

Abstract— In this paper we present the current

development status at the Humanoids Robotics Lab of the
Department of Mechanical Engineering at Instituto Superior
Técnico in collaboration with Robosavvy Ltd. The
developments we present include the software development
for interfacing the Matlab real time workshop toolbox with
the humanoid robot controllers, hardware development
towards wireless communication between the local robot
controller and the remote PC, the identification of the internal
and external dynamic parameter of the humanoid servos and
structure respectively, the dynamics modeling and simulation
using simMechanics and virtual reality toolbox. Our aim is the
development of a humanoid robot able to make complex
motions like walking, running and jumping.

I. INTRODUCTION
Current commercially available humanoid robots are
designed to perform motions using open-loop control
providing the users a simple paradigm to create pre-
orchestrate multi-DOF walking gaits. These robots are
usually not able to move on uneven terrain and it is difficult
or impossible to get them to perform movements that
require instantaneous reaction to momentary instability. A
popular way to compensate for these predicaments is to
over-capacitate servo torques and to incorporate large foot
soles, low center-of-mass and better shock absorption,
resulting in humanoid robots with little resemblance to the
human physique. Our long term objectives are to allow
affordable humanoid robots to run, skateboard, jump and in
general to react in a human-like physical way in
dynamically unstable situations and uneven terrain.
We would like to achieve these goals by applying closed-
loop control techniques to the humanoid robot servos. The
input data stream should consist of multitude of sensors
including servo position and torque, acceleration and
inertial moment. The closed-loop control cycle should
actuate the servos at rates of at least 50Hz which would

Pedro Teodoro, Mário Marques, Jorge Martins, Carlos Cardeira,

Miguel Ayala-Botto, José Sá da Costa are with the IDMEC lab at Instituto
Superior Técnico, Technical University of Lisbon, Avenida Rovisco Pais,
1049-001 Lisboa, Portugal, {martins@dem., carlos.cardeira@,
ayalabotto@, sadacosta@dem.} ist.utl.pt.

Limor Schweitzer, is with RoboSavvy Ltd, 37 Broadhust Gardens,
London, United Kingdom, limor@robosavvy.com.

give good responsiveness in a dynamic environment. Our
development environment includes Simulink (tm) running
on a Windows PC. Simulink can compile and offload
control algorithms to various real-time hardware systems.
We wanted the control loop to be able to run both on-board
the humanoid and also on the PC. In both scenarios the
sensory data and servo actuation commands should be
streamed back and forth with the humanoid servos.
Given the above requirements, we looked for a humanoid
robot for our development environment. We finally
selected the Bioloid from Korean manufacturer
Robotis.com. This was our humanoid kit of choice due to
its well designed servo controllers that provide current,
voltage, position and temperature sensing, well
documented open controller board and its well documented
servo control protocol.
Other humanoids platforms we considered included: (a)
KHR1HV / KHR1HV / Manoi / Robonova - These are
affordable humanoid kits whose servos provide position
and current sensing. Their weight to torque ratio are
probably better suited for running and skateboarding than
Bioloid.
However, documentation was lacking at the time we
evaluated this option. (b) Custom Humanoid - many of the
RoboCup teams and robot researchers build their own
humanoid model using Aluminum and Fibreglass brackets
and high-torque RC servos. A popular choice is the Robotis
high-power RX and DX servos to actuate the robot.
However, due to the limited time and human resources, we
decided to go with a kit.

II. ARCHITECTURE AND DEVELOPMENTS

A. Hardware Architecture
Figure 1 shows the existing humanoid architecture and the
control architecture we are using.
The humanoid controller named CM5 is connected to the
controllers of the servos through a RS485 bus. The usual
approach to teach the robot is the use of the humanoid
proprietary software that connects to a PC through the
RS232 serial line.
The CM5 has however an Atmega128 microcontroller with
a bootloader which allows users to change the code and
access directly to the servo controllers parameters.

Humanoid Robot Control Architecture

Pedro Teodoro, Mário Marques, Jorge Martins, Carlos Cardeira, Miguel Ayala-Botto, Limor
Schweitzer, José Sá da Costa

We developed a small program in the CM5 controller to
implement a protocol for transmitting/receiving thought the
serial port the data from/to the servos.

B. Software Architecture
In the computer running Simulink / RTW / Real Time
Windows Target we developed the device drivers to
send/receive data to/from the servos using the protocol we
defined. For doing this, we created a C-MEX S-function
written in C to communicate with the CM-5 throughout
UART (universal asynchronous receiver / transmitter).
Hereafter, it was necessary to establish a protocol for the
serial communication between PC and the CM-5.
Finally, we wrote a little C program for Atmega128 for
completing the serial communication bridge. Hence we
implemented this architecture that transparently maps
Simulink variables into servos motion.
We have now a way to identify the parameters of the
Humanoid models making online experiments, as
MATLAB/SIMULINK® is a unique tool, widely used, for
System Identification and control. However we still have to
check if the delays introduced by the serial line, CM5 and
RS485 are compatible with the sampling time of the
controller.

