
1

Paulo Pedreiras1, Filipe Teixeira2, Nelson Ferreira2, Luís Almeida1, Armando
Pinho1, Frederico Santos3

1 LSE-IEETA/DET, Universidade de Aveiro Aveiro, Portugal
{pedreiras,lda,ap}@det.ua.pt

2 DET, Universidade de Aveiro Aveiro, Portugal
{a23082,a21085}@alunos.det.ua.pt

3 DEE, Instituto Politécnico de Coimbra, Coimbra, Portugal
fred@mail.isec.pt

Abstract. Interest on using mobile autonomous agents has been growing,
recently, due to their capacity to cooperate for diverse purposes, from rescue to
demining and security. In many of these applications the environments are
inherently unstructured and dynamic, requiring substantial computation
resources for gathering enough sensory input data to allow a safe navigation
and interaction with the environment. As with humans, who depend heavily on
vision for these purposes, mobile robots employ vision frequently as the
primary source of input data when operating in such environments. However,
vision-based algorithms are seldom developed with reactive and real-time
concerns, exhibiting large variations in the execution time and leading to
occasional periods of black-out or vacant input data. This paper addresses this
problem in the scope of the CAMBADA robotic soccer team developed at the
University of Aveiro, Portugal. It presents an evolution from a monolithic to a
modular architecture for the vision system that improves its reactivity. With the
proposed architecture it is possible to track different objects with different rates
without losing any frames.

Coordinating several autonomous mobile robotic agents in order to achieve a common
goal is currently a topic of intense research [11,7]. This problem can be found in
many robotic applications, either for military or civil purposes, such as search and
rescue in catastrophic situations, demining or maneuvers in contaminated areas. One
initiative to promote research in this field is RoboCup [7] where several autonomous
robots have to play football in a team to beat the opponent.

As for many real-world applications, robotic soccer players are autonomous,
though potentially cooperative, mobile agents that must be able to navigate in and
interact with their environment. Some of these actions exhibit real-time
characteristics, although with different levels of criticality. For instance, the capability

1 This work was partially supported by the European Community through the ARTIST2 NoE

(IST-004527) and by the Portuguese Government through the project FCT-
POSI/ROBO/43908/2002, also partially funded by FEDER.

to timely detect obstacles in the vicinity of the robot can be regarded as a hard activity
since failures, either in the temporal or value domains, can result in injured people or
damaged equipment. On the other hand, activities like self-localization or tracking the
ball, although important for the robot performance, are inherently soft since failing in
these activities simply causes performance degradation. The capability to timely
perform the required image-processing activities at rates high enough to allow visual-
guided control or decision-making is called real-time computer vision (RTCV) [13].

The RoboCup soccer playfield resembles human soccer playfields, though with
some (passive) elements specifically devoted to facilitate the robots navigation. In
particular the goals have solid and distinct colors and color-keyed posts are placed in
each field corner. This type of environment can be classified as a passive information
space [2]. Within an environment exhibiting such characteristics, robotic agents are
constrained to rely heavily on visual information to carry out most of the necessary
activities, leading to a framework in which the vision subsystem becomes an integral
part of the close-loop control. In these circumstances the temporal properties of the
image-processing activities (e.g. period, jitter and latency) strongly impact the overall
system performance. Therefore, the application of real-time techniques to these
activities so as to improve their temporal behavior by reducing mutual interference
and limiting processing demand seems adequate to improve global performance.

In this paper we propose a new modular architecture for the vision subsystem,
where different objects are tracked by independent processes. Using appropriate
operating system services, these processes are then scheduled according to their
relative importance, with preemption. The result is a noteworthy improvement of the
temporal behavior of the processes deemed to have greater impact on the overall
system performance.

 The remainder of the paper is structured as follows: Section 2 presents the generic
computing architecture of the CAMBADA robots. Section 3 shortly describes the
working-principles of the vision-based modules and their initial implementation in the
CAMABADA robots. Section 4 describes the new modular architecture that has been
devised to enhance the temporal behavior of the image-processing activities. Section
5 presents experimental results and assesses the benefits of the new architecture.
Finally, Section 6 concludes the paper.

The computing architecture of the robotic agents follows the biomorphic paradigm
[9], being centered on a main processing unit (the brain) that is responsible for the
higher-level behavior coordination (Fig. 1). This main processing unit handles
external communication with other agents and has high bandwidth sensors (the
vision) directly attached to it. Finally, this unit receives low bandwidth sensing
information and sends actuating commands to control the robot attitude by means of a
distributed low-level sensing/actuating system (the nervous system).

