RTLinux Kickstart Session

Georg Schiesser, Florian Bruckner, Der Herr Hofrat
OpenTech EDV-Research GmbH Austria
Lichtenstein Str 31, A-2130 Mistelbach, Austria
http://www.opentech.at

Abstract

RTLinux Kickstart session at the 5th Real Time Linux Workshop. This kick-start session introduces
RTLinux/GPL instalation and first steps on a Slackware 9.1 system running RTLinux-3.2-pre2 (Kernel
2.4.21-rt13.2-pre3). This kick-start manual is Licensed under FDL V1.2 http://www.gnu.org/copyleft/fdl.html

1 Introduction

This manual is not a in depth introduction to installing and running RTLinux/GPL but, as the name says,
a kick-start only. It should guide you step by step to get you up and running on RTLinux/GPL quickly.
Although this document describes the steps for RTLinux/GPL on a Slackware 9.1 system, steps will more or
less be the same on a different distribution, for a RTAT kick-start refer to the kickstart_rtai.pdf. Feedback,
especially on trying this for other platforms.

The basic steps should work out on other systems as well, see the install howto.html on the proceedings CD
for step-by-step guide for SuSE 9.0 and RedHat 9.0 systems.

2 Slackware 9.1 Install
e Boot from CD: < ENTER >

The boot prompt is only intended for passing additional kernel parameters - norm ally necessary if you have
some non-standard hardware, also if the default bare. i kernel does not work, press [F2] at the boot prompt
for a list of possible kernels to boot.

boot: < ENTER >

Enter 1 to select a keyboard:

Keyboard map selection:

qwertz/de-latinl-nodeadkeys.map < 0K >

Keyboard test

1 <0K >

Not a very intuitive interface that requires to type in 1 to the text field before hitting < 0K > - but thats
Slackware...

You may now login as ’root’

Slackware login:

At this point Slackware is running a minimum system in a ramdisk so you actually are login into the Linux
box as root at this point. So type in root and hit < ENTER >

2.1 Partitioning

As noted above Slackware boots into a minimum system loaded into a ramdisk - so you have the ‘standard*
GNU/Linux tools available for system setup. Slackware does not bother providing a ‘User Friendly‘ wrapper
to these functions, you simply use them on the command line and that ensures that you actually know what
you are doing.

fdisk /dev/hda
The number of cylinders for this disk is set to 15017.
There is nothing wrong with that, but this is larger than 1024,
and could in certain setups cause problems with:
1) software that runs at boot time (e.g., old versions of LILO)
2) booting and partitioning software from other 0Ss

(e.g., DOS FDISK, 0S/2 FDISK)

Command (m for help):
To check the existing partition table use the ‘p* command
Command (m for help): p

Disk /dev/hda: 123.5 GB, 123522416640 bytes
255 heads, 63 sectors/track, 15017 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

Device Boot Start End Blocks Id System
/dev/hdal 1 103 827316 82 Linux swap
/dev/hda2 * 104 15016 119788672+ 83 Linux

First we delete all partitions as this is going to be a pure Linux box. If there are partitions defined make
sure you delete them in reverse order - so start with the highest numbered partition and delete one by one
(in my case this was 2).

Command (m for help): 4
Partition number (1-4): 2

Command (m for help): 4
Selected partition 1

Command (m for help): 1

Next we create two new partitions one as are Linux filesystem (we will simply put it all in one big chunk for
now) and one swap partition.

Command (m for help): n
Command action

e extended

P primary partition (1-4)

We respond with ‘p‘ for a primary partition and then get the prompt for the partition number.

p
Partition number (1-4): 1

First cylinder (1-15017, default 1): <ENTER>
As our first partition should start at the first cylinder we simply hit enter.

Using default value 1
Last cylinder or +size or +sizeM or +sizeK (1-15017, default 15017): +512M

On the first partition we are going to put the swap partition, so we request 512MB for the first partition,
the ‘+¢ tells fdisk to increment 512MB starting at the current cylinder position, which is 1 in our case. We
could give it a cylinder number too but then you must calculate the size your self...

Command (m for help): n
Command action
e extended
p primary partition (1-4)
p
Partition number (1-4): 2
First cylinder (64-15017, default 64):
Using default value 64
Last cylinder or +size or +sizeM or +sizeK (64-15017, default 15017):
Using default value 15017

The second partition is again a primary partition and will simply be the full remaining disk, which is offered
by default.

If we now print the current partition table we see the two desired partitions, but they are both marked as
Linux, we need one to be a swap partition.

ommand (m for help): p

Disk /dev/hda: 123.5 GB, 123522416640 bytes
255 heads, 63 sectors/track, 15017 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

Device Boot Start End Blocks Id System
/dev/hdal 1 63 506016 83 Linux
/dev/hda2 64 15017 120118005 83 Linux

So the next step is to change our first partition to Linux swap with the ‘t‘ command.

