
 
 

 

  
Abstract— In this paper we present the current 

development status at the Humanoids Robotics Lab of the 
Department of Mechanical Engineering at Instituto Superior 
Técnico in collaboration with Robosavvy Ltd. The 
developments we present include the software development 
for interfacing the Matlab real time workshop toolbox with 
the humanoid robot controllers, hardware development 
towards wireless communication between the local robot 
controller and the remote PC, the identification of the internal 
and external dynamic parameter of the humanoid servos and 
structure respectively, the dynamics modeling and simulation 
using simMechanics and virtual reality toolbox. Our aim is the 
development of a humanoid robot able to make complex 
motions like walking, running and jumping. 

I. INTRODUCTION 
Current commercially available humanoid robots are 
designed to perform motions using open-loop control 
providing the users a simple paradigm to create pre-
orchestrate multi-DOF walking gaits. These robots are 
usually not able to move on uneven terrain and it is difficult 
or impossible to get them to perform movements that 
require instantaneous reaction to momentary instability. A 
popular way to compensate for these predicaments is to 
over-capacitate servo torques and to incorporate large foot 
soles, low center-of-mass and better shock absorption, 
resulting in humanoid robots with little resemblance to the 
human physique. Our long term objectives are to allow 
affordable humanoid robots to run, skateboard, jump and in 
general to react in a human-like physical way in 
dynamically unstable situations and uneven terrain. 
We would like to achieve these goals by applying closed-
loop control techniques to the humanoid robot servos. The 
input data stream should consist of multitude of sensors 
including servo position and torque, acceleration and 
inertial moment. The closed-loop control cycle should 
actuate the servos at rates of at least 50Hz which would 
 

 
Pedro Teodoro, Mário Marques, Jorge Martins, Carlos Cardeira, 

Miguel Ayala-Botto, José Sá da Costa are with the IDMEC lab at Instituto 
Superior Técnico, Technical University of Lisbon, Avenida Rovisco Pais, 
1049-001 Lisboa, Portugal, {martins@dem., carlos.cardeira@, 
ayalabotto@, sadacosta@dem.} ist.utl.pt.  

Limor Schweitzer, is with RoboSavvy Ltd, 37 Broadhust Gardens, 
London, United Kingdom, limor@robosavvy.com.  

 

give good responsiveness in a dynamic environment. Our 
development environment includes Simulink (tm) running 
on a Windows PC. Simulink can compile and offload 
control algorithms to various real-time hardware systems. 
We wanted the control loop to be able to run both on-board 
the humanoid and also on the PC. In both scenarios the 
sensory data and servo actuation commands should be 
streamed back and forth with the humanoid servos.  
Given the above requirements, we looked for a humanoid 
robot for our development environment. We finally 
selected the Bioloid from Korean manufacturer 
Robotis.com. This was our humanoid kit of choice due to 
its well designed servo controllers that provide current, 
voltage, position and temperature sensing, well 
documented open controller board and its well documented 
servo control protocol. 
Other humanoids platforms we considered included: (a) 
KHR1HV / KHR1HV / Manoi / Robonova - These are 
affordable humanoid kits whose servos provide position 
and current sensing. Their weight to torque ratio are 
probably better suited for running and skateboarding than 
Bioloid. 
However, documentation was lacking at the time we 
evaluated this option. (b) Custom Humanoid - many of the 
RoboCup teams and robot researchers build their own 
humanoid model using Aluminum and Fibreglass brackets 
and high-torque RC servos. A popular choice is the Robotis 
high-power RX and DX servos to actuate the robot. 
However, due to the limited time and human resources, we 
decided to go with a kit. 

II. ARCHITECTURE AND DEVELOPMENTS 

A. Hardware Architecture 
Figure 1 shows the existing humanoid architecture and the 
control architecture we are using. 
The humanoid controller named CM5 is connected to the 
controllers of the servos through a RS485 bus. The usual 
approach to teach the robot is the use of the humanoid 
proprietary software that connects to a PC through the 
RS232 serial line.  
The CM5 has however an Atmega128 microcontroller with 
a bootloader which allows users to change the code and 
access directly to the servo controllers parameters. 

Humanoid Robot Control Architecture 
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We developed a small program in the CM5 controller to 
implement a protocol for transmitting/receiving thought the 
serial port the data from/to the servos. 

