The Real-Time Driver Model and First Applications

J. Kiszka
University of Hannover
Appelstrasse 9A, 30167 Hannover, Germany
kiszka@rts.uni-hannover.de

Abstract

The Real-Time Driver Model (RTDM) is an approach to unify the interfaces for developing device
drivers and associated applications under real-time Linux. The device models supported by RTDM will
be introduced in this paper. An overview of the low and high level APIs will be given and the concept
of device profiles for defining generic device interfaces will be presented. Moreover, the integration of
RTDM in Xenomai will be explained and a survey of already available applications of this concept will

be provided.

1 Introduction

Since the introduction of so-called dual-kernel hard
real-time Linux extensions like RTLinux [1] and
RTAI [2], a large number of drivers have been de-
veloped as well. Just to name a few, there are both
vendor-independent projects like Comedi [3], rtcan
[4], or rt_com [5] as well as vendor-provided driver
packages [7, 6].

Although many of those drivers address similar
hardware, only few effort has been spent so far on
unified application programming interfaces. Most
drivers define their own library-like API which hin-
ders easy replacements of hardware, as the applica-
tion software has to be adapted to the driver of the
new hardware.

Comedi provides a useful abstraction for data ac-
quisition devices but is limited to a subset of control
applications, excluding scenarios where direct access
to low-level devices like fieldbuses is required. Also,
Comedi does not include intermediate interface spec-
ifications for more complex device stacks, e.g. when
USB-attached acquisition devices shall be used over
a reusable real-time USB stack.

Some RTLinux/GPL drivers [8, 9] map their
services on the POSIX I/O interface this variant
provides. This mapping aims in principle into the
right direction, but the basic POSIX I/0 interface is
too restrictive for message-oriented devices. Under
common OSes, this type of devices is typically ad-
dressed via protocol stacks which are mapped on the
well-established socket programming model. In con-

trast, POSIX-I/O-based devices that handle discrete
messages either have to misuse the stream-oriented
read/write interface or define specific IOCTLs for
message transmission and reception.

Moreover, drivers are still being developed sep-
arately for the currently predominant free real-time
Linux variants. Partly, this seems to happen due to
personal favours of the driver maintainers. But there
are also obvious technical reasons. As no common
API exists, every driver would have to come with its
own abstraction layer for all target variants. The re-
quired effort makes it understandable that portable
drivers are very few these days.

In order to overcome this deficits technically
and organisationally, the Real-Time Driver Model
(RTDM) has been specified and first implemented on
top of Xenomai [10], the successor of RTAI/fusion.
Also several reference drivers have been ported or
newly developed to demonstrate the concept and
proof its feasibility. Another aim of this effort is to
create a platform for research on secure hard real-
time operating systems and driver [11, 12], but the
latter aspect goes beyond the scope of this paper.

In the following section, the RTDM core concept
is introduced. Section 3 presents the implementation
for Xenomai, and Section 4 gives an overview of al-
ready realised or upcoming applications. The paper
concludes with a summary and an outlook on future
goals.

2 RTDM

The Real-Time Driver Model is first of all intended to
act as a mediator between the application requesting
a service from a certain device and the device driver
offering it. Figure 1 shows its relation to other sub-
system layers.

Application |

Wrapper Library

Y v

‘ RTDM |

¥

Hardware
Abstraction Layer

L)

Hardware Hardware
Driver Driver

‘ Application | ‘

FIGURE 1: RTDM and Related Layers

The depicted libraries on its top and the hard-
ware abstraction layers on the bottom are not within
the scope of RTDM. Rather, they are optional indi-
rection layers which may be added where further ab-
straction is desired. Libraries may be introduced to
simplify the usage of the upper RIT'DM API for a spe-
cific device class. HALs are recommended to reuse
code passages common to several drivers, e.g. a pro-
tocol stack attached on top of different low-level com-
munication adapter drivers. Consequently, RTDM
supports and encourages driver stacking, see Figure
2, but the driver developer remains free to define dif-
ferent inter-driver layers where appropriate. An ex-
ample is the NIC adapter interface of RTnet which
is derived from standard Linux in order to simplify
the porting of non-real-time drivers to RTnet [13].