Command (m for help): t
Partition number (1-4): 1
Hex code (type L to list codes): L

0 Empty 1c Hidden W95 FAT3 70 DiskSecure Mult bb Boot Wizard hid
1 FAT12 le Hidden W95 FAT1 75 PC/IX be Solaris boot

2 XENIX root 24 NEC DOS 80 01d Minix cl DRDOS/sec (FAT-
3 XENIX usr 39 Plan 9 81 Minix / old Lin c4 DRDOS/sec (FAT-
4 FAT16 <32M 3c PartitionMagic 82 Linux swap c6 DRDOS/sec (FAT-
5 Extended 40 Venix 80286 83 Linux c7 Syrinx

6 FAT16 41 PPC PReP Boot 84 0S/2 hidden C: da Non-FS data

7 HPFS/NTFS 42 SFS 85 Linux extended db CP/M / CTOS / .
8 AIX 4d (QNX4.x 86 NTFS volume set de Dell Utility

9 AIX bootable 4e (NX4.x 2nd part 87 NTFS volume set df Bootlt

a 0S/2 Boot Manag 4f QNX4.x 3rd part 8e Linux LVM el DOS access

b W95 FAT32 50 OnTrack DM 93 Amoeba e3 DOS R/0

c W95 FAT32 (LBA) 51 OnTrack DM6 Aux 94 Amoeba BBT e4 SpeedStor

e W95 FAT16 (LBA) 52 CP/M 9f BSD/0S eb BelS fs

f W95 Ext’d (LBA) 53 OnTrack DM6 Aux a0 IBM Thinkpad hi ee EFI GPT

10 0OPUS 54 0OnTrackDM6 ab FreeBSD ef EFI (FAT-12/16/
11 Hidden FAT12 55 EZ-Drive a6 0OpenBSD fO0 Linux/PA-RISC b
12 Compaq diagnost 56 Golden Bow a7 NeXTSTEP f1 SpeedStor

14 Hidden FAT16 <3 5c Priam Edisk a8 Darwin UFS f4 SpeedStor

16 Hidden FAT16 61 SpeedStor a9 NetBSD f2 DOS secondary
17 Hidden HPFS/NTF 63 GNU HURD or Sys ab Darwin boot fd Linux raid auto
18 AST SmartSleep 64 Novell Netware b7 BSDI fs fe LANstep

1b Hidden W95 FAT3 65 Novell Netware b8 BSDI swap ff BBT

Hex code (type L to list codes): 82
Changed system type of partition 1 to 82 (Linux swap)

You should then check that the partition table is correct and then call the write command to actually write
the new partition table to disk. Until you type ‘w* for write nothing on the disk was changed - so you can
quit any time by pressing < CNTRL > <C> or ‘q‘ at the menu.

2.2 Starting setup

Slackware has a setup program on the ramdisk that you invoke by simply typing in

setup

we then select the key-map again - see above - and proceed on to setting up our swap disk, the partition is
all ready created and the setup script will find it, so we just need to activate it

e SWAP SPACE DETECTED
/dev/hdal

o FORMATTING SWAP PARTITION...
¢ SWAP SPACE CONFIGURED

/dev/hdal

The partition we set up for the Linux filesystem needs to be formated next, first we select the partition from
the presented possibilities, which is only /dev/hda2 in our case, and hit < ENTER >, next we are ask for
the method of formating, Format is OK for almost all systems, if the hard-disk is some old disk (and not too
large...) you might want to select ‘Check‘ which will actually check each block and update the bad-blocks
list if necessary.

e Select Linux installation partition:
/dev/hda?2
o FORMAT PARTITION /dev/hda2

NOTE: This will erase all data on it.
Format < OK >

Check

No

We suggest using ext3 filesystem, it will not save your data if you crash the kernel with a buggy kernel module,
but it is a good protection against power-failure or reset button induced problems... The inode density can
be left at the suggested default value.

e SELECT FILESYSTEM FOR /dev/hda2

ext2
ext3 < 0K >
reiserfs

e SELECT INODE DENSITY FOR /dev/hda2

4096 1 inode per 4096 bytes. < OK >
2048 1 inode per 2048 bytes.
1024 1 inode per 1024 bytes.

o FORMATTING...
e DONE ADDING LINUX PARTITIONS TO /etc/fstab

So now the systems partitions are set up and formated - we are ready to fill the disk up with content. But
before that we have to select a instalation media, which is the CD we booted from in our case, this menu
question makes sense because Slackware can also be installed starting with a floppy disk and if you have a
really fast university network (does something like this actually exist ?) then NFS install may be an option.
In case you booted from the CD the auto-detecton will work fine, so we select [auto] and hit < OK >.

e SOURCE MEDIA SELECTION

1 Install from a Slackware CD or DVD < 0K >
2 Install from a hard drive partition

3 Install from NFS (Network File System)

4 Install from a pre-mounted directory

e SCANNING FOR CD or DVD DRIVE

auto < OK >
manual

e SCANNING...

If this does not kick your CD-ROM drive up then you should try manual selection.

Once you have your source media set we go to the package selection. Slackware allows you to select each
package individually, which can take a very long time, so unless you really want a minimum system using the
prepackaged selections is fine and will result in a system with all tools we need for real-time. The only thing
we deselect here is KDE and GNOME, simply to reduce install time and because we are not concerned with
X-setup for this session. We want to show you the power of the command-line, you can learn how to play
with X-Windows later :)

After de-selecting KDE and GNOME we can simply install everything and hit < OK >.

o PACKAGE SERIES SELECTION

NOTE: If you install without KDE and GNOME, you will only need disc 1.
e SELECT PROMPTING MODE

full < OK >

e Installing...