B. Software Architecture 
In the computer running Simulink / RTW / Real Time 
Windows Target we developed the device drivers to 
send/receive data to/from the servos using the protocol we 
defined. For doing this, we created a C-MEX S-function 
written in C to communicate with the CM-5 throughout 
UART (universal asynchronous receiver / transmitter). 
Hereafter, it was necessary to establish a protocol for the 
serial communication between PC and the CM-5.  
Finally, we wrote a little C program for Atmega128 for 
completing the serial communication bridge. Hence we 
implemented this architecture that transparently maps 
Simulink variables into servos motion. 
We have now a way to identify the parameters of the 
Humanoid models making online experiments, as 
MATLAB/SIMULINK® is a unique tool, widely used, for 
System Identification and control. However we still have to 
check if the delays introduced by the serial line, CM5 and 
RS485 are compatible with the sampling time of the 
controller. 

 
Figure 1 Humanoid Control Architecture 

C. Real Time Issues and Communication delays 
It was built up a program in C++ to measure all the current 
positions of the servos and therefore to verify the real 
frequency in a real application. In this last case, we used 19 
real servos and one artificially for resynchronization. 
The servo position is a 10 bit value that has to be divided in 
a high and low bit in order to be sent throughout the RS232 
to the PC. Hence, the theoretical value, without latency, is: 
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Where:  
• 57600bps is Baud Rate 
• 19+1 means 19 servos plus 1 artificially for 

resynchronization. 
• 2 stands for 2 byte (the encoder number of each 

servo is 10 bits of resolution)  

• 10 is the number of bits (8bits for the data +1 
parity for +1 stop bit) 

The measured frequency was not far away from the 
theoretical value, being just 0.6Hz bellow, 143.4 Hz. This 
means that the Latency is responsibly for just ~0.42% delay 
for all the process. Testing the latency between an order 
given by PC, read it and send it back to the PC by the CM5 
is around 1.29ms, just shown after in a running test of 1000 
samples. 
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Figure 2: Communication Delays 

Thus, it was decided to use a sample rate of 0.01 seconds 
(100 Hz) for all future tests.  

III. SYSTEM IDENTIFICATION AND CONTROL 

A. Description of the measured signals from the servos 
A set of output signals can be retrieved from the Humanoid 
Robot servos. These signals provide information regarding 
the actual servos angular position, angular velocity, D/C 
current, temperature and voltage. The angular position, 
temperature and voltage signals are sampled at 100 Hz, 
while the angular velocity and load are sampled at a rate 10 
times slower. 

B. Close loop position control  
By default the servos are configured for position control. In 
fact, all servos have an internal feedback position control 
loop. This characteristic can be easily confirmed by the 
simple experiment shown in Figure 3. The servo tries to 
follow the desired time varying sinusoidal reference 
position by changing its actual D/C current (load) charge 
through time, even in the presence of an external torque 
applied at time instant t=6 sec.  
 

 
Figure 3: Servo following a position (close loop control)  



 
 

 

C. Open loop velocity control  
In contrast, experiments suggest that the servos do not have 
internally any angular velocity feedback control. This can 
be experimentally confirmed by applying an external 
torque to the servo while in constant rotating velocity. 
From Figure 4 it can be concluded that the current 
consumption is not able to respond accordingly after the 
fifth second, when a torque is applied, so the reference 
angular position cannot be followed. 
 

 
Figure 4: Servo following a reference velocity with open 

loop velocity control 

D. Stiction  
Stiction is a physical phenomenon that is present in almost 
any system with moving components. Therefore, its 
characterization is essential for obtaining an accurate 
dynamic model of the servos. A simple way to quantify 
stiction can be made through the following experiment: 
starting with the servo rotating at a constant speed in one 
direction, progressively slowing it down until it stops, and 
then slowly increase its rotating speed in the opposite 
direction. With this experiment it should be possible to 
identify the typical dead-zone effect due to stiction. In our 
case this was clearly quantified to be around 7-10% of the 
full range in case no load is applied to the servo, as can be 
seen from Figure 5. 
 

 
Figure 5: Stiction dead-zone 

E. Voltage supply  
Another parameter with relevance to the behavior of the 
system is the voltage supplied to the servos. Experiments 
show that the output estimated velocity error is 
proportional to the voltage supplied to the servo. In fact, 
good output velocity estimation is achieved only if the 
battery is charged around 10 V, as can be seen from Figure 
6. 
 

 
Figure 6: Effects of the supplied voltage to the servos in the 

outputs velocity response 

F. Humanoid identification 
In order to capture the static and the dynamic properties of 
the Humanoid Robot, both mechanical properties of all its 
components, such as mass and inertia, as well as its servos 
dynamic responses, must be known to a certain degree of 
accuracy. These dynamic properties will be used in 
Simulink and simMechanics in order to get an accurate 
simulator for the real Humanoid Robot aiming at a good 
control strategy. 
 
