An introduction to UVMs
What is this?

UVM support is a unique Xenomai feature, which allows running a nearly complete real-
time system embodied into a single multi-threaded Linux process in user-space, hence the
name, standing for "User-space Virtual Machine".

Running a real-time application inside a UVM offers a straighforward approach for
porting from other RTOS environments to Xenomai. For this reason, all emulators of
traditional RTOS available with Xenomai (e.g. VxWorks, pSOS+, VRTX, and uITRON)
can be hosted by UVMs, although they were initially intended to run as kernel modules.
The rest of this article will focus on such use of the UVM support.

First of all, one should keep in mind that there is a 1:1 relationship between every real-
time thread created inside any UVM and a corresponding Xenomai thread in kernel space
(aka shadow thread), which means that UVM-based threads do provide stringent real-
time guarantees, just like any real-time thread/task created through the native Xenomai
interface.

Since the whole real-time system runs in the context of a single multi-threaded Linux
process context, the target code is sandboxed in its own address space, and can be
debugged using common tools such as GDB, which makes the UVM support a solution
of choice for conducting first order ports from other RTOS platforms to a GNU/Linux
environment.

How do UVMs work?

The UVM support builds upon the ability of most of the Xenomai core (i.e. the nucleus
and the various real-time interfaces) to execute over different contexts seamlessly. For
instance, most of the nucleus code can either run over Adeos in kernel space - which is
the usual configuration -, or on top of the event-driven simulation engine also available
with Xenomai (aka Minute Virtual Machine or MVM). The context-dependent portions
providing system-level resources, such as the CPU-dependent bits, are handled inside a
normalized system layer which underlies the nucleus, onto which the real-time interfaces
(aka skins) are eventually stacked. Incidentally, this is also what makes Xenomai a highly
portable system, since only Adeos and the well-defined machine-dependent portions of
the system interface layer need to be ported to a new architecture.

In the same way, the UVM support is built over a special system interface layer which
maps requests (e.g. actual real-time thread creation, hardware timer management) issued
by a virtual nucleus image, embedded into the virtual machine along with the real-time
application, to system calls processed by the real nucleus running in kernel space. Albeit
this additional indirection, the approach remains remarkably efficient because most of the

Introduction to UVMs — RevB - 10/09/05

work induced by calling a real-time service from within the virtual machine is actually
performed inside the UVM itself, only leaving simple and limited actions to be done by
the real nucleus in kernel space; most of the time, such action is about performing some
actual context switch the virfual nucleus has decided for its own threads. Thanks to the
1:1 relationship which exists between virtual nucleus threads and real nucleus ones, the
actions to perform this way are always straightforward and unambiguous.

Let's see how this translates into the Xenomai architecture:

UVM Process X UVM Process Y

A
Application threads

RTOS skin/emulator

(Virtual) nucleus

UVM support layer

User-space

v Kernel space

(Real) nucleus

Adeos

As you can see from the figure above, multiple UVM processes can co-exist concurrently
on the same machine, all being eventually controlled by the central real-time nucleus in
kernel space. Additionally, UVMs don't need any real-time API module (e.g. Xenomai's
VxWorks skin) to be present in kernel space, since each of them already embeds a user-

Introduction to UVMs — RevB - 10/09/05

space copy of the needed API module.

Another point of interest is about the representation of real-time threads in the figure
above. If you are familiar with Xenomai's concept of real-time threads in user-space, you
already know that each of them is underlaid by a regular Linux task, whose control is
shared between the Xenomai nucleus and the Linux kernel, depending on the thread's
current execution mode, i.e. primary or secondary. As illustrated, each real-time thread
started by the application lives in the UVM's address space, and has a system-wide kernel
space counterpart. This counterpart is called a shadow thread in Xenomai's jargon; it
should be noted that such shadow entity is not actually a full-blown context with its own
stack and set of CPU registers, but rather a placeholder for the underlying Linux task in
user-space in Xenomai's scheduling queues. In other words, UVMs do not suffer the
overhead of a client/agent scheme, since only one stack context and CPU register set
exists for each of the application threads it is hosting.

Going into deeper details about Xenomai's scheme to bring ultra-low and predictable
scheduling latency to user-space threads is beyond the scope of this article, but to sum up,
one should keep in mind that UVMs threads created by RTOS emulators, and real-time
tasks created by the native Xenomai interface, are underlaid by the very same core
support in kernel space; therefore, UVM threads are handled as deterministically as any
other Xenomai thread, and can also operate either in primary mode for reaching worst-
case latencies in the lowest micro-second range, or in the secondary mode to access the
full extent of regular Linux services seamlessly. By convention, emulators of traditional
RTOS never call regular Linux services except to create and destroy threads, thus will
keep the calling threads in the highest deterministic mode when performing application
requests.