If you did not de-select KDE and GNOME then you will be prompted for the second disk, in our case this
does not happen, so we would go right to the kernel selection.

e INSERT NEXT DISC
Continue < 0K >
e Installing...

You should not necessarily select the hottest and most optimized kernel here, you should select the safest
kernel for the system, for IDE based systems the bare.i from the cdrom is what you want.

e INSTALL LINUX KERNEL

bootdisk
cdrom < 0K >

floppy
skip

e CHOOSE LINUX KERNEL
/cdrom/kernels/bare.i/bzImage < 0K >

It is a wise thing to create a boot-disk for a development system, sooner or later you might damage the
system with your first (buggy) kernel modules, and as we never make backups... a boot-disk is helpful. In
this kickstart session we will skip this step though.

We are not going to bother with the modem, and for desk-top systems you probably will not need the hot-plug
subsystem, but it does not hurt to enable it.

¢ MAKE BOOTDISK

Create
Skip < SKIP >

¢ MODEM CONFIGURATION

no modem < 0K >
e ENABLE HOTPLUG SUBSYSTEMS AT BOOT?
< Yes >

We need a boot-loader to actually start the system on power-on, so next we configure the LInux LOader
- LILO. If you know lilo and want some special options set, select ‘expert‘ if you are a new-bee, take the
‘simple’ option, it will work in more or less all cases where you have a IDE based system.

Selecting frame-buffer console is important or you will not get the penguin logo in the top left hand corner
of your screen...

e INSTALL LILO
simple < OK >
expert
skip

¢ CONFIGURE LILO TO USE FRAME BUFFER CONSOLE?

1024x768x256 < OK >

If you have a CD-burner in your system, which is quite common, then you want to set up that CD-ROM as
a, SCSI device via the ide-scsi emulation, so we pass the device specific module to LILO telling it to use scsi
emulation for /dev/hdc in this case.

LILO is put on the Master Boot Record (MBR). After this step the Linux loader LILO is installed and the
system could boot.

e OPTIONAL LILO append="jkernel parameters;” LINE
hdc=ide-scsi < 0K >
e SELECT LILO DESTINATION

Root

Floppy
MBR < OK >

The rest of the configuration is not that general and may be different in your case. First we set up the mouse
and configure General Purpose Mouse-support - GPM which allows using the mouse in text mode.

¢ MOUSE CONFIGURATION

ps2 < 0K >
bare 2 button serial mouse
ms 3 button serial mouse

o GPM CONFIGURATION < Yes >

The network configuration is site specific, so you need to get the infos from your network admin. The infos
you will need are:

e Host name

e Domain name

e TP address

e Netmask

e Default gateway

e Domain Name Server (DNS)

e CONFIGURE NETWORK? < Yes >
¢ ENTER HOSTNAME

rtll5 < 0K >

e ENTER DOMAINNAME for ’rtl15’

hofr.at < OK >

o SETUP IP ADDRESS FOR ’rtl15.hofr.at’

static IP < 0K >
DHCP
loopback

Fill in the

— IP address
— Netmask

Default gateway
— Domain Name Server (DNS)

CONFIRM SETUP COMPLETE < Yes >

e CONFIRM STARTUP SERVICES TO RUN < OK >
CONSOLE FONT CONFIGURATION < No >

Setting up the clock: assume the clock is UTC and select your time-zone from the list.

o HARDWARE CLOCK SET TO UTC?

No
Yes < OK >

¢ TIMEZONE CONFIGURATION
Europe/Vienna < 0K >

If you did not select the KDE and GNOME packages during instalation, you should not select KDE or gnome
here... but there are a number of interesting and light weight window managers around that are worth giving
a look.

e SELECT DEFAULT WINDOW MANAGER FOR X

xinitrc.kde < OK >
xinitrc.gnome

2.3 Final steps before reboot

Last thing the system needs before we can reboot is a root password, for this session you should set it to
‘nopasswd‘, but in your company network or at home, make sure you have a reasonable root-password that
will not be guessed easily.

e WARNING: NO ROOT PASSWORD DETECTED Would you like to set a root password? | Yes |,
New password: nopasswd Re-enter new password: nopasswd

¢ SETUP COMPLETE j OK |,
e EXIT ; OK ;

This terminates the setup program of Slackware, and we can reboot the system. Just to make sure the
filesystems are cleared properly we do:

umount -a
<CTRL>-<ALT>-<DELETE>

...and don’t forget to remove the CD-ROM or you will fall into an endless loop.

2.4 System Boot and user account

At the LILO prompt you can add boot-command-line parameters for the kernel. This is helpful for instance,
if you set up X (which is in init 4) and your screen just flickers, then you simply type in ‘linux init 3‘, and
boot the system to text-mode only. for more info on available settings check the BootPrompt-HOWTO locate
in /usr/doc/Linux-HOWTOs/BootPrompt-HOWTO on your Slackware 9.1 distribution.

boot: linux < ENTER >
After the boot messages scrolled by you get the login prompt:

rtl15 login: root
Password: nopasswd

We hope that the messages produced by Slackware after login - the so called fortunes - are politically correct,
but we take no responsibility for these messages....