1) Mechanical properties identification 
An accurate static model of the Humanoid Robot can be 
obtained based on the physical properties of their 
components. Typically, by knowing the mass, center of 
mass and the inertia tensor of each element of the HR it is 
possible to get a quite reliable model that can be further 
used in simulation and control. For quantifying the masses 
of each element, a precision scale with a resolution of 0.05 
grams was used. The centroid of each mass was then found 
by using the SolidWorks® software package, after the 
detailed elements of all the pieces involved were drawn in 
this 3D CAD software. It was assumed here that, except for 
the servos, all the pieces are of isotropic nature. A simple 
experiment has shown that the maximum error obtained for 
the geometric position of the centroid is of 0.5 mm on each 
Cartesian direction. Finally, the inertia tensor of each 
element was determined through the SolidWorks® 
software. 
 



 
 

 

 
Figure 7: 3D models of a servo and a component of the 

Humanoide robot showing the centroid and the principal 
axes of the moment of inertia tensor. 

2) Dynamic properties identification 
For the identification of the dynamic behavior of the servos 
it was considered the relation between the reference input 
velocity and the correspondent estimated velocity obtained 
through the following equation: 

Ts
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Where 

)t(θ̂  is the estimated velocity at time instant t, 

 )t(θ is the angular position at time instant t 

 )1t( −θ is the angular position in the previous time instant 
Ts=0.01 sec. is the sampling period. 
 
The classical prediction error method was used for the 
identification of the servo dynamic model [3], using the 
identification data shown in Figure 8. 
 

 
Figure 8: Servo Identification Data 

 
After testing several tentative models with different orders, 
a BJ(2,1,2,1) was found to best approximate the desired 
dynamical behavior of the servo. The BJ model that results 
in the best data fit is the following: 
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Figure 9 compares the real output of the servo with the one 
estimated by the BJ model for the validation data. It can be 
concluded that the dynamic characteristics of the servo are 
well captured by the BJ model.  
 
 

 
Figure 9: Servo Validation Data 

IV. VIRTUAL REALITY ANIMATION 
Two models of the Humanoid Robot were built in 
Solidworks. While the first model was used for system 
identification in section III, the second model was exported 
to the wrml format to be used in the virtual reality toolbox 
of Matlab. In the second model, contrarily to the first one, 
the pieces were drawn with precise measurements but with 
few details in order to get a lighter animation running in 
real time. 
The purpose of the virtual reality model using the Virtual 
Reality Matlab toolbox is twofold. First, and as described 
in chapter V, it will be used alongside with simMechanichs, 
a mechanical simulation platform of Matlab, in order to 
have a visualization of the Humanoid dynamics model. The 
second purpose, as already used, is to have an animation 
doing in real time exactly what its twin is doing in reality.  
Two versions of the model have been built. The first one is 
just the normal Humanoid used for walking motion and the 
second one is Humanoid hanging from a Gymnastics high-
bar. 
 



 
 

 

 
Figure 10: Virtual Reality of the Humanoid doing a 

handstand on a high-bar. 

V. ONGOING WORK 

A. New hardware architecture  
Due to the tasks involved in this project the CM5 controller 
board contained in the initial configuration of the humanoid 
robot, will not be capable of undertaking all the 
computation required to the desired control functions. This 
CM5 controller board is based in an Atmel ATMega 128 
microcontroller, with a 16MHz processor and 128Kb of 
flash memory. For this project we choose a new board from 
Gumstix Inc. this board has a 400MHz processor with 
64Mb RAM and 16Mb of flash memory. Figure 11 shows 
the new architecture. 
 

 
Figure 11: New hardware Architecture 

Gumstix Connex runs an uClib Linux, in an ARM 
architecture processor. For data acquisition it is used an 
expansion board, Robostix, with the same base processor as 
the CM5 controller board. The communication between 
Gumstix and the Robostix is made through i2c. 

The evolution in this new setup is that with the Gumstix the 
humanoid robot gains more processing power, as the low-
level control functions are made in the humanoid robot, and 
not in an external computer, giving it more computation 
autonomy. 
Therefore, with this setup, the humanoid robot can manage 
all the servos control (through RS485), and just release to 
the upper level computer the necessary data to the high-
level control. 