Figure 1 Humanoid Control Architecture

C. Real Time Issues and Communication delays
It was built up a program in C++ to measure all the current
positions of the servos and therefore to verify the real
frequency in a real application. In this last case, we used 19
real servos and one artificially for resynchronization.
The servo position is a 10 bit value that has to be divided in
a high and low bit in order to be sent throughout the RS232
to the PC. Hence, the theoretical value, without latency, is:

Hz144
10x2x)119(

57600f =
+

= ,

Where:
• 57600bps is Baud Rate
• 19+1 means 19 servos plus 1 artificially for

resynchronization.
• 2 stands for 2 byte (the encoder number of each

servo is 10 bits of resolution)

• 10 is the number of bits (8bits for the data +1
parity for +1 stop bit)

The measured frequency was not far away from the
theoretical value, being just 0.6Hz bellow, 143.4 Hz. This
means that the Latency is responsibly for just ~0.42% delay
for all the process. Testing the latency between an order
given by PC, read it and send it back to the PC by the CM5
is around 1.29ms, just shown after in a running test of 1000
samples.

Latency

0

2

4

6

8

10

1 66 131 196 261 326 391 456 521 586 651 716 781 846 911 976

Samples

Ti
m

e
(m

s)

Figure 2: Communication Delays

Thus, it was decided to use a sample rate of 0.01 seconds
(100 Hz) for all future tests.

III. SYSTEM IDENTIFICATION AND CONTROL

A. Description of the measured signals from the servos
A set of output signals can be retrieved from the Humanoid
Robot servos. These signals provide information regarding
the actual servos angular position, angular velocity, D/C
current, temperature and voltage. The angular position,
temperature and voltage signals are sampled at 100 Hz,
while the angular velocity and load are sampled at a rate 10
times slower.

B. Close loop position control
By default the servos are configured for position control. In
fact, all servos have an internal feedback position control
loop. This characteristic can be easily confirmed by the
simple experiment shown in Figure 3. The servo tries to
follow the desired time varying sinusoidal reference
position by changing its actual D/C current (load) charge
through time, even in the presence of an external torque
applied at time instant t=6 sec.

Figure 3: Servo following a position (close loop control)

C. Open loop velocity control
In contrast, experiments suggest that the servos do not have
internally any angular velocity feedback control. This can
be experimentally confirmed by applying an external
torque to the servo while in constant rotating velocity.
From Figure 4 it can be concluded that the current
consumption is not able to respond accordingly after the
fifth second, when a torque is applied, so the reference
angular position cannot be followed.

Figure 4: Servo following a reference velocity with open

loop velocity control

D. Stiction
Stiction is a physical phenomenon that is present in almost
any system with moving components. Therefore, its
characterization is essential for obtaining an accurate
dynamic model of the servos. A simple way to quantify
stiction can be made through the following experiment:
starting with the servo rotating at a constant speed in one
direction, progressively slowing it down until it stops, and
then slowly increase its rotating speed in the opposite
direction. With this experiment it should be possible to
identify the typical dead-zone effect due to stiction. In our
case this was clearly quantified to be around 7-10% of the
full range in case no load is applied to the servo, as can be
seen from Figure 5.

Figure 5: Stiction dead-zone

E. Voltage supply
Another parameter with relevance to the behavior of the
system is the voltage supplied to the servos. Experiments
show that the output estimated velocity error is
proportional to the voltage supplied to the servo. In fact,
good output velocity estimation is achieved only if the
battery is charged around 10 V, as can be seen from Figure
6.

Figure 6: Effects of the supplied voltage to the servos in the

outputs velocity response

F. Humanoid identification
In order to capture the static and the dynamic properties of
the Humanoid Robot, both mechanical properties of all its
components, such as mass and inertia, as well as its servos
dynamic responses, must be known to a certain degree of
accuracy. These dynamic properties will be used in
Simulink and simMechanics in order to get an accurate
simulator for the real Humanoid Robot aiming at a good
control strategy.

1) Mechanical properties identification
An accurate static model of the Humanoid Robot can be
obtained based on the physical properties of their
components. Typically, by knowing the mass, center of
mass and the inertia tensor of each element of the HR it is
possible to get a quite reliable model that can be further
used in simulation and control. For quantifying the masses
of each element, a precision scale with a resolution of 0.05
grams was used. The centroid of each mass was then found
by using the SolidWorks® software package, after the
detailed elements of all the pieces involved were drawn in
this 3D CAD software. It was assumed here that, except for
the servos, all the pieces are of isotropic nature. A simple
experiment has shown that the maximum error obtained for
the geometric position of the centroid is of 0.5 mm on each
Cartesian direction. Finally, the inertia tensor of each
element was determined through the SolidWorks®
software.