‘ Application |

¥

‘ RTDM |

Y

CANopen
Protocol

¥

‘ RTDM

Y

RTnet UDP
Protocol

| Inter-Driver
By-Pass

FIGURE 2: Stacking RTDM Devices

While RTDM’s high-level API follows the
POSIX socket and I/O model [14], its low-level inter-
face is designed to provide a small RTOS abstraction
layer for building portable drivers upon.

2.1 Device Models

Two different types of devices are supported by
RTDM. They have been selected based on the char-
acteristics of currently available drivers for real-time
Linux.

e Protocol Devices

All message-oriented devices fall in this group.
Protocol devices are registered using two iden-
tifiers, the protocol family and the socket
type. They are addressed according to
the POSIX socket model, i.e. by in-
voking socket() for creation and close()
for destruction. At the least, they have
to provide support for sending and receiv-
ing messages: sendmsg() and recvmsg()
on which send()/sendto() and accordingly
recv() /recvfrom() are mapped internally.
Moreover, drivers of protocol devices may han-
dle requests issued via ioctl(). This inter-
face is also used to pass the remaining socket
callsbind (), connect (), listen(), accept (),
shutdown(), getsockopt(), setsockopt(),
getsockname (), and getpeername() to the
driver. This mapping has been chosen to avoid
creating a significant amout of entry points
in the RTDM layer for only infrequently used
functions.

e Named Devices

These devices are registered with the real-time
subsystem under a unique clear-text name and
can then be instantiated using the open () func-
tion. RTDM does not maintain a specific nam-
ing hierarchy or file system. Basically, drivers
are free in choosing device names, but regu-
lar schemes are specified for common classes in
device profiles. Named devices can be subdi-
vided into those which support stream-oriented
I/O (read() /write()) and those that solely
offer functionality via the ioctl() interface.
A typical example for the former group are
UART devices. The latter group catches all
devices which do not match both the message
and stream oriented model.

RTDM does not include a specific model for real-
time block devices or even file systems. Such class
of devices is currently considered minor important
because most hard real-time applications can be re-
alised with non-real-time file systems in combination
with appropriately sized intermediate buffers. How-
ever, future extensions are possible in case demand-
ing scenarios emerge.

2.2 Device Registration and Invoca-
tion

A RTDM device is registered by passing a device de-
scription to rtdm_dev_register (). Table 1 gives an
overview of central parameters that have to be spec-
ified for this purpose (informational fields were left
out).

Field Name Description

Defines the device type
(named/protocol) and if the
device can be instantiated only
once at the same time (exclusive
device) or multiple times.

device flags

device name Name to be registered (named

devices only).

protocol family Protocol family (PFxxx) and
socket_type socket type (SOCK_xxx) to be reg-
istered (protocol devices only).
context_size Size of the driver defined ap-
pendix to the structure describ-
ing a device instance (device con-

text).
open.rt Handler for named device in-
opennrt stance creation (real-time and
non-real-time invocation).
socket rt Handler for Protocol socket cre-
socket nrt ation (real-time and non-real-
time invocation).
ops Contains the operation handlers

for newly opened device in-
stances. The operations are
close, ioctl, read, write, recvmsg,
and sendmsg. Depending on the
device type, not every handler
has to be provided. Again, differ-
ent handlers can be specified for
real-time and non-real-time invo-
cations.

device_class Categorisation of the device, see
device_sub_class Section 2.4.

TABLE 1: Device Structure (digest)

As different synchronisation mechanisms and re-

source allocation strategies have to be used in real-
time contexts in contrast to non-real-time environ-
ments, a clear differentiation of service invocation
contexts is essential. In order to let the driver decide
how to handle different contexts, separate handlers
can be installed for each entry type. If, e.g., the
open procedure of a device shall only be executed in
non-real-time context, the driver simply registers no
real-time handler for open, and vice versa. In case a
handler is context-agnostic, it is also possible to reg-
ister the same handler for both entry points. More-
over, the RTDM implementation can provide intel-
ligent context switching upon service invocations in
case the underlying RTOS supports such a feature.

When an application or another driver creates a
device instance, RTDM sets up a new context struc-
ture for this usage and redirects the call to the related
driver. The context structure keeps general informa-
tion about the instance like the file descriptor or a
usage counter. It also allows to overwrite the opera-
tion handlers to be used with this particular instance.
Attached to the general part is a private storage for
the driver. The size of the storage can be specified
during device registration.