The main processing unit is currently implemented on PC-based computers that
deliver enough raw computing power and offer standard interfaces to connect the
other systems, namely USB. The PCs run the Linux operating system over the RTAI
(Real-Time Applications Interface [5]) kernel, which provides time-related services,
namely periodic activation of processes, time-stamping and temporal synchronization.

The agents software architecture is developed around the concept of a real-time
database (RTDB), i.e., a distributed entity that contains local images (with local
access) of both local and remote time-sensitive objects with the associated temporal
validity status. The local images of remote objects are automatically updated by an
adaptive TDMA transmission control protocol [3] based on IEEE 802.11b that
reduces the probability of transmission collisions between team mates thus reducing
the communication latency.

Main
Processor

High bandwidth
sensors

Distributed sensing/
actuation system

External communication
(IEEE 802.11b)

Coordination
layer

Low-level
control layer

Fig. 1. The biomorphic architecture of the CAMBADA robotic agents

The low-level sensing/actuating system follows the fine-grain distributed model [8]
where most of the elementary functions, e.g. basic reactive behaviors and closed-loop
control of complex actuators, are encapsulated in small microcontroller-based nodes,
interconnected by means of a network. This architecture, which is typical for example
in the automotive industry, favors important properties such as scalability, to allow
the future addition of nodes with new functionalities, composability, to allow building
a complex system by putting together well defined subsystems, and dependability, by
using nodes to ease the definition of error-containment regions. This architecture
relies strongly on the network, which must support real-time communication. For this
purpose, it is used the CAN (Controller Area Network) protocol is used [1], which has
a deterministic medium access control, a good bandwidth efficiency with small
packets and a high resilience to external interferences. Currently, the interconnection
between CAN and the PC is carried out by means of a gateway, either through a serial
port operating at 115Kbaud or through a serial-to-USB adapter.

The CAMBADA robots sense the world essentially using two low-cost webcam-type
cameras, one facing forward, and the other pointing the floor, both equipped with
wide-angular lenses (approximately 106 degrees) and installed at approximately 80cm
above the floor. Both cameras are set to deliver 320x240 YUV images at a rate of 20
frames per second. They may also be configured to deliver higher resolution video
frames (640x480), but at a slower rate (typically 10-15 fps). The possible
combinations between resolution and frame-rate are restricted by the transfer rate
allowed by the PC USB interface.

The camera that faces forward is used to track the ball at medium and far distances,
as well as the goals, corner posts and obstacles (e.g. other robots). The other camera,

which is pointing the floor, serves the purpose of local omni-directional vision and is
used for mainly for detecting close obstacles, field lines and the ball when it is in the
vicinity of the robot. Roughly, this omni-directional vision has a range of about one
meter around the robot.

All the objects of interest are detected using simple color-based analysis, applied in
a color space obtained from the YUV space by computing phases and modules in the
UV plane. We call this color space the YMP space, where the Y component is the
same as in YUV, the M component is the module and the P component is the phase in
the UV plane. Each object (e.g., the ball, the blue goal, etc.) is searched independently
of the other objects. If known, the last position of the object is used as the starting
point for its search. If not known, the center of the frame is used. The objects are
found using region-growing techniques. Basically, two queues of pixels are
maintained, one used for candidate pixels, the other used for expanding the object.
Several validations can be associated to each object, such as minimum and maximum
sizes, surrounding colors, etc.

Initializations:
 - Read configuration files
 (Cameras, Objects)
 - Open and set-up camera devices
 - Initialize data structures
 - Initialize SDL

Sleep

Search Obstacles

Search Ball

Search Goals

Search Posts

Update RTDB

Handle keyboard events

New image
ready

Fig. 2. Flowchart of the Frontvision process.

Two different Linux processes, Frontvision and Omnivision, handle the image
frames associated with each camera. These processes are very similar except for the
specific objects that are tracked. Figure 2 illustrates the actions carried out by the
Frontvision process. Upon system start-up, the process reads the configuration files
from disk to collect data regarding the camera configuration (e.g. white balance,
frames-per-second, resolution) as well as object characterization (e.g. color, size,
validation method). This information is then used to initialize the camera and other
data structures, including buffer memory. Afterwards the process enters in the
processing loop. Each new image is sequentially scanned for the presence of the ball,

obstacles, goals and posts. At the end of the loop, information regarding the diverse
objects is placed in a real-time database.

