=
m—

INSTITUTO SUPERIOR TECNICO

Humanoid Robot

Development of a simulation environment of an entertainment humanoid robot

Pedro Daniel Dinis Teodoro

Dissertagao para obtencao do Grau de Mestre em

Engenharia Mecanica

Juri
Presidente: Professor José Manuel Gutierrez Sa da Costa
Orientador: Professor Miguel Afonso Dias de Ayala Botto

Co-orientador: Professor Jorge Manuel Mateus Martins

Vogal: Professor Jodo Miguel da Costa Sousa

September - 2007

Este trabalho reflecte as ideias dos seus
autores que, eventualmente, poderao nao

coincidir com as do Instituto Superior Técnico.

Abstract

This dissertation was developed in collaboration with Robosavvy Ltd and boosted the creation of
the Humanoid Robotics Laboratory of IDMEC-Center of Intelligent Systems, at Instituto Superior
Técnico (http://humanoids.dem.ist.utl.pt/). The developments presented include: i) the software
development for interfacing the Matlab® Real Time Workshop Toolbox with the Bioloid humanoid
robot servos; ii) the identification of the internal and external dynamic parameter of the humanoid
servos and structure, respectively; iii) the dynamics modeling and simulation of the humanoid robot
using the SimMechanics® and Virtual Reality Toolbox®); iv) the deduction of the equations of
motion for an underactuated n-link inverted pendulum. The main objective of the Humanoid
Robotics Laboratory, for the time being, is to develop a humanoid robot able to make complex
motions like walking, running and jumping through real-time feedback control techniques. This
dissertation presents a LQR controller for the simulation and control of the humanoid robot doing

the handstand on a high bar, by considering it as an underactuated 3-link inverted pendulum.

Keywords: Humanoid Identification, Servo Identification, Humanoid Simulation, Linear Quadratic

Regulator (LQR), Underactuated Inverted Pendulum, Non-Minimum Phase-System.

Resumo

Esta dissertacao foi desenvolvida em colaboragao com a Robosavvy Ltd e proporcionou a cri-
agao do laboratorio de humandides roboéticos (Humanoid Robotics Laboratory) do IDMEC-Centro
de Sistemas Inteligentes do Instituto Superior Técnico (http://humanoids.dem.ist.utl.pt/). Os
progressos realizados incluem: i) o desenvolvimento de software para interface entre o Matlab®
Real Time Workshop Toolbox com o robd humanoide Bioloid; ii) a identificagdo dos pardmetros
dindmicos internos e externos dos servos e da estrutura do humanoide, respectivamente; iii) a mod-
elagdo dinamica e a simulagdo do robd humanoide usando o SimMechanics®) e a Virtual Reality
Toolbox®); iv) a dedugdo das equagdes de movimento para um péndulo invertido subactuado de
n-barras. O objectivo do laboratério de humanoides robdticos, neste momento, é o desenvolvi-
mento de um robé humandéide capaz de exercer movimentos complexos como andar, correr e saltar
através de técnicas de controlo por feedback em tempo real. Esta dissertagao apresenta um con-
trolador LQR para a simulagao e controlo de um rob6 humanoide a fazer o pino sobre uma barra,

comportando-se como um péndulo invertido subactuado de 3-barras.

Keywords: Identificacdo de Humanoides, Identificagao de Servos, Simulagao de Humanoides,Regulador

Linear Quadratico (LQR), Péndulo Invertido Subactuado, Sistema de Fase Nao Minima.

iii

Acknowledgments

This thesis would never be done without the full support, orientation, dedication and availability of

my supervisors, Prof. Miguel Ayala Botto and Prof. Jorge Martins. To them, my deepest gratitude.

I would like to express my gratitude for Professor Carlos Cardeira for his help in the serial

communication between the PC and the humanoid.

I would like to thank Limor Schweitzer, for his inestimable dedication and help in every phase

of the project.

I wish to thank all my colleagues from the DEM, for the friendly work environment they

provided, and for the help they gave me in the many different occasions.

Least but not last, I shall express, from the bottom of my heart, my deepest gratitude to my

parents and family for the support, dedication, comprehension and love.

