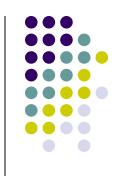
Sistema de Visão Tempo-Real

Mauro Rodrigues - 28256 Sistema de Tempo-Real 07/08



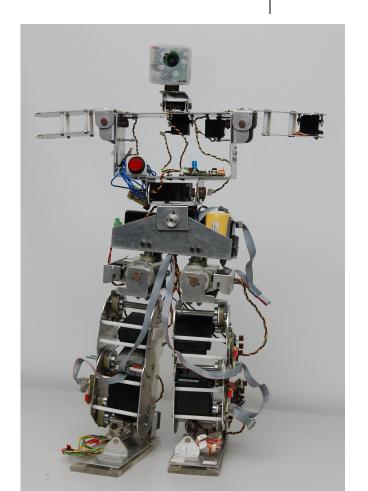
Resumo da Apresentação

- Objectivo
- Enquadramento
- Aspectos Gerais
- Ambiente de Desenvolvimento
- Arquitectura do Sistema de Visão
- Modularização
- Escalonamento
- Tarefas Não-Visão
- Futuro

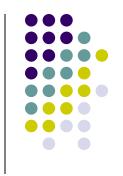
Objectivo

 Criação de um sistema de Tempo-Real para um Robô Humanóide.

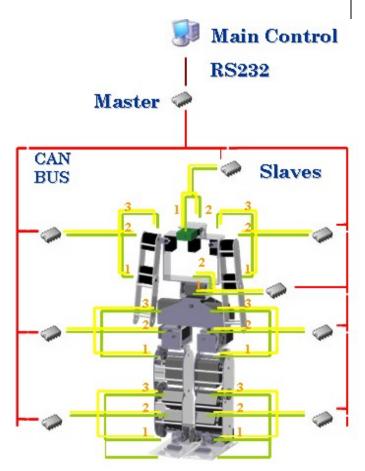
Enquadramento


- Trabalho desenvolvido no âmbito da disciplina Sistemas de Tempo-Real.
- Dissertação intitulada "Desenvolvimento da Unidade Central de Processamento e Sistema de Visão para um Robô Humanóide".

Enquadramento


A plataforma é um Robô
 Humanóide desenvolvido na
 Universidade de Aveiro.

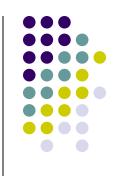
 A ambição é a participação na Robocup, categoria Penalty Kick.



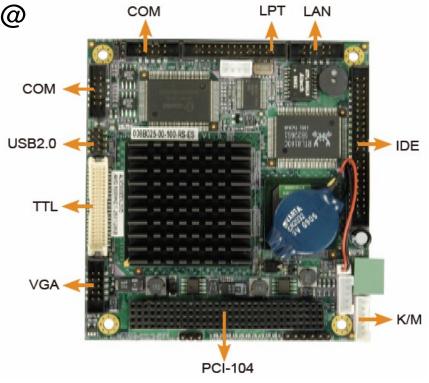
- A plataforma humanóide é constituída por 22 graus de liberdade:
 - 2 em cada pé (2x2);
 - 1 em cada joelho (1x2);
 - 3 em cada anca (3x2);
 - 2 no tronco (2x1);
 - 3 em cada braço (3x2);
 - 2 no suporte da câmara (cabeça) (2x1).
- Atinge os 60 cm de altura e uma massa total de 6 Kg.

 Arquitectura distribuída de controlo constituída por três tipo de unidades, formando uma rede de controladores.

 Interligação por bus CAN em configuração Master/Multi-Salve.

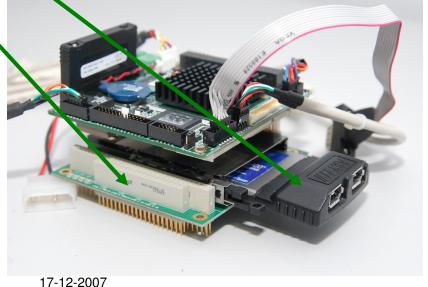


- Unidade Master (mestre): interface entre a Unidade Central de Processamento e as unidades Slave;
 - comunicação CPU/Master: RS-232 @ 115200 bps;
 - comunicação Master/Slave: CAN (fullCAN 2.0A) @ 833.3 Kbps.
- Unidades Slave (escravo): geração do PWM de controlo dos servomotores e a aquisição dos sinais dos diversos sensores da plataforma.



- Unidade Central de Processamento: responsável pela gestão global dos procedimentos:
 - Cálculo das configurações que as juntas devem adoptar com base em directivas de alto nível,
 - Processamento do sinal vídeo,
 - Interacção com computador externo para monitorização, debug ou tele-operação.