Keyboard, mouse and the video framebuffer are accessed via the Simple
DirectMedia Layer library (SDL, [12]). At the end of each loop the keyboard is
pooled for the presence of events, which allows e.g. to quit or dynamically change
some operational parameters.

As referred to in the previous sections, the CAMBADA robotic soccer players operate
in a dynamic and passive information space, depending mostly on visual information
to perceive and interact with the environment. However, gathering information from
such type of environments is an extremely processing-demanding activity [4], with
hard to predict execution times. Regarding the algorithms described in Section 3,
above, it could be intuitively expected to observe a considerable variance in process
execution times since in some cases the objects may be found almost immediately,
when their position between successive images does not change significantly, or it
may be necessary to explore the whole image and expand a substantial amount of
regions of interest, e.g. when the object disappears from the robot field of vision. This
expectation is in fact confirmed in reality, as depicted in Figure 3, which presents a
histogram of the execution time of the ball tracking alone. Frequently the ball is
located almost immediately, taking less than 2.5ms to complete. However, a
significant amount of instances require between 17.5ms and 32.5ms to complete and,
sometimes, the process requires over 50ms, which is the inter-frame period used by
the cameras.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 5 10 15 20 25 30 35 40 45 50 55

Time (ms)
Fig. 3. Ball tracking execution time histogram captured at run-time

As described in Section 3, the CAMBADA vision subsystem architecture is
monolithic with respect to each camera, with all the image-processing carried out
within two processes, the Frontvision and the Omnivision, respectively. Each of these
processes tracks several objects sequentially. Thus, the following frame is acquired
and analysed only after tracking all objects, which may take, in the worst case,
hundreds of milliseconds, causing a certain number of consecutive frames to be
skipped. These are vacant samples for the robot controllers that degrade the respective
performance and, worse, correspond to black-out periods in which the robot does not

react to the environment. Considering that, as discussed in Section 1, some activities,
like obstacle detection, have hard deadlines this situation becomes clearly
unacceptable. Increasing the available processing power could, to some extent,
alleviate the situation (although not completely solve it). However, the robots are
autonomous and operate from batteries, and thus energy consumption aspects are
highly relevant, which renders brut-force approaches undesirable.

4.1 Using Real-Time Techniques to Manage the Image Processing

As remarked is Section 1, some of the activities carried out by the robots exhibit real-
time characteristics with different levels of criticality, importance and dynamics. For
example, the latency of obstacle detection limits the robots maximum speed in order
to avoid collisions with people, walls or other robots. Thus, the obstacle detection
process should be executed as soon as possible, in every image frame, to allow the
robot to move as fast as possible in a safe way. On the other hand, detecting the
corner poles for localization is less demanding and can span across several frames.
However, this activity should not block the more frequent obstacle detection. This
calls for the encapsulation of each object tracking in different processes as well as for
the use of preemption and appropriate scheduling policies, giving higher priority to
most stringent processes. These are basically the techniques that were applied to the
CAMBADA vision subsystem as described in the following section.

4.2 A Modular Software Architecture

Figure 4 describes the software modular architecture adopted for the CAMBADA
vision subsystem. Standard Linux services are used to implement priority scheduling
and preemption while the Real-Time Application Interface real-time kernel (RTAI)
[5] is used to synchronize and trigger processes with a specified period and offset.

ReadXC

Local buffer proc_obj:1

Local buffer proc_obj:n

Control
process

Display
process

H/W

Image
buffer Object

data

Linux
RTAI

Fig. 4. Modular software architecture for the CAMBADA vision subsystem

Two processes, one for each camera (ReadXC), create a shared memory region
where the camera images are buffered. These processes are sporadic and
automatically triggered by each camera whenever a new frame is ready for download.
Each object tracking process (e.g. obstacle, ball), generically designated by

proc_obj:x, x={1,2,…n}, is triggered periodically and with an adequate offset by an
RTAI process. Once started, each process gets a private copy of the most recent
image frame available and starts tracking the respective object. Once finished, the
resulting information (e.g. object detected or not, position, degree of confidence, etc.)
is placed in a real-time database [6] (Object info), similarly located in a shared
memory region. This database may be accessed by any other processes on the
system, e.g. to carry out control actions. A display process may also be executed,
which is useful mainly for debugging purposes.