Closing a device instance is sensitive to the cor-
rect context. If the instance has been created in non-
real-time context, it cannot be closed within a real-
time task. This is due to the fact that resource allo-
cations (foremost memory) of both the RTDM layer
and the drivers will prefer non-real-time pools when
accessible to save typically more limited resources of
real-time pools. The RTDM layer has to take care
of this rule and catch potential violations.

Drivers are allowed to create device instances as
well. An equivalence of the user API is available to
them. Alternatively, drivers can also call operation
handlers of other drivers directly. For this purpose,
the related device context first has to be resolved via
rtdm context _get () after instantiating the device
as normal. Then this context can be used to ob-
tain the desired handler reference and to invoke the
operation without any indirections of RTDM. The
context is locked against closure and has to be ex-
plicitly released via rtdm_context_unlock() before
closing the device.

2.3 RTOS Abstraction Layer

To increase the portability of drivers, RTDM pro-
vides a generic API of elementary RTOS services
that is independent of the underlying system. The
API is designed to offer only a minimum set of ser-
vices typical real-time drivers require. This helps to
keep the RTDM layer small and also improves its
own portability over other real-time Linux variants.
The following groups of services are available:

e Clock Services
RTDM offers a single clock source which can
be queried by rtdm_clock read(). Time is ex-
pressed by 64 bit values in nanoseconds.

e Task Services
This group of functions allows drivers to create
their own real-time tasks, suspend the execu-
tion of user and driver tasks, or manipulate
their characteristics (priority and periodicity).

e Synchronisation Services

Various elementary synchronisation services
are provided by RTDM. First of all, spinlocks
can be used for protecting small critical paths,
also when they are located in interrupt han-
dlers or run in non-real-time contexts. Clas-
sic mutexes and semaphores for synchronising
real-time tasks are available as well. As an
alternative to semaphores, events can be ap-
plied. They do not count beyond 1 and can also
be instructed to only wake up currently wait-
ing tasks without storing the event. Mutexes,
semaphores, and events support so-called time-
out sequences which will be introduced later.

e Interrupt Management Services
An essential service for most hardware drivers
are interrupts. Handlers for real-time interrupt
lines can be registered with RTDM, and the
lines can be enabled and disabled explicitly.

e Non-Real-Time Signalling Services

To propagate events from the real-time to the
non-real-time domain, a special signalling ser-
vice can be requested from the RTDM layer.
Triggering such a signal is safe from any con-
text. The registered handler will then be ex-
ecuted in non-real-time context as soon as no
more time-critical tasks are pending.

e Utility Services
This group of services includes real-time mem-
ory allocation, safe access to user space mem-
ory areas, real-time-safe kernel console output,
and, as an alternative to separate service en-
try points, a check if the current context is a
real-time task.

Timers are not explicitly provided. Instead,
drivers are given the powerful mechanism of time-
out sequences for handling service requests. Time-
out sequences can be used to apply a single, continu-
ous timeout value while calling blocking synchronisa-
tion functions multiple times. Stream devices, e.g.,
require to wait iteratively on incoming data while
maintaining an overall timeout. The code fragment

below illustrates such a service handler and the usage
of timeout sequences.

int device_service_routine(...)
{
rtdm_toseq_t timeout_seq;

rtdm_toseq_init (&timeout_seq, timeout);

while (received < requested) {
ret = rtdm_event_timedwait (
&data_available,
timeout,
&timeout_seq) ;
if (ret < 0) // including -ETIMEDOUT
break;

// receive some data

By convention, timeouts should be passed in
nanoseconds as signed 64-bit values when request-
ing device services. The timeout value 0 is auto-
matically interpreted by synchronisation services as
infinite delay, any negative value as no delay at all
(non-blocking request).

Time-triggered events outside service requests
can be executed within driver tasks. This allows to
assign specific priorities to time-triggered actions in-
stead of just executing them at the level of all timers,
i.e. typically above any user task or even in interrupt
context.

Detailed information on all RTDM services is
available through the Xenomai API documentation
which can be found on the project homepage [10].