Under the hood

Initialization process

At initialization time, the UVM support layer first maps the main() context of the new
process to a real-time shadow thread in kernel space, then creates an internal timer thread,
also mapped to a real-time shadow context, which will be in charge of simulating a
periodic time source for the whole UVM process. Only the periodic timer service is
provided by UVMs to applications, since it's the most relevant timing policy for
emulators of traditional RTOS.

/proc/xenomai/sched should display both threads respectively under the names uvm-root
and uvm-timer when a UVM is running, and /proc/xenomai/timer should display the
currently active timer setup.

System-wide priorities
The UVM root thread is given the minimal SCHED_FIFO priority

Introduction to UVMs — RevB - 10/09/05

(sched_get_priority_min(SCHED_FIFO)), whilst the UVM timer has the latter priority +
2. All threads/tasks subsequently created by the embedded RTOS emulator upon request
from the application will also belong to the SCHED_FIFO scheduling class, all with the
minimal SCHED_FIFO priority + 1. All these priorities are meant to be system-wide,

and are only known by the UVM support layer; this must not be confused with the
priority levels defined by the application for the threads/tasks it creates, and which are
enforced locally by the scheduler of the virfual nucleus. In other words, each UVM thread
has two priority levels, one applicable inside the UVM with respect to other threads
running inside the same virtual machine, and a second one which has a system-wide
scope and is used to schedule the given thread among all competing threads known by the
real Xenomai nucleus and the Linux kernel altogether.

Application startup

Once the UVM's internal threads have been spawned and the timer has started ticking at
the proper frequency, the UVM control layer calls the application entry point
conventionally named root_thread_init(). This routine should exist within the application
code, and contain all the necessary bootstrap code to initialize it properly, e.g.:

nydeno. c:

int root _thread_ init (void)

{
/* Create a nessage queue. */
nessage_qid = nsgQCreat e(16, si zeof (char *), M5SG Q FI FO ;
/* Spawn two real-time tasks to exchange nessages
t hrough the just created queue. */
consumer _tid = taskSpawn(" Consumer Task",
CONSUMER _TASK_PRI
0!
CONSUMER_STACK_SI ZE,
(FUNCPTR) &consuner _t ask,
0,00000,00,0,0);
producer tid = taskSpawn("Producer Task",
PRODUCER_TASK_PRI ,
05
PRODUCER_STACK_SI ZE,
(FUNCPTR) &pr oducer _t ask,
0,0,0,0,0,0,0,0,0,0);
return O0; /* Success */
}

Introduction to UVMs — RevB - 10/09/05

Typical system call dynamics with UVMs

Let's say that our VxWorks application attempts to acquire a resource on behalf of one of
its threads, from a fully depleted semaphore using the semTake() service provided by the
embedded VxWorks emulator. Here is the typical flow of events which would occur:

In the UVM space, the semTake() service implemented by the RTOS emulator
notices that the caller should wait, link it to some internal wait queue, and calls
the virtual nucleus to suspend it;

The virtual nucleus in UVM space proceeds to blocking the caller, then updates
its scheduling state searching for the next thread to run, and eventually requests
the system layer to switch out the current thread, and switch in the next ready-to-
run thread;

The UVM system layer translates the request coming from the virtual nucleus to
another simple one, palatable for the real nucleus in kernel space, i.e. resume the
incoming thread which is ready-to-run at the UVM level, and suspend the blocked
thread, all in a system-wide manner.

The real nucleus in kernel space receives the previous request through its internal
syscall interface dedicated to the UVM management, then proceeds as requested.
As a consequence of this, the real-time thread the virfual nucleus has elected for
running, in order to replace the one just blocked on the VxWorks semaphore,
resumes from its previous suspension, as expected.

Building UVMs

Xenomai configuration

As illustrated before, each UVM embeds the following components into a single, multi-
threaded Linux process:

A copy of the standard Xenomai's real-time core which will act as the virtual
nucleus for the UVM;

The UVM support layer which connects the embedded virtual nucleus to the real
one running in kernel space for managing real-time threads;

A copy of any RTOS skin or real-time interface needed by the application;

The application code itself.

The first two components are automatically built when the User-space VM support from
the APIs section has been enabled at configuration time for Xenomai
(CONFIG_XENO_OPT_UVM=y). This feature also requires the real-time support in
user-space to be compiled in, which is the default
(CONFIG_XENO_OPT_PERVASIVE=y).