- CPU standard PC104 plus
 - AMD Geode LX-800 @ 500MHz
 - 512Mb RAM
 - SSD 1Gb



17-12-2007

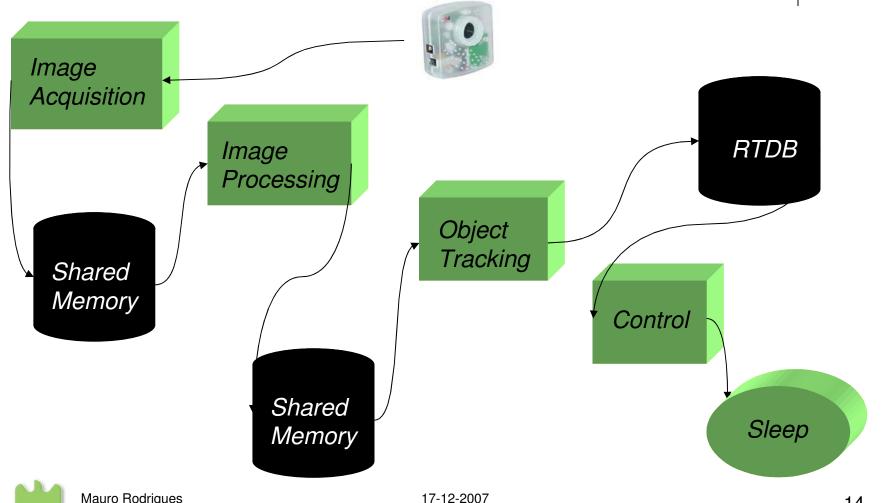
- Captura de Sinal Vídeo
 - Câmara *UniBrain, Fire-i* @ 30fps (640x480)
 - Placa PCMCIA FireWire

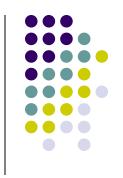
Módulo *Dual PCMCH* p/ PC104

Ambiente de Desenvolvimento

- Sistema Operativo
 - GNU/Linux Debian 40r0 i386 Net Install
 - Versão mínima, ≈200Mb.
- IDE
 - KDevelop

Ambiente de Desenvolvimento


- Linguagem
 - C/C++


- Bibliotecas
 - OpenCV
 - PMan

Arquitectura do Sistema de Visão

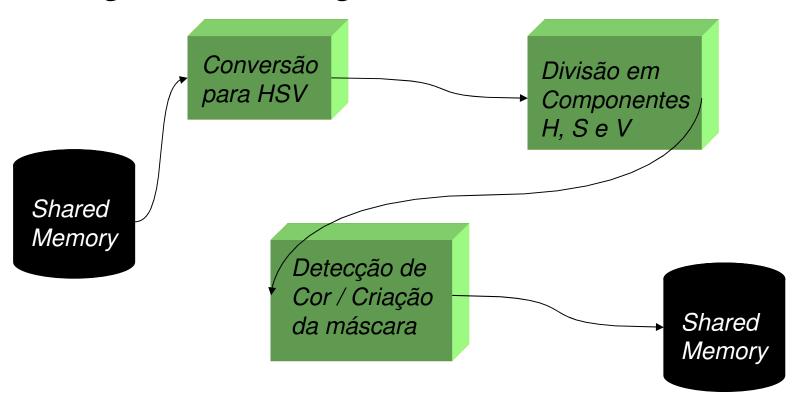
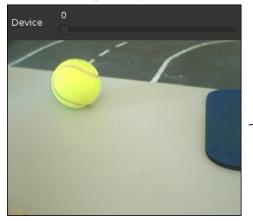
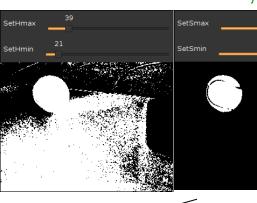
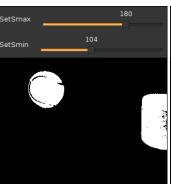
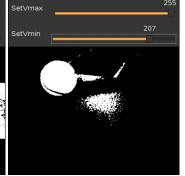

- Image Acquisition
 - Tick do sistema;
 - Activa os processos seguintes quando uma nova imagem está disponível.

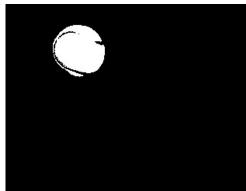
Image Processing


 Object Tracking Confirmação da presença da bola Aplicação da / Detecção de máscara círculos Shared Memory Aferição da localização da Cálculo do bola na imagem centro de massa **RTDB** da bola