2.4 Device Profiles

Beyond simplifying the implementation of device
drivers for real-time Linux and improving their
portability, another aim of RTDM is to establish
device abstractions for common hardware classes.
Generic device interfaces allows to develop applica-
tions that are less dependent on specific hardware
and their interfaces than it is now the case with real-
time Linux. Moreover, the learning curve for writing
real-time applications becomes steeper with a com-
pacter set of device interfaces.

RTDM organises device abstractions in so-called
device profiles. Every profile defines for a specific de-
vice class how conforming drivers have to be realised.
More in details, the following aspects are covered:

e Device Characteristics
This category defines the device class and its
representation in the device structure (see Ta-
ble 1), the device type (i.e. the device flags
field), and the naming scheme for named de-
vices, respectively the protocol family and
socket type for protocol devices.

e Supported Operations

All major operations that have to be imple-
mented by conforming drivers are listed here
together with the required and optional invo-
cation contexts (real-time/non-real-time) and
the meaning of specific return values. More-
over, the IOCTLs and socket options devices
have to provide are described in details, i.e.
their arguments, return codes, and invocation
contexts.

e Types and Constants
Structures and other data types typically intro-
duced with device class specific IOCTLs and
socket options have to be described in details,
as well as any constants to be used in this con-
text.

Non-common extensions to device classes are in-
tended to be organised in subclasses. Thereby, fea-
tures that are only available with certain hardware
e.g. can be specified as optional to the superior class.

A significant number of device profile specifica-
tions is currently under development or is pending to
be derived from existing drivers, Section 4 will give
an overview.

3 RTDM in Xenomai

While the history of RTDM lasts back to the releases
0.6 (RTOS abstraction layer) and 0.7 (device models)
of the real-time networking stack RTnet, Xenomai
was the first real-time Linux extension to support
the new RTDM revision as presented in this paper.

Xenomai allows to attach various user APIs,
called skins, to its scheduler nucleus. These APIs are
available to kernel space and user space real-time ap-
plications. Most skins may even be loaded in parallel,
thus offering interfaces for different types of real-time
applications at the same time. Most popular skins
are the native skin, an improved version of the clas-
sic RTAI API, and a POSIX-conforming skin. There
are also interfaces for commercial RTOSes available,
e.g. VxWorks or pSOS+.

Early ideas to include RTDM in Xenomai’s na-
tive skin were quickly dropped in favour of the final
concept to create a separate skin. This skin can now
be loaded together with the preferred main interface

and is thus able to provide RTDM services indepen-
dently. The RTDM user API is addressable both
from kernel and user space. The function names of
RTDM’s POSIX interface carry a rt_dev._ prefix in
order to distinguish them from non-real-time vari-
ants. A library, 1ibrtdm, is used to redirect API calls
from user space to the kernel services. The RTDM
skin makes use of Xenomai’s ability to switch user
space real-time threads automatically between hard
real-time (primary) and Linux (secondary) operation
mode. In case no handler for a device service request
is available in the current mode, RTDM switches over
to the supported one. If handlers for both contexts
are present, RTDM always preserves the operation
mode so that the user is able to control in which
context a device service shall be executed.

The integration of RTDM into the POSIX skin
is realised differently. Here, the user space in-
terface is directly included in the wrapper library
libpthread rt. RTDM devices can be opened un-
der the POSIX skin by using the normal function
names without any prefixes. As the name spaces of
RTDM and standard Linux now overlap, the follow-
ing scheme is applied when handling instantiation
requests: first, the RTDM subsystem is consulted to
open the device or create the socket. If this fails
due to an unknown device name or protocol, the re-
quest is forwarded to the non-real-time subsystem as
usual. To differentiate between file descriptors cre-
ated by standard Linux on the one side and RTDM
on the other, the maximum value of a non-real-time
descriptor is limited to FD_SETSIZE—1, reduced by
the typically small maximum number of real-time
descriptors. Every descriptor value above this limit
is handled by RTDM, everything below or equal is
forwarded to Linux. Keeping real-time descriptors
within the range of file descriptor sets allows future
extensions of RTDM with poll/select functionalities.