Scheduling of vision related processes relies on the real-time features of the Linux
kernel, namely the FIFO scheduler and priorities in the range 15-50. At this level
Linux executes each process to completion, unless the process blocks or is preempted
by other process with higher real-time priority. This ensures that the processes are
executed strictly according to their priority (i.e., importance) with full preemption,
relying solely on operating system services, in a non intrusive and transparent way.
The real-time features of Linux, despite limited, are sufficient at this time-scale
(periods multiple of 50ms) as long as memory swapping and disk access are avoided.

Since each process operates on a private copy of the image frame, there is no
danger of the image being altered during its execution. This approach is adequate to
situations where different objects have different degrees of dynamism, e.g., the ball is
highly dynamic and needs being tracked in every frame but the relative goal position
is less dynamic and can be tracked every four frames. Moreover, in the latter case
prediction methods can be effectively used, as suggested in [10], to allow obtaining
estimates of object positions based on past data.

The activation of the distinct image-processing activities was left to RTAI due to
the lack of adequate Linux support to periodic processes. RTAI explicitly supports
periodic tasks with offset control. These features easily allow allocating specified
periods to each activity and de-phasing them in the time domain to minimize mutual
interference, thus reducing their response time. The synchronization between Linux
processes and the associated RTAI tasks is carried out by means of real-time FIFOs.

In order to assess the benefits of the modular approach with respect to the initial
monolithic one, several experiments were conducted, using a PC with an Intel
Pentium III CPU, running at 833MHz, with 256MB of RAM. The PC runs a Linux
2.4.21 kernel, patched with RTAI 24.1 for the experiments involving the real-time
architecture. The image-capture devices are Logitech Quickcams, with a Philips
chipset. The cameras were set-up to produce 320*240 images at a rate of 20 frames-
per-second. The time instants were measured accessing the Pentium TSC.

5.1 Monolithic Architecture

The code of the Frontvision and Omnivision processes (Section 3) was instrumented
to measure the start and finishing instants of each instance. Figure 5 presents a
histogram of the inter-activation intervals of these processes, while Table 1 presents a
summary of some relevant statistical figures regarding their response-time.

Fig. 5. Activation interval for Frontvision (left) and Omnivision (righ)

The response time of both processes exhibits a substantial variance, with execution
times ranging from 10ms to over 600ms and an average execution time around 44ms.
Noting that the processing of a frame can only start after the previous one being fully
processed, this response-time variance leads to the activation time dispersion
observed in Figure 5.

Table 1. Frontvision and Omnivision response–time statistical figures

Process Max
(ms)

Min
(ms)

Average
(ms)

Stand.
deviation

Frontvision 427.7 9.9 43.6 30.6
Omnivision 635.5 10.8 44.0 30.4

The combination of such an irregular activation pattern with highly variant

response-times results in a high jitter value and number of skipped frames.
Remembering that the image-processing is part of the robot control loop, this leads to
an irregular and poor robot performance.

5.2 Modular Architecture

The different image-processing activities have been separated and wrapped in
different Linux processes, as described in Section 4. The periods, offsets and priorities
assigned to each one of the processes are summarized in Table 2.

The obstacle avoidance processes are the most critical ones since they are
responsible for alerting the control software of the presence of any obstacles in the
vicinity of the robot, allowing it to take appropriate measures (e.g. evasive maneuvers
or immobilization). Therefore these processes are triggered at a rate equal to the
camera frame rate and receive the highest priority, ensuring a response-time as short
as possible. It should be remarked that these processes scan delimited image regions,
only, looking for specific features, thus their execution time is bounded and relatively
short. In the experiments the measured execution time upper bounds were 7ms and
9ms for Avoid_Om and Avoid_Fr, respectively. Therefore, this architecture allows
ensuring that every frame will be scanned for the presence of obstacles.

Table 2. Image-processing processes properties

Process Period
(ms) Priority Offset

(ms) Purpose
Ball_Fr 50 35 0 Ball tracking (front camera)
BGoal / YGoal 200 25 50/150 Blue / Yellow Goal tracking
BPost / YPost 800 15 100/200 Blue / Yellow Post tracking
Avoid_Fr 50 45 0 Obstacle avoidance (front cam.)
Ball_Om 50 40 0 Ball tracking (omni camera)
Avoid_Om 50 45 0 Obstacle avoidance (omni camera)
Line 400 20 0 Line tracking and identification
KGoal 100 30 0 Goal line tracking

The second level of priority is granted to the Ball_Om process, which tracks the

ball in the omni-directional camera. This information is used when approaching,
dribbling and kicking the ball, activities that require a low latency and high update
rate to be successful. Therefore this process should, if possible, be executed on every
image frame, thus its period was also set to 50ms.