We need to add a regular user-account, if you want to use the GNU/Linux box via remote logins or send
e-mail etc. you should not work as root, so lets ad a regular user account and then we are done.

root@rtl15:” # adduser

Login name for new user []: georgs
User ID: 500
Initial group [users]: < ENTER >
Additional groups []: < ENTER >
Home directory [/home/georg]: < ENTER >
Shell [/bin/bash]: < ENTER >
Expiry date []: < ENTER >

press ENTER to go ahead and make the account. < ENTER >
Full Name []: Georg S
Room Number []: < ENTER >
Work Phone []: +43-12345
Home Phone []: +12345
Other []: < ENTER >

New password: nopasswd

Re-enter new password: nopasswd

Account setup complete.

A bit rough in style but it should get you up and running quickly :)

3 RTLinux/GPL kernel install

Mount the proceedings CD
As the default location to attache the cdrom is /mnt/cdrom (see /etc/fstab for the default on your system),
you can use the command

root@rtl15:~ # mount /mnt/cdrom

and all necessary informations would be extracted from /etc/fstab - as we want to show you as much of what
is happening beneath the covers - we will use the explicit mount command and create a mount point first.

root@rtl15:~ # mkdir /cdrom
root@rtli15:~ # mount -t 1509660 /dev/hdb /cdrom

In the system used for this HOWTO the cdrom was the secondary slave device on the IDE subsystem so
/dev/hdb in this case - you must replace any references to /dev/hdb by what is given by your system
configuration to find the device quickly - type in the following;:

root@rtli5:~# dmesg | grep hd

hda: IC35L120AVV207-0, ATA DISK drive

hdb: LITE-ON COMBO LTC-48161H, ATAPI CD/DVD-ROM drive

hda: attached ide-disk driver.

hda: host protected area => 1

hda: 241254720 sectors (123522 MB) w/1821KiB Cache, CHS=15017/255/63
hda: hdal hda2

This tells us that the CDROM is attached as hdb.
Now copy and unpack the vanilla kernel linux-2.4.21 from Proceedings CD

root@rtlib:~ # cp /cdrom/kernel/linux-2.4.21.tar.bz2 /usr/src/
root@rtl15:~ # cd /usr/src/

root@rtlib:/usr/src # tar -xjf linux-2.4.21.tar.bz2
root@rtl15:/usr/src # mv linux linux-2.4.21-rtl13.2
root@rtl15:/usr/src # 1n -s linux-2.4.21-rt13.2 linux

Note that older tar versions use -tIf and -xIf.
Copy RTLinux from the Proceedings CD and unpack it

root@rtlib:/usr/src # cp /crom/rtlinux-3.2-pre3.tar.bz2 ./
root@rtlib:/usr/src # tar -xjf rtlinux-3.2-pre3.tar.bz2
root@rtlib:/usr/src # 1ln -s rtlinux-3.2-pre3 rtlinux

3.1 Patch kernel

Decompress the kernel patch

root@rtlib:/usr/src # cd rtlinux/patches
root@rtlib:/usr/src/rtlinux/patches # bunzip2 kernel_patch-2.4.21-rt13.2-pre3.bz2

First test the kernel patch to see if it applies properly

root@rtlib: /usr/src/rtlinux/patchs # cd /usr/src/linux
root@rtlib: /usr/src/linux # patch -pl --dry-run \
< /usr/src/rtlinux/patches/kernel_patch-2.4.21-rt13.2-pre3

If all goes well (sure it does...) patch the kernel now

root@rtlib:/usr/src/linux # patch -pl \
< /usr/src/rtlinux/patches/kernel_patch-2.4.21-rt13.2-pre3

3.2 Configure RTLinux/GPL kernel

check with 1smod what essential kernel modules we need in the SuSE install (forget sound modules...) check
network modules and peripherals that are essential. you can also get the config file SuSE used from the /proc
directory (/proc/config.gz), but you need to check this config simply copying it may lead to problems (i.e.
APM enabled...) .

root@rtlib: /usr/src/linux # make menuconfig

Code Maturity Level Options
[*] Prompt for development and/or Incomplete code/drivers

Loadable Module Support
[] Set Version Information on all module symbols

Processor Type and feature

Select EXACTLY your CPU or a generic low-end CPU (check "cat /proc/cpuinfo)

Filesystem
[*] Reiserfs support
[*] /dev file system support (EXPERIMENTAL)

save and exit - Note the reiserfs is needed because SuSE-8.0 installed the basic system on a reiserfs partition
- other distributions prefer other filesystems, check in /etc/fstab what filesystems you will need on the
system.

root@rtli5:/usr/src/linux # cp .config myconfig

this saves the config in a way that will not be deleted by make mrproper.

