
RTL-lwIP’s Operating System Emulation Layer API

Author: Sergio Pérez Alcañiz <serpeal@disca.upv.es> 1

OSEL API (Operating System Emulation Layer)

The OSEL API gives access to operating system specific calls and data structures

(thread managing, semaphores, interrupts, etc...). A real time application can use all the
calls explained in this document or the RT-Linux API directly. It is desirable that
applications use the RT-Linux API because most of the OSEL API calls (above all the
..._new(...) calls) use a dynamic memory allocator to reserve memory for the
structures used inside those calls, so an excessive use of this calls may cause exhausting
memory.

There are two calls of the OSEL API that the real time applications that use RTL-lwIP
are forced to use: sys_thread_new and sys_thread_exit. This calls create and destroy
communication threads, respectively.

There are (mainly) three structures which OSEL deals with: semaphores, mailboxes and
threads. Semaphores is the only process synchronization provided by OSEL API.
Mailboxes is the message passing mechanism provided by OSEL API. The threads
mechanism should be known by everybody (if not, take a look at the POSIX standard).

Here the definition of those structures in RTL-lwIP (it may be useful):

Semaphores Mailboxes Threads

struct sys_sem{
 sem_t sem;
 unsigned int c ;
}

struct sys_mbox{
 u16_t first, last;
 void
*msgs[LWIP_MBOX_SIZE];
 struct sys_sem *mail;
 struct sys_sem *mutex;
}

struct sys_thread{
 struct sys_thread
*next;
 pthread_t pthread;
 char *stack;
 char flags;
}

Next, the API interface and a brief description of the calls:

void sys_stop_interrupts(unsigned int *state)

Saves the CPU flags into the state parameter and stops interrupts.

void sys_allow_interrupts(struct sys_sem *sem)
Restores the CPU flags with value state. It’s used to restore the interrupts state.

void *sys_malloc(size_t size)
Allocates size bytes and returns a pointer to the reserved memory. sys_malloc and

sys_free are intended to be used only inside the stack. If an application uses it directly memory
may be exhausted.

void sys_free(void *ptr)

Frees memory (previously allocated by means of sys_malloc) pointed by ptr.

static struct sys_sem *sys_sem_new(u8_t count)

Creates and returns a new semaphore. The count argument specifies the initial state of the
semaphore.

RTL-lwIP’s Operating System Emulation Layer API

Author: Sergio Pérez Alcañiz <serpeal@disca.upv.es> 2

void sys_sem_free(struct sys_sem *sem)
Deallocates a semaphore.

int sys_sem_signal(struct sys_sem *sem)
Signals a semaphore and calls the scheduler to reschedule tasks.

int sys_sem_signal_no_preemptive(struct sys_sem *sem)
Signals a semaphore without calling the scheduler.

u16_t int sys_sem_wait_timeout(sys_sem_t sem, u32_t timeout)
Blocks the thread while waiting for the semaphore to be signaled, but does not block the thread

longer than timeout milliseconds.

struct sys_mbox *sys_mbox_new(void)
Creates an empty mailbox.

void sys_mbox_free(struct sys_mbox *mbox)
Deallocates a mailbox.

void sys_mbox_post(struct sys_mbox *mbox, void *msg)
Posts the msg to the mailbox.

u16_t sys_arch_mbox_fetch(struct sys_mbox *mbox, void **msg, u16_t
timeout)

Blocks the thread until a message arrives in the mailbox, but does not block the thread longer
than timeout milliseconds.

void *sys_thread_new(void (* thread) (void *arg), void *arg, unsigned
long period))

Starts a new thread that will begin its execution in the function thread(). The arg argument
will be passed as an argument to the thread() function. If period is distinct from zero, the new
thread will be a period thread with period period (measured in nanoseconds). Implementation of
sys_thread_new lets threads to create new threads (which is not default using RT-Threads).
The function returns a pointer to the pthread_t structure of the new thread (the void pointer
should be “casted” to pthread_t).

int sys_thread_delete(void *pthread)

This function deletes a thread created by means of sys_thread_new or registered by means of
sys_thread_register. Resources used by the thread would be freed lately. The function returns
0 if the thread’s been registered in the stack (both by means of sys_thread_new or
sys_thread_register) and returns –1 if not.

void sys_thread_register(void *pthread)

This function should be used by those who want to create by themselves the thread (they may
want to set their own options when creating the thread) but want the thread to use the RTL-lwIP
stack. After created and before using any RTL-lwIP function threads must be registered. Although
the thread is created by the user, sys_thread_exit must be used to exit the thread. If not used,
resources assigned to the thread won’t be freed.

RTL-lwIP’s Operating System Emulation Layer API

Author: Sergio Pérez Alcañiz <serpeal@disca.upv.es> 3

void *sys_thread_exit(void)
 If the thread has been created by means of sys_thread_new, then the thread is exited and a
mark is set in order to indicate that the thread resources must be freed (freeing resources is deferred
in this case). If the thread has just being registered, sys_thread_exit exits the thread.

void sys_timeout(u16_t msecs, sys_timeout_handler h, void *arg)

This function is quite interesting, it initializes a timer which will execute h handler in msecs
miliseconds after the call and just once.

void sys_untimeout(sys_timeout_handler h, void *arg)

This function used to deregister the timeout, both if the timeout has expired or not.