4 Applications

The RTDM revision described here was first tested
extensively with RTnet and a UART device driver
under Xenomai. Both scenarios and the related de-
vice profiles are shortly introduced below. Mean-
while, further applications emerged that are cur-
rently being developed or planned for RTDM. On
overview is given in the following as well.

4.1 RTDM Devices of RTnet

The real-time networking stack RTnet comes with
three different device profiles for RTDM. First of all,
there are two protocol devices, real-time UDP and
the packet socket interface. Both profiles basically

conform to the interfaces available with Linux and
other POSIX implementations. Additionally, several
IOCTLs are defined to control RTnet-specific trans-
mission parameters (priority and channel/slot), set a
reception timeout according to the RTDM format, or
manipulate the number of packet buffers per socket.

Moreover, the TDMA discipline for RTmac
maintains a special device for each real-time NIC it
is attached to. This device provides an IOCTL to
retrieve the offset of the local clock relative to the
global TDMA clock. Another IOCTL is available to
synchronise the calling real-time task on the TDMA
cycle of the related NIC.

Support for recent RTDM can be found in RTnet
since release 0.9.0.

4.2 Serial Device

As an example for named stream devices, a serial
device profile has been worked out. This profile pro-
vides access to a serial device via read/write. It
also defines IOCTLs to manipulate the output sta-
tus lines, retrieve the input lines, wait on device
events, and configure the line characteristics, time-
outs, and events of a serial device. As a specifically
real-time-oriented feature, a timestamp history for
every character in the input queue can optionally
be maintained. Such precise timestamping is typ-
ically required when synchronising multiple sensors
and actuators attached to different I/O interfaces.
The code excerpt below shows the related IOCTL
and data structure to obtain timestamps:

#define RTSER_RTIOC_WAIT_EVENT \
_IOR(RTIOC_TYPE_SERIAL, 0x05, \
struct rtser_event)

typedef struct rtser_event {
/* signalled events */

int events;
/* number of pending input characters */
int rx_pending;

/* last interrupt timestamp */
__u64 last_timestamp;
/* reception timestamp of oldest character
in input queue */
__u64 rxpend_timestamp;
} rtser_event_t;

Xenomai comes with a reference driver for UART
16550A chips conforming to the serial profile. The
latest profile specification is available with the Xeno-
mai API documentation.

4.3 Process Image Device

In automation scenarios, distributed I/O points are
typically collected via various fieldbuses or other in-

terfaces and mapped into one or more process im-
ages. All communication to collect and update the
I/0 points are hidden behind this abstraction. The
process image is updated either automatically or ex-
plicitly triggered by the control application.

As a first approach to map this model in a generic
way on RTDM, the process image device profile has
been developed. It consists of a named RTDM device
which solely supports two elementary IOCTLs. One
is used to update the process image. The image is
split into an input and an output memory block that
can further be limited to a continuous block within
the full process image, see following code excerpt:

#define RTPI_RTIOC_UPDATE \
_IOWR(RTIOC_TYPE_PROCIMG, 0x01, \

struct rtprocimg)

struct rtprocimg {

off_t procdata_out_offs;
size_t procdata_out_size;
void *procdata_out_buf;
off_t procdata_in_offs;
size_t procdata_in_size;
void *procdata_in_buf;

};

The update may happen synchronously or asyn-
chronously, depending on the device configuration
and hardware abilities. Moreover, several instances
referring to the same physical or logical process im-
age device can be created. In this case, one instance
has to be elected to become the update master which
ultimately decides about the update time. The slaves
have to provide their output changes before the mas-
ter starts a new cycle. This scheme allows to dis-
tribute the processing across several threads or pro-
grams while still keeping the image consistent.

The second IOCTL provides an interface to con-
figure the device, but it only defines mechanisms to
pass and retrieve unspecified configuration data and
to set the update timeout. The precise configuration
data format depends on the subclass and is highly
hardware-dependent.

To prove the profile’s applicability, a driver for a
Hilscher InterBus master adapter has already been
implemented [15] and required configuration data
has been specified for this subclass.

