates whether the query sequence ended with a successful query and, if not, how the query sequence
failed. It may have any of the following values:

ARES_SUCCESS A query completed successfully.

ARES_ENODAT A No query completed successfully; when the query was tried without a search
domain appended, a response was returned with no answers.

ARES_EFORMERR A query completed but the server claimed that the query was malformatted.

ARES_ESERVFAIL No query completed successfully; when the query was tried without a search
domain appended, the server claimed to have experienced a failure. (This code can
only occur if the ARES_FLAG_NOCHECKRESP flag was specified at channel
initialization time; otherwise, such responses are ignored at the ares_send(3) level.)

ARES_ENOTFOUND
No query completed successfully; when the query was tried without a search
domain appended, the server reported that the queried-for domain name was not
found.

ARES_ENOTIMP A query completed but the server does not implement the operation requested by
the query. (This code can only occur if the ARES_FLAG_NOCHECKRESP flag
was specified at channel initialization time; otherwise, such responses are ignored at
the ares_send(3) level.)

ARES_EREFUSED A query completed but the server refused the query. (This code can only occur
returned if the ARES_FLAG_NOCHECKRESP flag was specified at channel ini-
tialization time; otherwise, such responses are ignored at the ares_send(3) level.)

ARES_TIMEOUT No name servers responded to a query within the timeout period.

ARES_ECONNREFUSED
No name servers could be contacted.

ARES_ENOMEM Memory was exhausted.

ARES_EDESTRUCTION
The name service channel channel is being destroyed; the query will not be com-
pleted.

24 July 1998 1

ARES_SEARCH(3) ARES_SEARCH(3)

If a query completed successfully, the callback argument abuf points to a result buffer of length alen. If the
query did not complete successfully, abuf will usually be NULL and alen will usually be 0, but in some
cases an unsuccessful query result may be placed in abuf .

SEE ALSO
ares_process(3)

AUTHOR
Greg Hudson, MIT Information Systems
Copyright 1998 by the Massachusetts Institute of Technology.

24 July 1998 2

ARES_SEND(3) ARES_SEND(3)

NAME
ares_send − Initiate a DNS query

SYNOPSIS
#include <ares.h>

typedef void (*ares_callback)(void *arg, int status,
unsigned char *abuf, int alen)

void ares_send(ares_channel channel, const unsigned char *qbuf,
int qlen, ares_callback callback, void *arg)

DESCRIPTION
The ares_send function initiates a DNS query on the name service channel identified by channel. The
parameters qbuf and qlen give the DNS query, which should already have been formatted according to the
DNS protocol. When the query is complete or has failed, the ares library will invoke callback. Completion
or failure of the query may happen immediately, or may happen during a later call to ares_process(3) or
ares_destroy(3).

The callback argument arg is copied from the ares_send argument arg. The callback argument status indi-
cates whether the query succeeded and, if not, how it failed. It may have any of the following values:

ARES_SUCCESS The query completed.

ARES_EBADQUERY
The query buffer was poorly formed (was not long enough for a DNS header or was
too long for TCP transmission).

ARES_ETIMEOUT No name servers responded within the timeout period.

ARES_ECONNREFUSED
No name servers could be contacted.

ARES_ENOMEM Memory was exhausted.

ARES_EDESTRUCTION
The name service channel channel is being destroyed; the query will not be com-
pleted.

If the query completed, the callback argument abuf points to a result buffer of length alen. If the query did
not complete, abuf will be NULL and alen will be 0.

Unless the flag ARES_FLAG_NOCHECKRESP was set at channel initialization time, ares_send will
normally ignore responses whose questions do not match the questions in qbuf , as well as responses with
reply codes of SERVFAIL, NOTIMP, and REFUSED. Unlike other query functions in the ares library,
however, ares_send does not inspect the header of the reply packet to determine the error status, so a call-
back status of ARES_SUCCESS does not reflect as much about the response as for other query functions.

SEE ALSO
ares_process(3)

AUTHOR
Greg Hudson, MIT Information Systems
Copyright 1998 by the Massachusetts Institute of Technology.

25 July 1998 1

ARES_STRERROR(3) ARES_STRERROR(3)

NAME
ares_strerror − Get the description of an ares library error code

SYNOPSIS
#include <ares.h>

const char *ares_strerror(int code, char **memptr)

DESCRIPTION
The ares_strerror function gets the description of the ares library error code code, returning the result as a
NUL-terminated C string. A pointer to allocated data necessary to compose the error description may be
stored in the variable pointed to by memptr. It is the caller’s responsibility to invoke ares_free_errmem(3)
with the value of that variable when the error description is no longer needed.

SEE ALSO
ares_free_errmem(3)

AUTHOR
Greg Hudson, MIT Information Systems
Copyright 1998 by the Massachusetts Institute of Technology.

25 July 1998 1

ARES_TIMEOUT(3) ARES_TIMEOUT(3)

NAME
ares_fds − Get file descriptors to select on for name service

SYNOPSIS
#include <ares.h>

struct timeval *ares_timeout(ares_channel channel,
struct timeval *maxtv, struct timeval *tvbuf)

DESCRIPTION
The ares_timeout function determines the maximum time for which the caller should wait before invoking
ares_process(3) to process timeouts. The parameter maxtv specifies a existing maximum timeout, or
NULL if the caller does not wish to apply a maximum timeout. The parameter tvbuf must point to a
writable buffer of type struct timeval. It is valid for maxtv and tvbuf to have the same value.

If no queries have timeouts pending sooner than the given maximum timeout, ares_timeout returns the
value of maxtv; otherwise ares_timeout stores the appropriate timeout value into the buffer pointed to by
tvbuf and returns the value of tvbuf .

SEE ALSO
ares_fds(3), ares_process(3)

AUTHOR
Greg Hudson, MIT Information Systems
Copyright 1998 by the Massachusetts Institute of Technology.

25 July 1998 1