The third level of priority is assigned to the Ball_Fr process, responsible for
locating the ball in the front camera. This information is used mainly to approach the
ball when it is at medium to far distance from the robot. Being able to approach the
ball quickly and smoothly is important for the robot performance but this process is
more delay tolerant than the Ball_Om process, thus it is assigned a lower priority.

The KGoal process detects the goal lines, being mainly used by the goal keeper.
Contrarily to the previous processes, the dynamics of the lines depend only on the
robot movement. Furthermore, the localization of the robot within small regions is
complemented with an odometry subsystem, which updates the robot position. This
allows having a lower activation rate and priority of the vision-based goal lines
detection without incurring in significant performance degradation.

A similar reasoning was applied to decide the attributes of the BGoal and YGoal
processes, which track the position of the blue and yellow goals, respectively. Since
the goals are stationary with respect to the play fields, and due to the availability of
odometry data, updates can be made more sparsely and are not particularly sensitive
to jitter. For this reason these processes were assigned a priority of 25 and a period of
200ms (every 4 frames).

The field line detection process (Line) detects and classifies the lines that delimit
the play field, pointing specific places in it. This information is used only for
calibration of the localization information and thus may be run sparsely (400ms). Post
detection processes (BPost and YPost) have a similar purpose. However, since the
information extracted from them is coarser than from the line detection (i.e., it is
affected by a bigger uncertainty degree), it may be run at even a lower rate (800ms)
without a relevant performance degradation.

The offsets of the different processes have been set-up to de-phase the process
activations as much as possible. With the offsets presented in Table 2, besides the
obstacle and ball detection processes, which are executed for every frame, no more
than two other processes are triggered simultaneously. This allows minimizing mutual
interference and thus reducing the response-time of lower priority processes.

Fig. 6. Front (left) and omni-directional (right) obstacle detection processes inter-activation

intervals

Fig. 7. Front (left) and omni-directional (right) ball tracking processes inter-activation intervals

Fig. 8. Goal line (left) and yellow post (right) tracking processes inter-activation intervals

Figures 6, 7 and 8 show the inter-activation intervals of selected processes
(obstacle, ball, goal line and yellow post tracking), which clearly illustrate the
differences between the modular and the monolithic architectures regarding the
processes temporal behavior. The processes that receive higher priority (obstacle
detection, Fig. 6) exhibit a narrow inter-activation variance, since they are not blocked
and preempt other processes that may be running. Figure 7 regards the inter-activation

intervals of the ball tracking processes. As stated above, the ball tracking process on
the omni-directional camera received higher priority since its data is used by more
time sensitive activities. For this reason its inter-activation interval is narrower than
the ball tracking process related to the front camera. Ball-tracking processes exhibit a
significantly higher response-time jitter than obstacle detection because, in the worst
case, they must scan the whole image. For this reason the lower-priority ball-tracking
process exhibits a much higher inter-activation jitter than the higher-priority one. The
same behavior is observed for the remaining processes, which see their inter-
activation jitter increase as their relative priorities diminish.

Table 3 shows statistical data regarding the inter-activation intervals of these
processes, which confirm, in a more rigorous way, the behavior observed above. The
processes are sorted by decreasing priorities exhibiting, from top to bottom, a steady
increase in the gap between maximum and minimum values observed as well as in the
standard deviation. This is expected since higher priority processes, if necessary,
preempt lower priority ones increasing their response-time.

Table 3. Modular architecture: statistical data of process inter-activation intervals

Process Max
(ms)

Min
(ms)

Standard
deviation (ms)

Avoid_Om 56.9 43.0 1.9
Avoid_Fr 58.1 41.9 2.5
Ball_Om 56.9 43.1 3.2
Ball_Fr 75.9 25.4 8.9
KGoal 506.6 0.5 27.4
Bgoal 547.9 0.6 39.1
YGoal 654.6 0.6 42.0
Line 711.0 38.8 53.3
BPost 1159.7 541.1 60.8
YPost 1101.0 485.6 53.3

Comparing the data in Tables 1 and 3, a major improvement can be observed with

respect to the activation jitter of the most time-sensitive processes, which was reduced
from around 30ms to 2ms-3ms (object avoidance) and 3ms-9ms (ball tracking).
Furthermore, since the obstacle avoidance processes have a relatively short execution
time (up to 8.5ms in this architecture) it becomes possible to guarantee their execution
in every image frame allowing the robots to run at higher speed without
compromising safety.