4.4 CAN Protocol Stack

With the aim to develop a compact socket-based pro-
gramming model for the CAN fieldbus, a driver for
a SJA1000 CAN extension card is currently being
implemented at our institute. This effort is tightly
coordinated with parallel work on a CAN framework

for standard Linux. The goal is to have a common
user interface for both approaches, while the imple-
mentation details will differ: the Linux variant will
re-use the networking subsystem, the RTDM version
has to implement a hard real-time capable infrastruc-
ture. The second revision of the device profile was
under development at the time of writing in order
to reflect practical experiences gained through the
ongoing implementation efforts and to include bene-
ficial ideas of a similar approach [16].

With a first concept for mapping CANopen on
the socket model [17] being available now, the de-
velopment of a RTDM CANopen profile is in reach
as well. Drivers implementing it may then either at-
tach to CAN devices or even to other communication
interfaces like RTnet. In best case, the application
will not notice significant differences between such
stacks.

4.5 Tiny Messaging Service (TiMS)

As a revision and update of the real-time commu-
nication framework [18] used for mobile robotics at
our institute, the Tiny Messaging Service has been
defined and implemented for RTDM. While a de-
tailed description would exceed the scope of this pa-
per, a short overview of improvements compared to
the original concept is given in the following.

The basic idea of TiMS remains to exchange mes-
sages between real-time components both locally and
remotely in a transparent but efficient and determin-
istic way. Addressing is based on 32 bit message IDs
that are unique across the whole system. Unlike the
old concept which came with a set of special library
functions, TiMS provides its services as a RTDM pro-
tocol device, thus based on the socket model. A mes-
sage receiver opens a PF_TIMS raw socket and binds
it to a specific ID. The sender opens a socket as well
and passes the raw message header followed by the
payload to TiMS e.g. via send (). In case a destina-
tion ID is not locally available, routing is currently
still based on static information for real-time links
and dynamic lists for non-real-time traffic. By mak-
ing use of RTnet for hard real-time communication
between distributed users, TiMS is also an example
for stacked RTDM drivers.

TiMS is part of the new Robotics Application
Construction Kit (RACK) that has been developed
over Xenomai and is currently in an intensive test
phase. The RACK core is going to be released un-
der Open Source licenses afterwards. The goal is
to provide a mature framework for distributed real-
time computing in user space both for academic and
industrial use cases.

4.6 Planned Profiles

Beyond the work listed above, at least two further
projects plan to make use of RTDM soon. The RT-
FireWire project [19], a hard real-time implementa-
tion of an IEEE 1394 stack, already ported its core
over the RTOS abstraction layer of RTDM. Future
plans include to export a raw FireWire interface as
a RTDM device.

Also the USB4RT project [20] which realises a
hard real-time USB stack aims at a full RTDM sup-
port for its next releases. Again, the goal is to pro-
vide the lower USB interface, on which high level
drivers for I/O devices, cameras, joysticks, etc. can
be built, via an RTDM device.

Beyond these plans, mapping Comedi on RTDM
is considered feasible as well. Comedi already uses a
POSIX I/0 interface between its core and the user
API, which would be mappable directly on named
RTDM devices. Porting Comedi’s real-time core over
the RTDM RTOS layer would furthermore simplify
the maintenance effort for this project regarding sup-
ported real-time platforms.

5 Summary and Future Devel-
opment

This paper presented the Real-Time Driver Model.
It aims at unifying the interfaces against which real-
time device drivers and the applications using them
can be developed. RTDM supports the two mod-
els of named devices for stream and miscellaneous
use cases on the one side and protocol devices for
message-oriented use cases on the other. An abstrac-
tion layer for RTOS services, specifically addressing
driver development, allows portable device drivers
for any Linux platform that implements RTDM. De-
vice profiles are being defined in order to create
generic interfaces for common classes of devices, thus
making applications less dependent on specific hard-
ware and simplifying its replacement.

RTDM is fully implemented under Xenomai and
serves as the reference model for driver development
in this environment. At the time of writing, an ef-
fort to port it over the RTAI development branch
(upcoming release 3.3) has been started as well. Im-
plementing RTDM on other real-time Linux variants
is considered to be feasible, too. As soon as the
currently emerging effort around the PREEMT _RT
patch [21] to add native real-time support directly
to the kernel matured and became common, a com-
patibility layer for RTDM is also imaginable and
would increase the usability of existing hard real-
time drivers even more.