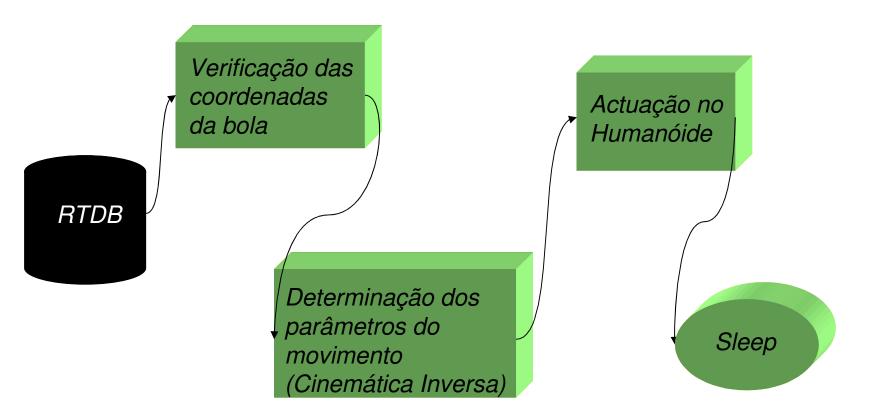



Aquisição


Componentes H, S e V



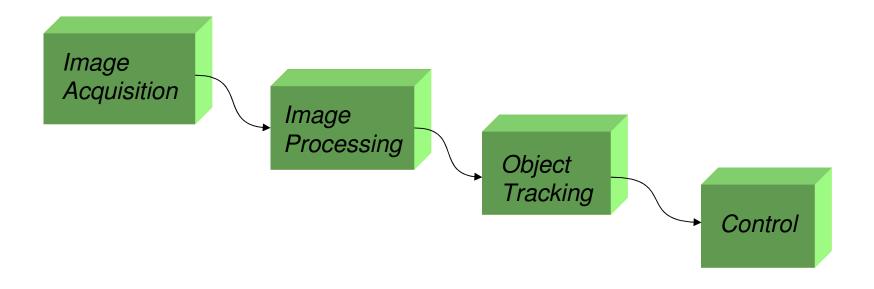
Máscara



17-12-2007

Control

Escalonamento



- Precedências
 - A tarefa de aquisição de imagem é a base do processo.
 - Tarefas seguintes são dependentes desta e são executadas pela ordem já referida.
 - Este é um caso simples em que não existem tarefas concorrenciais.

Escalonamento

Precedências

Escalonamento

Processo	Período	Lista de Precedências	Descrição
Image Acquisition	1	-	Interface com a câmara. <i>Tick</i> do sistema.
Image Processing	1	Image Acquisition	Classificação de cor.
Object Tracking	1	Image Processing	Busca do objecto (bola).
Control	1	Object Tracking	Execução do controlo no Humanóide

Tarefas Não-Visão

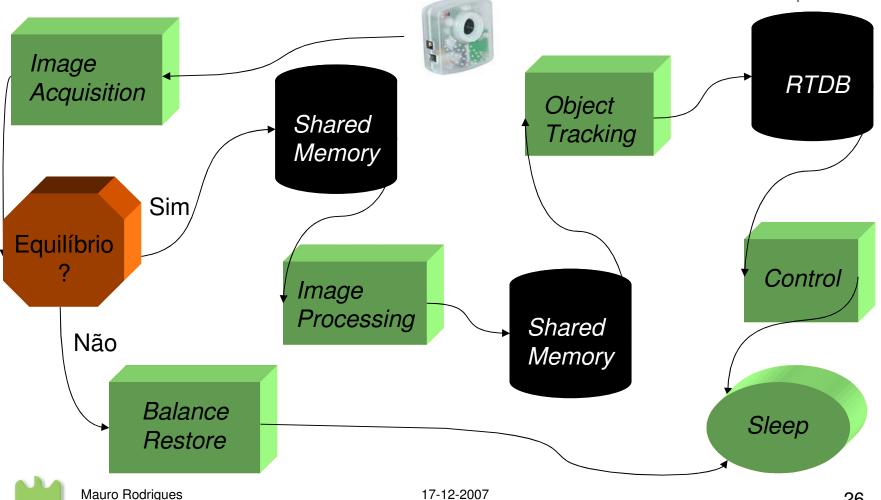
Temos como tarefa não-visão, a Locomoção.

- O Humanóide possui ainda uma tarefa de elevada prioridade:
 - Manter o equilíbrio!

Tarefas Não-Visão

- Manter o equilíbrio é fundamental:
 - Não se pode deslocar em desequilíbrio.
 - Não interessa procurar a bola se estiver em queda.
- Como é que isto afecta o Processo de Visão?

Tarefas Não-Visão



- Mantém-se a arquitectura já referida com a introdução de apenas um estado de decisão.
- A cada tick do sistema, é verificado o estado geral do robô.
- É feito o processamento de imagem se estiver tudo bem.
- Em caso de, por ex., desequilíbrio é dada prioridade à restauração do mesmo.

28256

Tarefas Não-Visão

26

Futuro

- Participação numa competição como a Robocup implica além da identificação da bola:
 - Identificação do espaço, terreno de jogo.
 - Identificação de elemento individuais, balizas, postes, etc.

Futuro

Futuro

- Introdução de processos concorrenciais
 - Processamento de imagem
 - Procura da bola;
 - Procura da baliza;
 - Procura dos postes;
 - Etc.
 - Busca dos objectos e Actuação
 - Enquadramento com a bola;
 - Enquadramento com a baliza;
 - Etc.