Computer vision applied to guidance of autonomous robots has been generating large
interest in the research community as a natural and rich way to sense the environment
and extract the necessary features. However, due to the robots motion, vision-based
sensing becomes a real-time activity that must meet deadlines in order to support
adequate control performance and avoid collisions. Unfortunately, most vision-based
systems do not rely on real-time techniques and exhibit very poor temporal behavior,

with large variations in execution time that may lead to control performance
degradation and even sensing black-out periods (skipped image frames).

In this paper, the referred problem is identified in the scope of the CAMBADA
middle-size robotic soccer team, being developed at the University of Aveiro,
Portugal. Then, a new architectural solution for the vision subsystem is presented that
substantially improves its reactivity, reducing jitter and frame skipping.

The proposed architecture separates the vision-based object-tracking activities in
several independent processes. This separation allows, transparently and relying
solely on operative system services, to avoid the blocking of higher priority processes
by lower priority ones as well as to set independent activation rates, related with the
dynamics of the objects being tracked, together with offsets that de-phase the
activation instants of the processes to further reduce mutual interference.

As a consequence, it became possible to guarantee the execution of critical
activities (e.g., obstacle avoidance) and privilege the execution of others that,
although not critical, have greater impact on the robot performance (e.g., ball
tracking). This result and approach are relevant for a class of robots in which the
vision subsystem is part of their control loop, leading to a better control performance.

1. Controller Area Network - CAN2.0 (1992). Technical Specification, Robert Bosch, 1992.
2. J. Gibson (1979), “The Ecological Approach to Visual Perception”, Houghton Mifflin,

Boston, MA, 1979.
3. F. Santos, L. Almeida, P. Pedreiras, L.S.Lopes, T. Facchinnetti (2004), "An Adaptive TDMA

Protocol for Soft Real-Time Wireless Communication Among Mobile Computing Agents".
WACERTS 2004, Workshop on Architectures for Cooperative Embedded Real-Time
Systems (satellite of RTSS 2004). Lisboa, Portugal, 5-8 Dec. 2004.

4. Guilherme N. DeSouza and Avinash C. Kak (2004) "A Subsumptive, Hierarchical, and
Distributed Vision-Based Architecture for Smart Robotics," IEEE Transactions on Systems,
Man, and Cybernetics -- Part B: Cybernetics, Vol. 34, pp. 1988-2002, October 2004.

5. RTAI for Linux, available at http://www.aero.polimi.it/~rtai/
6. L. Almeida, F. Santos, T. Facchinetti, P. Pedreiras, V. Silva, L.S.Lopes (2004).

"Coordinating distributed autonomous agents with a real-time database: The CAMBADA
project". ISCIS'04, 19th International Symposium on Computer and Information Sciences.
27-29 October 2004, Kemer - Antalya, Turkey.

7. K. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa (1995) “RoboCup: The Robot World
Cup Initiative”, Proc. of IJCAI-95 Workshop on Entertainment and AI/Alife, Montreal.

8. H. Kopetz (1997). “Real-Time Systems Design Principles for Distributed Embedded
Applications”, Kluwer.

9. Proc. of the NASA Workshop on Biomorphic Robotics, (2000), Jet Propulsion Laboratory,
California Institute of Technology. USA.

10.G. Iannizzotto, F. La Rosa, L. Lo Bello (2004). “Real-time issues in vision-based Human-
Computer Interaction”. Technical Report, VisiLab, University of Messina , Italy.

11.G. Weiss (2000), “Multiagent systems. A Modern Approach to Distributed Artificial
Intelligence” MIT Press, 2000.

12. Simple DirectMedia Layer, available at http://www.libsdl.org/index.php
13. Andrew Blake, R. Curwen, A. Zisserman (1993), “A framework for spatio-temporal control

in the tracking of visual contours”. Int. Journal of Computer Vision, 11, 2, 127—145, 1993.