Future work on RTDM itself will deal with inter-
faces and mechanisms to provide poll/select seman-
tics also under hard real-time constraints. The de-
sign of such services is challenging because dynamic
allocation of data structures for managing file de-
scriptor groups that are monitored by poll/select has
to be avoided. Moreover, a common signalling mech-
anism has to be defined so that all combinations of
RTDM device types will be usable. Poll/select sup-
port will likely introduce a certain overhead with re-
spect to code complexity and data structure sizes.
Therefore, it is planned to specify it as a configu-
ration option both for the RTDM core as well as
conforming drivers. As many real-time applications
work fine without these semantics, they should not
suffer from overhead in the future without gaining
advantages.

References

[1] M. Barabanov, 1997, A Linuz-based Real-Time
Operating System, Master’s thesis, New Mexico
Institute of Mining and Technology.

[2] P. Mantegazza, E. Bianchi, et al., 2000, RTAI:
Real-Time Application Interface, Linux Journal
#72, www.linuxjournal.com/article/3838

[3] Comedi, Control and Measurement Interface,
www.comedi.org

[4] rtcan, Realtime CAN for Linuz/RTAIL
www.esfnet.co.uk/index.php?page=rtcan

[5] rt_com, Real-Time Linux driver for the serial
port, rt-com.sourceforge.net

[6] Hilscher GmbH, 2004, RTL CIF Device Driver
V2.000, System Software CD.

[7] ADDI-DATA GmbH, Company Homepage,
driver download section, www.addidata.com

[8] S. Pez, J. Vila, I. Ripoll, 2003, Building Fther-
net Drivers on RTLinuz-GPL, 5TH REAL-TIME
LiNUuX WORKSHOP, Valencia (Spain).

[9) OCERA, Linuz CAN Driver (LinCAN),
www.ocera.org/download/components/ WP7

[10] Xenomai, Project Homepage, www.xenomai.org

[11] J. Kiszka, B. Wagner, 2003, Domain and Type
Enforcement for Real-Time Operating Systems,
9TH IEEE INTERNATIONAL CONFERENCE ON
EMERGING TECHNOLOGIES AND FACTORY AU-
TOMATION, Lisbon (Portugal).

[12] J. Kiszka, B. Wagner, 2004, Securing Software-
Based Hard Real-Time Ethernet, 2ND IEEE IN-
TERNATIONAL CONFERENCE ON INDUSTRIAL
INFORMATICS, Berlin (Germany).

[13] J. Kiszka, B. Wagner, Y. Zhang, J. Broenink,
2005, RTnet A Flexible Hard Real-Time Net-
working Framework, 10TH IEEE INTERNA-
TIONAL CONFERENCE ON EMERGING TECH-
NOLOGIES AND FACTORY AUTOMATION7 Cata-
nia (Italy).

[14] IEEE, 2004, IEEE Std 1003.1, 2004 Edition.

[15] rt_cifibm, 2005, CIF InterBus Master
Driver, www.rts.uni-hannover.de/mitarbeiter/
kiszka/rtaddon

[16] I. Bertolotti, G. Cena, A. Valenzano, 2005, A
Socket-based Interface to CAN, 10TH INTERNA-
TIONAL CAN CONFERENCE, Rome (Italy).

[17] G. Cena, L. Bertolotti, A. Valenzano, 2005, Mod-
elling CANopen Communications According to
the Socket Paradigm, 10TH IEEE INTERNA-
TIONAL CONFERENCE ON EMERGING TECH-
NOLOGIES AND FACTORY AUTOMATION, Cata-
nia (Italy).

[18] O. Wulf, J. Kiszka, B. Wagner, 2003, A Compact
Software Framework for Distributed Real-Time
Computing, 5TH REAL-TIME LINUX WORK-
SHOP, Valencia, Spain.

[19] Y. Zhang, B. Orlic, P. Visser, J. Broenink, 2005,
Hard Real-Time Networking on FireWire using
Linuz/RTAI 7tH REAL-TIME LINUX WORK-
sHop, Lille (France).

[20] USB4RT, USB for Real-Time,
oper.berlios.de/projects/usb4rt

devel-

[21] PREEMPT_RT, Realtime Preemption Patch,
redhat.com/~mingo/realtime-preempt