3.3 compile and install kernel

root@rtlib: /usr/src/linux # make dep
root@rtl15:/usr/src/linux # make modules
root@rtl15:/usr/src/linux # make modules_install
root@rtl15:/usr/src/linux # make bzlilo

a half a million lines of confusing output later...

cp /usr/src/linux-2.4.21-rt13.2/System.map /

if [-x /sbin/lilo]; then /sbin/lilo; else /etc/lilo/install; fi

Added Linux *

make[1]: Leaving directory /usr/src/linux-2.4.18-rt13.2/arch/i386/boot’
root@rtl15:/usr/src/linux #

The kernel was copied to /vmlinuz and the modules are in /lib/modules/2.4.21-rt13.2-pre3. We now need to
edit /etc/lilo conf add entry for rtlinux. To boot your new kernel edit /etc/lilo conf to add the new kernel
entry. note that it depends on the kernels INSTALL PATH= where it is put so in the case of the vanilla kernel
the new kernel ends up in in /vmlinuz not /boot/vmlinuz (like with adeos).

root@rtl15:/usr/src/linux # cd /etc
root@rtli5:/etc # vi lilo.conf

At the beginning of the lilo.conf in Slackware 9.1 you can find the lines

VESA framebuffer console @ 1024x768x256
vga = 773

Normal VGA console

vga = normal

These should be changed to:

VESA framebuffer console @ 1024x768x256
vga = 773

Normal VGA console

vga = normal

Note that the exact appearance may vary in other distributions - but the changes required are the same -
these changes are necessary unless you want to configure frame-buffer support into the kernel - as this leads
to some problems, especially with embedded boards, we recommend you set vga = normal unless you know
exactly what this is about.

End LILO global section
Linux bootable partition config begins
image = /boot/vmlinuz

root = /dev/hda2

label = Linux

read-only

Copy these 4 last lines and edit them so you end up with, as make bzlilo will put the new kernel into
/boot /vmlinuz we boot the original Slackware kernel by putting the image=/boot/vmlinuz-ide-2.4.22 line
into the first boot selection item.

image = /boot/vmlinuz-ide-2.4.22
root = /dev/hda2
label = Linux
read-only
image = /boot/vmlinuz
root = /dev/hda2
label = rtlinux
append = "ide=nodma apm=off acpi=off"
read-only

This will leave the default kernel set to the original distribution kernel and allow you to boot the patched
RTLinux kernel at the lilo prompt. Note that the naming of the kernels is distribution specific and some
distributions put the new kernel in /vmlinuz not /boot/vmlinuz. Note the append line inserted - this turns
off DMA for the ide discs and disable power management, generally this is a good idea for real-time systems.
Note also that the very carful setting of ide=nodma is not a requirement of RTLinux, where as apm=off and
acpi=off is a requirement if you want to guarantee hard-realtime performance.

Next we need to install the new boot-loader configuration to the disk by running lilo.

root@rtli15:/etc # lilo
Added Linux *
Added rtlinux

this should run without any errors and show you the rtlinux image.

Now we can tell the system to boot rtlinux on the next reboot - this will not permanently change the boot
kernel - so by default non-rt Linux will be booted and only if we select rtlinux at the boot-prompt or by
running 1ilo -R rtlinux will rtlinux boot.

root@rtlil5:/etc # 1lilo -R rtlinux
root@rtlil5:/etc # reboot

After the system comes up again - login as root. check what we have running

root@rtll5:” # uname -a
Linux linux 2.4.21-rt13.2-pre3 #5 Sun Nov 2 23:12:18 PST 2003 i686 unknown

4 RTLinux

RTLinux is installed from sources on the Proceedings CD, no rpm’s for RTLinux around. The procedure here
applies not only to the rtlinux-3.2-pre3 version but is more or less identical for other versions. If you ever run
into a problem of a module or a system behaving very strange, then pleas verify the strange behavior on a clean
instalation as described here, often strange behavior is due to accumulating changes and build procedures
for custom modules not being clean... For question pertaining to the basic setup of RTLinux you can also
contact the community via the rtlinux mailing list at www2.fsmalbs.com/mailman/listinfo.cgi/rtl. For
the latest developments check the RTLinux/GPL developers site at http://www.rtlinux-gpl.org.

4.1 configure/compile rtlinux

root@rtlib:/etc # cd /usr/src/rtlinux
root@rtli5:/usr/src/rtlinux # make menuconfig

Support option --->

[*] Posix standard I/0

[1 POSIX Priority protection
[*] Dev mem support

[*] Enable debugging

[*] rtl_printf uses printk

[1 Nolinux support

[x] POSIX Signals

[*] POSIX Timers (NEW)

Message queue constants -—-->
[] RTLinux tracer support (experimental)
[] Userspace Real Time

[*] Floating Point Support

[*] RTLinux V1 API support

[*] RTLinux Debugger

[] Synchronized clock support

lets leave it all defaults (shown above) for now, also the driver section can be left as it is - Save and exit
menuconfig.

root@rtlib: /usr/src/rtlinux # make dep
root@rtlib: /usr/src/rtlinux # make 2>&1 | tee build.log
root@rtlib:/usr/src/rtlinux # make devices

The command make 2$>$\&1 tee build.log— records the entire compiler output into the file build.log, so if
anything goes wrong this can help you, and also help when you report errors to the mailing list.

The make devices is only necessary for the first instalation - this creates the rtlinux specific device files in
/dev/.