Figure 7: 3D models of a servo and a component of the

Humanoide robot showing the centroid and the principal
axes of the moment of inertia tensor.

2) Dynamic properties identification
For the identification of the dynamic behavior of the servos
it was considered the relation between the reference input
velocity and the correspondent estimated velocity obtained
through the following equation:

Ts
)1t()t()t(ˆ −−

=
θθ

θ (1)

Where

)t(θ̂ is the estimated velocity at time instant t,

)t(θ is the angular position at time instant t

)1t(−θ is the angular position in the previous time instant
Ts=0.01 sec. is the sampling period.

The classical prediction error method was used for the
identification of the servo dynamic model [3], using the
identification data shown in Figure 8.

Figure 8: Servo Identification Data

After testing several tentative models with different orders,
a BJ(2,1,2,1) was found to best approximate the desired
dynamical behavior of the servo. The BJ model that results
in the best data fit is the following:

5544.0z469.1z
z06217.0TF

2 +−
= (2)

Figure 9 compares the real output of the servo with the one
estimated by the BJ model for the validation data. It can be
concluded that the dynamic characteristics of the servo are
well captured by the BJ model.

Figure 9: Servo Validation Data

IV. VIRTUAL REALITY ANIMATION
Two models of the Humanoid Robot were built in
Solidworks. While the first model was used for system
identification in section III, the second model was exported
to the wrml format to be used in the virtual reality toolbox
of Matlab. In the second model, contrarily to the first one,
the pieces were drawn with precise measurements but with
few details in order to get a lighter animation running in
real time.
The purpose of the virtual reality model using the Virtual
Reality Matlab toolbox is twofold. First, and as described
in chapter V, it will be used alongside with simMechanichs,
a mechanical simulation platform of Matlab, in order to
have a visualization of the Humanoid dynamics model. The
second purpose, as already used, is to have an animation
doing in real time exactly what its twin is doing in reality.
Two versions of the model have been built. The first one is
just the normal Humanoid used for walking motion and the
second one is Humanoid hanging from a Gymnastics high-
bar.

Figure 10: Virtual Reality of the Humanoid doing a

handstand on a high-bar.

V. ONGOING WORK

A. New hardware architecture
Due to the tasks involved in this project the CM5 controller
board contained in the initial configuration of the humanoid
robot, will not be capable of undertaking all the
computation required to the desired control functions. This
CM5 controller board is based in an Atmel ATMega 128
microcontroller, with a 16MHz processor and 128Kb of
flash memory. For this project we choose a new board from
Gumstix Inc. this board has a 400MHz processor with
64Mb RAM and 16Mb of flash memory. Figure 11 shows
the new architecture.

Figure 11: New hardware Architecture

Gumstix Connex runs an uClib Linux, in an ARM
architecture processor. For data acquisition it is used an
expansion board, Robostix, with the same base processor as
the CM5 controller board. The communication between
Gumstix and the Robostix is made through i2c.

The evolution in this new setup is that with the Gumstix the
humanoid robot gains more processing power, as the low-
level control functions are made in the humanoid robot, and
not in an external computer, giving it more computation
autonomy.
Therefore, with this setup, the humanoid robot can manage
all the servos control (through RS485), and just release to
the upper level computer the necessary data to the high-
level control.

B. Wireless communication
One of the main improvements that had to be made was the
way to connect the computer to the humanoid robot.
The physical connection through serial port goes against
one of the philosophies on this project, that is, to create a
more autonomous humanoid robot. Hence we used a
Bluetooth adaptor for remote communication with the
robot. For this it was made a TCP/IP connection with static
IP addresses, with the computer acting as Host, and the
Gumstix board as Client. The connection as already been
tested in terms of throughput and latency, and revealed
satisfactory results for the purpose of this connection, that
is to make the interface between the high and low level
control tasks.
For the latency tests the results obtained were, as shown in
Figure 12.

Latency

0

50

100

150

200

250

300

350

0,1 1 10 100 1000

Packet Lenght (bytes)

La
te

nc
y

(m
s)

Figure 12: Wireless Communication latency

The tests were made by sending 200 packets of 1, 10, 100
and 1000 bytes, plus the 28 bytes of the beginning and the
end of the TCP connection.
The throughput test has given the average result of 11,000
bytes/sec. These values vary with the distance between
Host and Client, and with the interferences in the medium.
As we can conclude the wireless loop implements a loosely
coupled connection [2] that will not be able to run close
loop control of tasks involving small sampling periods. The
fast control loops involving stability will autonomously run
inside Gumstix which has a tightly coupled connection to
the servos. The remote computer will give directions and
targets to the humanoid but all the control and stability will
run autonomously inside the robot.

