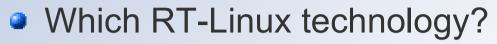

XEN


The RTOS Chameleon for Linux

Jan Kiszka Dipl.-Ing.

Leibniz Universität Hannover Real-Time Systems Group

2007-01-24

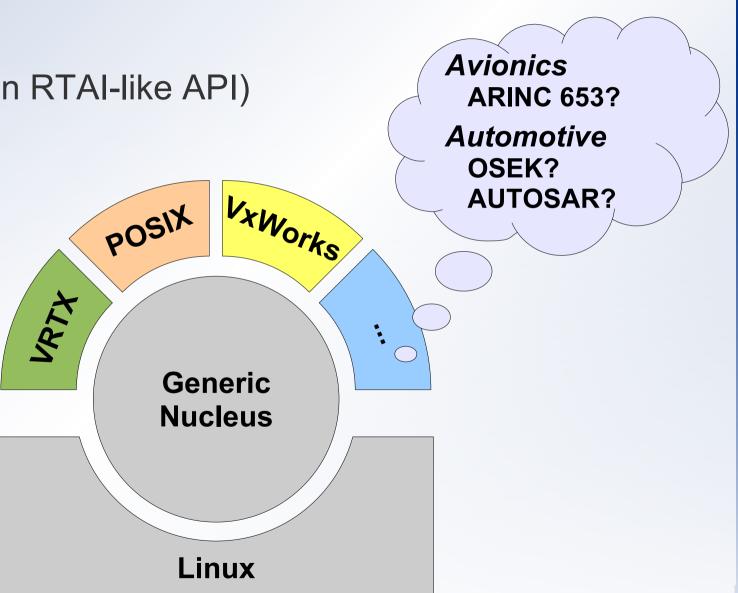
- Co-scheduling?
- ...or native real-time Linux?
- Which kernel
 - Always latest 2.6?
 - Or also older revisions?
 - ...or even keep 2.4?
- How to port from \$RTOS to Linux?
 - Migrate to POSIX API?
 - ...or emulate the legacy API?
- How to create and maintain RT-optimised drivers?

Presentation Outline

Xenomai

- Xenomai Approach
 - Provided APIs
 - Real-Time Driver Model
 - Architectures
 - New RT-Technologies
- Related Open Source Projects
- Application Example
- Summary & Prospects

The Xenomai Approach


- Generic RT-core ("nucleus")
- RTOS APIs provided via "skins"
- Includes hard-RT Linux technology ("I-pipe")
 - Kernel-independent
 - Light-weight
 - But: Highly integrated in Linux environment
- Portability framework for older kernels (2.4 and 2.6)
- Generic RT-driver model across all skins

→ Our goal:

Real-Time APIs for any Linux (OK, almost any)

What Skin Do You Prefer?

- POSIX
- Native (clean RTAI-like API)
- VxWorks
- VRTX
- pSOS+
- µITRON
- RTAI
- RTDM

Drive Hardware in Real-Time

RTDM

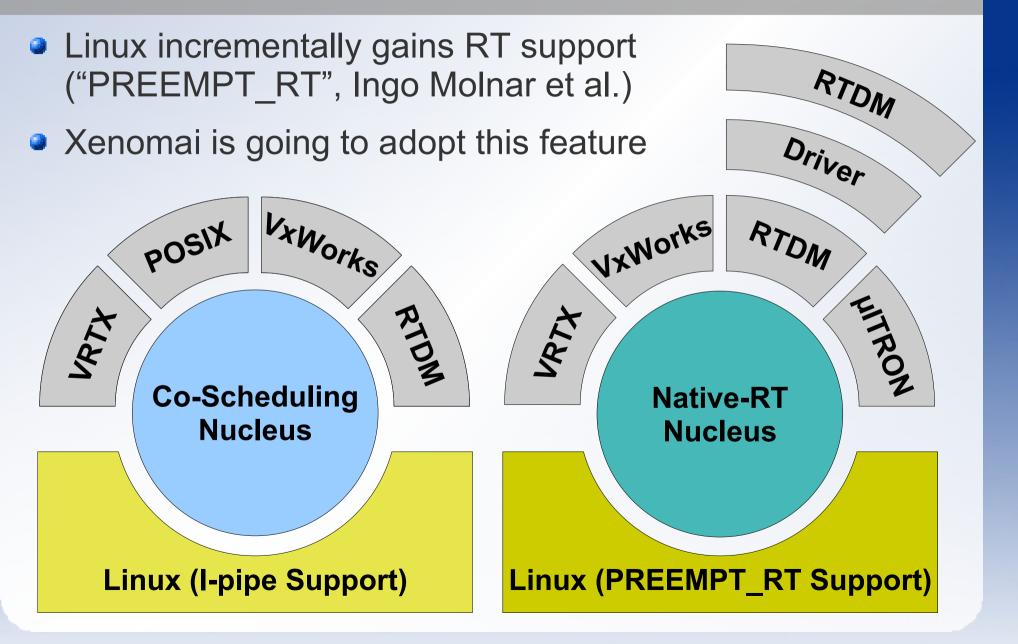
Driver

RTDM – The Real-Time Driver Model

- Lean driver development framework
- POSIX I/O Model
- Set-top box" for Linux
 - RTDM: time-critical services
 - Linux: non-RT setup/cleanup
- Device profiles ensure application portability
- Xenomai-independent design
 RTAI integrates RTDM too
- Example: Integrated RT-CAN stack

Socket-based API for any CAN controller

Permanent Work in Progress



Supported architectures

Kernel Architecture	2.4	2.6
i386	~	
PPC32	 	
PPC64		 ✓
ARM		 ✓
IA64		
Blackfin		
Simulator	User-Space Application	
x86-64		WIP

Select Your RT-Technology

Xenomai Featuring...

RTnet

- RT-FireWire
- USB4RT, USB20RT
- COMEDI over RTDM
- OROCOS
- RACK
- CanFestival
- Xeno--
- LTTng
- kgdb

Image: Reconstruction of the second se

Linux Trace Toolkit Next Generation

(System event tracing) (Remote kernel debugger)

(RT-networking stack)

(RT-IEEE1394 stack)

(DAC driver framework)

(RT-USB stacks)

Application Example: Real-Time Robotics

- Modular autonomous service robots
- Research and industrial scenarios
- Real-time 3D ladar sensor
- Low-end x86 IPCs
- RACK, RT-CAN, RTnet, fast UARTs
- Integrates standard hardware/software with strict RT

Summery & Prospects

- Xenomai: RTOS construction kit for Linux
- Portability as major goal
 - Between architectures
 - Between RT-technologies
 - Between kernel versions
- Home for RT-drivers / stacks
- What is the future about?
 PREEMPT_RT support, more RTOS skins & drivers, ...
 One stop for RT: kernel, drivers, libs, community
- And when?
 - *Counter question:* What do you need first?
 - Any contribution/support can accelerate development!

Thank You!

www.xenomai.org

Jan Kiszka