Then, for each RTOS skin available with Xenomai which has been selected into the APIs

Introduction to UVMs — RevB - 10/09/05

configuration section, and which supports UVM hosting, a user-space library belonging
to the third kind of components will be produced. E.g. After installation
/usr/realtime/lib/libvxworks.a will contain the UVM-embeddable version of the VxWorks
skin, /usr/realtime/lib/libpsos.a will contain the one for the pSOS+ skin, and so on.

Compilation and link

Xenomai provides the xeno-config script, which sends back various information upon
request, like the valid compilation and link flags to pass to the GCC toolchain when
building applications for various execution contexts (i.e. kernel, user-space, simulation).
The Makefile frag below is enough to build a demo application called mydemo, from a
single source file named mydemo.c:

Makefi | e:
prefix := $(shell xeno-config --prefix)
ifeq ($(prefix),)

$(error Please add <xeno-install-path>/bin to your PATH vari abl e)
endi f

UM CFLAGS : = $(shell xeno-config --uvmcflags)
UVM LDFLAGS : = $(shell xeno-config --uvmldflags) -Ivxworks
UVM TARGETS : = nydeno

al 11 $(UYM TARGETS)

$(UVM TARGETS) : $(UVM_TARGETS: %% c)
$(C0) -0 $@$< $(UM CFLAGS) $(UVM LDFLAGS)

cl ean:
$(RM -f $(UVM TARGETS)

As you can see, most of the cryptic and cumbersome work is done by the xeno-config
script, which is asked to return the correct compilation and link flags to produce a UVM
executable.

Running UVMs

Since a UVM is embodied into a regular Linux process, running it is just about launching
a plain Linux executable, after having loaded the required kernel support, like this:

insmod /usr/realtime/modules/xeno_hal.ko

insmod /usr/realtime/modules/xeno_nucleus.ko

Introduction to UVMs — RevB - 10/09/05

Because real-time threads are underlaid by native POSIX threads undergoing the
SCHED_FIFO scheduling policy, super-user privileges will be required.

The UVM can be passed parameters using the shell environment strings, which largely
depends on the application and the RTOS emulator used. The following parameter is
common to all existing emulators of traditional RTOS:

tick_hz=<periodic-tick-duration>

The value is given in HZ, and usually defaults to 1000. It specifies the frequency of the
UVM timer; in other words, in the default case, the UVM's internal time source will be
programmed to tick each millisecond. Specifying a 250 us tick on the command line can
be achieved this way:

tick_hz=4000 ./my-uvm-based-app
or
export tick_hz=4000; ./my-uvm-based-app

Please refer to the specific RTOS skin documentation for other parameters.

Debugging code within UVMs

One word: GDB. Xenomai has been designed to work as symbiotically as possible with
the Linux kernel, and as such, standard ptracing and signal supports are kept available for
use with real-time threads in user-space, like the ones created by UVMs. Internally, the
threads will be switched automatically to secondary mode, i.e. under the control of the
Linux kernel, when their respective code is stepped by GDB, or a breakpoint is hit.
Xenomai guarantees that they will be switched back automatically to primary mode as
soon as it is needed.

Any example code?

Yes, there is some. Search for a demos/ sub-directory into the various existing RTOS
emulator packages. When one exists, you can find there some simple but still runnable
demos of the UVM support embedding the emulator code, along with the proper
Makefile one can use to build it. Currently, some demonstration code exists for
Xenomai's VxWorks and pSOS+ emulators, respectively under the skins/vxworks/demos
and skins/psos+/demos directories.

Conclusion

The UVM support is actually born out of the author's laziness, with respect to writing
several interface libraries, which should have implemented a user-level wrapper for each
and every system call exported by each existing emulator of traditional RTOS in kernel
space. Crafting the UVM support was actually much simpler and likely less boring than

Introduction to UVMs — RevB - 10/09/05

having to code up to eighty system call wrappers for some emulators like the VxWorks or
pSOS+ skins, so that applications could invoke the kernel-based Xenomai services from
user-space... For this reason, and although such interface library actually exists for the
native Xenomai interface and allows user-space applications to invoke kernel-based
Xenomai services, just like the glibc provides wrappers for each of the Linux kernel
syscalls, on the other hand, emulators of traditional RTOS currently need the UVM
support to be used in user-space.

This said, the UVM support is remarkably efficient latency-wise, since it is based on the
same kernel support than are the native Xenomai tasks in user-space, thus guaranteeing
worst-case latencies in the lowest micro-second range. In the same way, the emulated
RTOS tasks can also invoke regular Linux services, migrating seamlessly between the
primary and secondary modes as needed. This should dramatically ease the porting effort,
especially for portions of the original application which could accommodate with the
possibly increased latency induced by using some of the native glibc services.

rpm@ xenomai.org

Introduction to UVMs — RevB - 10/09/05