4.2 Check your instalation

The regression test performs a number of sanity checks - it will not tell you if the setup is suited for hard
realtime applications, it will basically tell you that the instalation worked and that rtlinux will not crash
your box ;)

root@rtlib:/usr/src/rtlinux # ./scripts/regression.sh

the regressions script should ONLY return [OK], if you get anything else pleas let the community know .
After the script terminated all rtlinux modules are unloaded.
now launch rtlinux

root@rtlib:/usr/src/rtlinux # ./scripts/insrtl
root@rtli5: /usr/src/rtlinux # lsmod

Check if the modules are loaded - it should return something like:
root@rtlib:/usr/src/rtlinux # dmesg -c

Clear the kernel message ring buffer so that we can see what messages popped up after we launched rtlinux
examples.
Lets start with a very simple example - *hello World” in hard-realtime.

4.3 hello.o

root@rtlib:/usr/src/rtlinux # cd examples/hello
root@rtlib: /usr/src/rtlinux/examples/hello # sync ; insmod hello.o

Why do we do sync ; insmod hello.o. If you load a module that you are playing with and you made a
mistake your system can crash fairly easily, as the filesystem may be in a inconsistent state at this point it
could loose data or even be damaged (depending on how wildly you crash your system) so it is a good habit
to sync your disk before loading a kernel module as this reduces the probability of loosing data considerably.

root@rtlib:/usr/src/rtlinux/examples/hello # dmesg

check the messages that the hello.o module is generating with dmesg. To stop our realtime ”hello World”
we remove the hello.o module and clear the kernel message buffer.

root@rtl1b:/usr/src/rtlinux/examples/hello # rmmod hello
root@rtli1b:/usr/src/rtlinux/examples/hello # dmesg -c

4.4 rt_process.o

Now to a more usable example - rt_process.o. This kernel module measure the scheduling jitter of the
hardware. It sets up a thread to run periodically for ntests times in a loop and report the minimum and
maximum deviation of the time it actually ran to the time it should have run by writing the data to a realtime
fifo (rtf). The data can be retrieved from the fifo with the monitor program. The monitor will, by default,
retrieve 10000 data samples and the terminate, by passing it the -s#para meter you can tell it to grab exactly
samples.

root@rtlib:/usr/src/rtlinux/examples/hello # cd ../measurements
root@rtli1b:/usr/src/rtlinux/examples/measurements #
root@rtlib: /usr/src/rtlinux/examples/measurements # sync ; insmod rt_process.o bperiod=0

load the measurement module with a sync again, if you don’t want to do it, then simply insmod rt_process.o
and find out the hard way why to sync your disk before loading a module ;) The bperiod=0 module parameter
instructs rt_process.o to launch only one thread and not launch a background thread that would compete
for the CPU.

root@rtlib: /usr/src/rtlinux/examples/measurements # ./monitor -s 1000 | tee data

We only collect 1000 samples and put them in the file data, while at the same time displaying them on the
screen.

root@rtlib: /usr/src/rtlinux/examples/measurements # ./gist data | tee data.out

Next we make a ”histogram” of this data - Note that this is not a real histogram as we don’t have access to the
samples but only the min/max values of every ntests-large sample (default 500) so you can’t interprete this
data statistically. It does give you a fairly good overview of the systems rt-performance though - especially
if you produce a high-load and high interrupt situation while running this test. If you launch rt_process
without the bperiod=0 parameter then you run two rt-threads and you can see what influence two threads
completing at the same priority will have on the worst case scheduling-jitter of this specific system-hardware.
So now lets clean up - removing the module and clearing the kernel message buffer again.

root@rtlib:/usr/src/rtlinux/examples/measurements # rmmod rt_process
root@rtlib:/usr/src/rtlinux/examples/measurements # dmesg -c

4.5 shut down rtlinux

root@rtlib:/usr/src/rtlinux/examples/measurements # cd /usr/src/rtlinux
root@rtlib:/usr/src/linux # ./scripts/rmrtl
root@rtli5:/usr/src/linux # dmesg -c

just to check if there were any problems unloading the rtlinux modules !
Thats it - you now are rtlinux experts.... almost.

5 Debugging

To use gdb for debugging we need to reconfigure rtlinux and recompile it. To do this we first clean up and
then launch menuconfig again.

root@rtli15:~ # cd /usr/src/rtlinux
root@rtll5:~ # make distclean
root@rtl15:” # make menuconfig

Support option --->

[*] Posix standard I/0

[*] POSIX Priority protection
[*] Dev mem support

[*] Enable debugging

[*] rtl_printf uses printk

[] Nolinux support

[*] RTLinux tracer support (experimental)
[*] Userspace Real Time

[*] Floating Point Support

[] RTLinux V1 API support

[] RTLinux Debugger

[*] Synchronized clock support

save and exit.

root@rtlib:/usr/src/rtlinux # make dep
root@rtlib: /usr/src/rtlinux # make

RTLinux is now rebuilt with debugging flags, and with the RTLinux debugger module in the debugger
subdirectory (rtl_debug.o)

5.1 RTLinux Debugger

Before we can launch the debugger we need to reload the modified rtlinux modules, we can use the scripts in
the top-level rtlinux directory again.

root@rtlib: /usr/src/rtlinux # ./scripts/insrtl
root@rtli5:/usr/src/rtlinux # cd debugger
root@rtlib:/usr/src/rtlinux/debugger # insmod rtl_debug.o

RTLinux is now ready for debugging, before we insert the actual module to be debugged lets give it a look.
If you look hello.c and compare it with examples/hello/hello.c you will find some debugging specific
differences.