C. New Software Architecture
In order to take full advantage of the new, more

powerful, Robostix/Gumstix hardware architecture within
the Matlab/Simulink environment, a custom target must be
built for Real-Time Workshop. To this end, we start from
the Linux Soft Real-Time Target in [4], and adapt it to the
uClib Linux kernel of the Gumstix.

The target uses the POSIX real-time clocks to generate
periodic signals to wake up the model process at every time
step. Furthermore, the process is changed to real-time
highest priority defined by the scheduler. The outcome is a
soft real-time architecture rather than a hard real-time
architecture since the Linux kernel itself is not preempted
by the scheduler, and therefore the model execution can
occasionally be delayed. The delays involved in this
approach will be further analyzed, and compared against
the sampling times used for humanoid control.

The resulting seamless working environment linking all
the Maltab/Simulink tools and the (almost) real-time
controller implementation in Gumstix renders this approach
to be ideal for the objectives of humanoid control.

D. Multibody Dynamics
The process of modeling the multibody structure of a

humanoid robot, either for the purpose of doing a hand-
stand on a high bar or for generating a stable walking
motion, is a very complex one. One must deal with the
formulation and solution of highly nonlinear dynamics
equations of a very large size; a standard humanoid has 18
servos. Furthermore, the problems imposed by transient
mechanical constraints and by impact forces must be dealt
with, and stabilizing controllers must be developed.

To aid in this development, and following in the line of
thought of a seamless development tool within
Matlab/Simulink, we use the SimMechanics toolbox.
Within SimMechanics, modeling and simulation of the
humanoid may be easily performed without getting into the
analytical and numerical complexity of model formulation
[5]. Furthermore, model linearization, reduction and
automatic code generation for the Linux Soft Real-Time
Target are straightforward to implement. During the whole
process, one may also interface the outputs SimMechanics
into the Virtual Reality Toolbox as shown in Section IV
and visualize the behavior of the humanoid robot.

E. Control objectives: High-Bar Hand-Stand and Walking
Motion

The two control objectives under development are
intended to explore linear and non-linear control
methodologies. For the high-bar hand-stand, the humanoid
is treated as a two or three body serial chain in an inverted
pendulum configuration. The system is under actuated,
being the motion of the legs prescribed in order to stabilize
the torso of the humanoid above the high bar. Linear
control methodologies will be exploited in this problem for
both the swing-up phase and equilibrium phase.

The problem of stabilizing a walking motion is much
more complex than that of stabilizing a hand-stand on a
high-bar. At each step there are impact forces and transient
mechanical constraints, and the high model size reduction
of the former case may no longer be performed. Thus, non-
linear control approaches must be explored.

A stable walking gait controller is the basis for more
complex motions such as running and jumping, and this
constitutes the main path for our current and future work.

VI. CONCLUSIONS
In this paper we presented the current development status at
the Humanoids Robotics Lab of the Department of
Mechanical Engineering at Instituto Superior Técnico in
collaboration with Robosavvy Ltd.
For the last semester we have worked on:
• Software Development for interfacing the Matlab real

time workshop toolbox with the humanoid robot
controllers.

• Hardware Development towards wireless
communication between the local robot controller and
the remote PC.

• Internal and external dynamic parameter identification
of the humanoid servos and structure respectively.

• Dynamics modeling and simulation using
simMechanics and virtual reality toolbox

The previous points aim at the development of:
• Linear control methodologies for the swing-up

phase and equilibrium phase of a hand stand on a
high bar.

• Non linear control methodologies for a stable
walking gait for more complex motions such as
running and jumping.

REFERENCES
[1] Qiang Huang and Yoshihiko Nakamura. Sensory Reflex Control for

Humanoid Walking, IEEE Transactions on Robotics, Vol. 21, No. 5,
October 2005, pp. 977-984

[2] C. Cardeira, A. W. Colombo, R. Schoop, “Wireless solutions for
automation requirements”, in ATP International – Automation
Technology in Practice, IFAC-affiliated journal, Vol. 2, September
2006, pp 51-58.

[3] Lennart Ljung, System Identification: theory for the user, Prentice-
Hall, 1987

[4] Bhanderi, D., “Linux Soft Real-Time Target V2.2”,
http://www.control.auc.dk/~danji/downloads/, March 2007.

[5] Ledin, J., Dickens, M. and J. Sharp, "Single Modeling Environment
for Constructing High-Fidelity Plant and Controller Models", AIAA
Modeling and Simulation Technologies Conference and Exhibit,
August 2003, Austin, Texas, USA.