B. Wireless communication 
One of the main improvements that had to be made was the 
way to connect the computer to the humanoid robot.  
The physical connection through serial port goes against 
one of the philosophies on this project, that is, to create a 
more autonomous humanoid robot. Hence we used a 
Bluetooth adaptor for remote communication with the 
robot. For this it was made a TCP/IP connection with static 
IP addresses, with the computer acting as Host, and the 
Gumstix board as Client. The connection as already been 
tested in terms of throughput and latency, and revealed 
satisfactory results for the purpose of this connection, that 
is to make the interface between the high and low level 
control tasks. 
For the latency tests the results obtained were, as shown in 
Figure 12. 
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Figure 12: Wireless Communication latency 

 
The tests were made by sending 200 packets of 1, 10, 100 
and 1000 bytes, plus the 28 bytes of the beginning and the 
end of the TCP connection. 
The throughput test has given the average result of 11,000 
bytes/sec. These values vary with the distance between 
Host and Client, and with the interferences in the medium. 
As we can conclude the wireless loop implements a loosely 
coupled connection [2] that will not be able to run close 
loop control of tasks involving small sampling periods. The 
fast control loops involving stability will autonomously run 
inside Gumstix which has a tightly coupled connection to 
the servos. The remote computer will give directions and 
targets to the humanoid but all the control and stability will 
run autonomously inside the robot. 
 



 
 

 

C. New Software Architecture 
In order to take full advantage of the new, more 

powerful, Robostix/Gumstix hardware architecture within 
the Matlab/Simulink environment, a custom target must be 
built for Real-Time Workshop. To this end, we start from 
the Linux Soft Real-Time Target in [4], and adapt it to the 
uClib Linux kernel of the Gumstix. 

The target uses the POSIX real-time clocks to generate 
periodic signals to wake up the model process at every time 
step. Furthermore, the process is changed to real-time 
highest priority defined by the scheduler. The outcome is a 
soft real-time architecture rather than a hard real-time 
architecture since the Linux kernel itself is not preempted 
by the scheduler, and therefore the model execution can 
occasionally be delayed. The delays involved in this  
approach will be further analyzed, and compared against 
the sampling times used for humanoid control. 

The resulting seamless working environment linking all 
the Maltab/Simulink tools and the (almost) real-time 
controller implementation in Gumstix renders this approach 
to be ideal for the objectives of humanoid control. 

D. Multibody Dynamics 
The process of modeling the multibody structure of a 

humanoid robot, either for the purpose of doing a hand-
stand on a high bar or for generating a stable walking 
motion, is a very complex one. One must deal with the 
formulation and solution of highly nonlinear dynamics 
equations of a very large size; a standard humanoid has 18 
servos. Furthermore, the problems imposed by transient 
mechanical constraints and by impact forces must be dealt 
with, and stabilizing controllers must be developed. 

To aid in this development, and following in the line of 
thought of a seamless development tool within 
Matlab/Simulink, we use the SimMechanics toolbox. 
Within SimMechanics, modeling and simulation of the 
humanoid may be easily performed without getting into the 
analytical and numerical complexity of model formulation 
[5]. Furthermore, model linearization, reduction and 
automatic code generation for the Linux Soft Real-Time 
Target are straightforward to implement. During the whole 
process, one may also interface the outputs SimMechanics 
into the Virtual Reality Toolbox as shown in Section IV 
and visualize the behavior of the humanoid robot. 

E. Control objectives: High-Bar Hand-Stand and Walking 
Motion 

The two control objectives under development are 
intended to explore linear and non-linear control 
methodologies. For the high-bar hand-stand, the humanoid 
is treated as a two or three body serial chain in an inverted 
pendulum configuration. The system is under actuated, 
being the motion of the legs prescribed in order to stabilize 
the torso of the humanoid above the high bar. Linear 
control methodologies will be exploited in this problem for 
both the swing-up phase and equilibrium phase. 

The problem of stabilizing a walking motion is much 
more complex than that of stabilizing a hand-stand on a 
high-bar. At each step there are impact forces and transient 
mechanical constraints, and the high model size reduction 
of the former case may no longer be performed. Thus, non-
linear control approaches must be explored.  

A stable walking gait controller is the basis for more 
complex motions such as running and jumping, and this 
constitutes the main path for our current and future work. 

VI. CONCLUSIONS 
In this paper we presented the current development status at 
the Humanoids Robotics Lab of the Department of 
Mechanical Engineering at Instituto Superior Técnico in 
collaboration with Robosavvy Ltd. 
For the last semester we have worked on: 
• Software Development for interfacing the Matlab real 

time workshop toolbox with the humanoid robot 
controllers.   

• Hardware Development towards wireless 
communication between the local robot controller and 
the remote PC. 

• Internal and external dynamic parameter identification 
of the humanoid servos and structure respectively. 

• Dynamics modeling and simulation using 
simMechanics and virtual reality toolbox 

The previous points aim at the development of: 
• Linear control methodologies for the swing-up 

phase and equilibrium phase of a hand stand on a 
high bar. 

• Non linear control methodologies for a stable 
walking gait for more complex motions such as 
running and jumping.  
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