#include <rtl_debug.h>

void * start_routine(void *arg)

{

ié.(((int) arg) == 1) {
breakpoint () ;
}

This breakpoint () ; instruction is the point where gdb will halt and you can continue from there on, if your
module has not breakpoint and no bug that causes an exception then gdb can’t connect, so either code a
segfault or use the breakpoint(); function ;)

root@rtli5:/usr/src/rtlinux/debugger # insmod hello.o
root@rtli5:/usr/src/rtlinux/debugger # gdb hello.o

GNU gdb 5.1.1

Copyright 2002 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type '"show warranty" for details.
This GDB was configured as "i386-suse-linux"...

(gdb) target remote /dev/rtf10

Remote debugging using /dev/rtf10

[New Thread -1012596736]

[Switching to Thread -1012596736]

start_routine (arg=0x1) at hello.c:37

37 for (i =0; i < 20; 1 ++) {

warning: shared library handler failed to enable breakpoint
(gdb) 1

32

33 if (((int) arg) == 1) {

34 breakpoint();

35 }

36

37 for (1 =0; i < 20; i ++) {

38 pthread_wait_np ();

39 rtl_printf("I’m here; my arg is %x\n", (unsigned) arg);
40 }

41 return O;

(gdb) break rtl_printf

Function "rtl_printf" not defined.

(gdb) modaddsym ../modules/rtl.o

add symbol table from file "../modules/rtl.o" at
.text_addr = 0xc88da060

(gdb) modaddsym ../modules/rtl_time.o

add symbol table from file "../modules/rtl_time.o" at
.text_addr = 0xc88e0060

(gdb) modaddsym ../modules/rtl_sched.o

add symbol table from file "../modules/rtl_sched.o" at
.text_addr = 0xc88eal60

(gdb) break rtl_printf

Breakpoint 1 at 0xc88db189: file rtl_printf.c, line 39.
(gdb) ¢

Continuing.

Breakpoint 1, rtl_printf (fmt=0xc8905140 "I’m here; my arg is %x\n")
at rtl_printf.c:39

39 {

(gdb) 1

34 static char initial_printkbuf [MAX_PRINTKBUF];

/* need to protect in_printkbuf from overflowing */

35 static char in_printkbuf [MAX_PRINTKBUF]; /* please don’t put this on my stackx*/
36 static char *printkptr = &in_printkbuf [0];

37 static spinlock_t rtl_cprintf_lock = SPIN_LOCK_UNLOCKED;

38 int rtl_printf(const char * fmt, ...)

39 {

40 rtl_irgstate_t flags;

41 int i;

42 va_list args;

43

(gdb) quit

The program is running. Exit anyway? (y or n)

What we did was connect to gdb via /dev/rtf10 (that the ‘target remote /dev/rtf10‘line), then gdb
stopped at the breakpoint instruction, and we tried to set a breakpoint at rt1_printf, but that was not
known because the symbols were not loaded, so next we use a convenient modaddsym macro found in the
.gdbinit file of the debugger directory, to load the symbol information form the rtlinux core modules.
Now setting of the breakpoint works fine, and we can continue (command ‘c‘ in gdb), stopping at the first
rtl_printf. Next we list (command ‘I in gdb) the rt1_printf function. There really is not much to do in
this example so we quite (command ‘q‘ in gdb).

As we were debugging the module, it was off course not running in realtime, and if you now type dmesg, you
can see that the execution of the individual threads (hello.o spawns two threads!) gets confused.

RTLinux Extensions Loaded (http://www.fsmlabs.com/)
RTLinux Debugger Loaded (http://www.fsmlabs.com/)
rtl_debug: exception 0x3 in hello (EIP=0xc89050a8),
thread id 0xc3a50000; (re)start GDB to debug
I’m here; my arg is 1
I’m here; my arg is
I’m here; my arg is
I’m here; my arg is
I’m here; my arg is
I’m here; my arg is
I’m here; my arg is
I’m here; my arg is

N~ NFE NP =

So gdb is good to find a segfault or some other coding error, but it will not allow to debug race-conditions
or to locate temporal misbehavior of your realtime module, and in fact the behavior of multi-threaded apps
can be quite strange in gdb, even for those that work fine when run free !

We are done with our debugging intro so lets clean up.

root@rtlib:/usr/src/rtlinux/debugger # dmesg -c
root@rtli5:/usr/src/rtlinux/debugger # rmmod hello
root@rtli5:/usr/src/rtlinux/debugger # rmmod rtl_debug

5.2 RTLinux Tracer

When we reconfigured RTLinux, with menuconfig, above, we enabled the RTLinux Tracer. The problem with
GDB was that it did not allow temporal debugging, and this is because gdb is taking control of the rt-thread,
so this is a rt-thread under control of a non-rt executable. To allow temporal debugging the RTLinux tracer
was designed that we will briefly introduce here.

root@rtlib: /usr/src/rtlinux/debugger # cd ../
root@rtl15:/usr/src/rtlinux # insmod modules/mbuff.o

The mbuff module, contributed by thomas motylewsky, is a shared memory module, allowing to share mem-
ory between rt-threads and user-space applications. The RTLinux Tracer records important events with
timestamps (system events are hard-coded, like entering and exiting the scheduler routine) and user-defined
events can be included in your application that trigger writes of the buffered data into shared memory when
ever a user-specified condition is met. This way you can back-trace what events lead to the event that you
are watching.

root@rtli5: /usr/src/rtlinux # cd tracer

If we look into rt_process.c in the tracer directory and compare it with rt_process in examples / mea-
surements then we can find the following difference. The recording of the maximum in the inner loop changes
from:

if (diff > max_diff){
max_diff = diff;
}

to include the RTL_TRACE_USER event recording the new absolute jitter maximum, and the trace buffer is
flushed to shared memory where the user-space application can read it. (there are a few other minor changes
like #include <rtl_trace.h> and the variable abs_max_diff not shown here - but those should be quite
self explaining).

if (diff > max_diff){
max_diff=diff;
if (max_diff > abs_max_diff){
abs_max_diff=max_diff;
rtl_trace2(RTL_TRACE_USER, (long) abs_max_diff);
rtl_trace2(RTL_TRACE_FINALIZE,O);

}

Now every time a new maximum jitter value is encountered the buffer will be flushed, this way we can trace
the path of events that leeds to a jitter maximum and thus (hopefully) locate the hot-spot in the code.
Now lets load the tracer module and the modified rt_process.o to watch it.

root@rtlib:/usr/src/rtlinux/tracer # insmod rtl_tracer.o
root@rtlib:/usr/src/rtlinux/tracer # insmod rt_process.o ; ./tracer | tee trace.log
PO 131828416 rtl_restore_interrupts 0x46 <c88e09cd>

PO 576 scheduler out 0xc88ecd64 <c88ea9bd>
PO 480 rtl_restore_interrupts 0x96 <c88ead6b>
PO 512 hard sti 0 <c88e0865>
PO 576 rtl_no_interrupts 0x286 <c88e0707>
PO 480 rtl_spin_unlock 0xc88e15f8 <c88e0212>
PO 416 rtl_restore_interrupts 0x203 <c88e021d>
PO 41184 rtl_no_interrupts 0x203 <c88e01c7>
PO 448 rtl_spin_lock 0xc88e15f8 <c88e01d6>
---snip---

PO 448 rtl_restore_interrupts 0x46 <c88e09cd>
PO 640 rtl_switch_to 0xc3ab8000 <c88ea7al>
PO 1952 scheduler out 0xc3ab8000 <c88ea9bd>
PO 640 rtl_restore_interrupts 0x92 <c88ea96b>
PO 992 rtl_restore_interrupts 0x297 <c88eaeasd>
PO 3488 user Ox1lccO <c894£325>

That was trace # 1

The commands for insmod and starting the tracer are concatenated to a command sequence to make sure
we launch the tracer fast enough as it happen quite frequently that the maximum is reached right at the
beginning and then we don’t see anything. Furthermore we redirect the tracer output to a log file (trace.log),
to terminate the tracer type <CNTRL>-<C>. The tracer output will scroll by on the screen as the new absolute
maximum is frequently encountered at the beginning and then output will stall, if you want to produce a
new worst-case maximum, then switch to a different console (<CNTRL>-<ALT>-<F2>) login as root again and
start something like.

root@rtli15:~ # 1s -1R /

Note that the RTLinux Tracer does introduce a slight distortion on the systems realtime behavior so you will
not be able to find everything this way, but its about as close to temporal debugging that you can get. After
we terminated the tracer we do the usual cleanup.

root@rtlib:/usr/src/rtlinux/tracer # rmmod rt_process
root@rtl15:/usr/src/rtlinux/tracer # rmmod rtl_tracer
root@rtl15:/usr/src/rtlinux/tracer # rmmod mbuff

Thats it - have fun with real time Linux !

References

[1] [RTLinux/GPL on the web] RTLinuxz/GPL Download Site, http://www.rtlinux-gpl.org
[2] [RTLinux Thesis] Michael Barabanov, Rtlinuz, 1996, New Mexico Tech.

[3] [RT-Synchronisatoin] V. Yodaiken: Temporal inventory and real-time synchronisation in RTLinux/Pro,
FSMLabs Inc., 2003

[4] J. Vidal, F. Gonzalves, I. Ripoll: POSIX TIMERS implementation in RTLinuz, RTLinuz-3.2-pre3,
http:/ /www.rtlinuz-gpl.org

[5] V. Yodaiken: Priority inheritance is a non-solution to the wrong probem, Technical report, FSMLabs
Inc., 2002

[6] [Multiboot howto] G. Schiesser, F. Bruckner, A. Staub, N Mc Guire, Multiboot Howto, OpenTech EDV-
Research GmbH, 2003, http://www.opentech.at/howtos/multiboot-howto/html/index.html