Contents

List of figures
List of Tables

1 Introduction

1.1 Stateof Art
1.2 Purposes of this thesis
1.3 Control solutions for stabilizing underactuated robots
1.4 Contributions of this thesis
1.5 Structure of the thesis o

2 Development environment set up

2.1 Humanoid robot L
2.2 Hardware architecture
2.2.1 Protocol communication o Lo
2.2.2 Programming the micro-controller Atmegal28
2.3 Software architecture
2.3.1 C-MEX S-function
2.3.2 Simulink block diagramo Lo

2.4 Real time issues and communications delays

ix

XV

10

11

14

16

16

17

18

vii

CONTENTS

3 Humanoid Identification

3.1

3.2

3.3

Mechanical and physical properties identification
Dynamic servo-actuators properties L oo
321 DCmotor e
3.2.2 Mathematical model
3.2.3 Close-loop position control L o
3.2.4 Open-loop velocity control oL
3.2.5 Stiction
3.2.6 Voltage e
3.27 Temperature L
328 Load and Speed
3.2.9 Torque as input signal Lo
Dynamic Servo Identification and Validation

4 Simulator

4.1

4.2

4.3

The humanoid model e

SimMechanics simulator

Virtual Reality animation L o

5 Humanoid model

5.1

5.2

5.3

5.4

viii

Equations of Motion

Linearization e e e e e e e e e

Continuous state space model Lo

Discrete state space model Lo Lo

5.4.1 Sample time determination Lo oL

5.4.2 Reachability and observability

21

21

23

24

24

26

26

27

28

28

29

29

31

33

33

35

36

39

CONTENTS

6 Humanoid Control and Simulation Results

6.1 Linear Quadratic Regulator (LQR)

6.2 LQR Simulation Results

6.3 Discrete Linear Quadratic Regulator (DLQR)

6.4 DLQR Simulation Results

7 Conclusions and future work

Bibliography

A C-MEX S-Function code for real-time communication

B Protocol communication C code for PC and humanoid robot

C Drawings and mechanical properties of the Walking humanoid

D Drawings and mechanical properties of the Gymnast Humanoid

E Poles and zeros of the Gymnast Humanoid model

53

63

65

69

75

79

91

95

ix

CONTENTS

List of Figures

1.1 The humanoid robot from Honda and a commercial humanoid toy from Wow Wee

1.2 The actual web page from Humanoid Robotics Laboratory

1.3 A 3-link underactuated robot in the upside-down region

2.1 Humanoid in two different configurations and its main elements

2.2 Current humanoid commercial platforms considered in the project

2.3 AX-12+ servo-actuator.

2.4 CMb>5 box, CM5 board and Atmegal28 . . .

2.5 Pepper sensor board and KRG3 gyroscope from Kondo.

2.6 Hardware architecture diagram

2.7 Instruction packet

2.8 Status packect

2.9 Status Packect

2.10 main function of the C code to be uploaded to the CM5

2.11 Bootloader Screen

2.12 Simulink block diagram

2.13 Real-time servo step response

2.14 Communications delays from PC and CM5

10

10

11

11

12

14

15

16

17

18

19

xi

LIST OF FIGURES

xii

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

4.1

4.2

4.3

4.4

4.5

4.6

5.1

Walking and Gymnast humanoid main blocks

Walking and Gymnast humanoid joints and skeleton

Servo Actuator AX-12 and drawings L. oL

Daisy Chain Wiring e

AX-12 mMICTOPTOCESSOT .« & v v v v e e e e e e e e e e e e e

DC motor operation

Electrical Representation of a DCmotor

Possible internal block diagram control of the servos

Close Loop Position Control L

Open Loop Velocity Control

Stiction Dead Zone e e

Effects of the supplied voltage to the servos in the outputs velocity response

Speed to Angle Inclination of a Humanoid Leg

Speed to Torque Relation

Servo Identification Data e

Servo Validation Data e e e

Drawings of the main blocks of the Gymnastic humanoid and its centers of gravity

Humanoid in its vertical unstable position in Virtual Reality and in the SimMechan-

ics simulator representation L. L. e

Gymnastic humanoid simulator plant L.

Virtual reality models of the Walking and Gymnastic humanoids

Humanoid virtual thematic park

Parent-Child hierarchy for the Walking humanoid and the Gymnastic humanoid

Active and Passive joints of the Gymnastic humanoid

34

LIST OF FIGURES

5.2

6.1

6.2

6.3

6.4

6.5

6.6

6.7

Al

A2

A3

A4

A5

B.1

B.2

B.3

B4

B.5

B.6

C1

Representation of the humanoid seen as an underactuated triple pendulum. 40

Position of the Centers of gravity of the arms, torso and legs and its equivalent one 54

Simulation using Linear Quadratic Regulator for balancing without angle compen-

sation (A) and with (B) 55

Implemented DLQR controller 56

Simulation using discrete Linear Quadratic Regulator for balancing with T,=0.01

sec (A) and T,=0.02sec (B) 58

Simulation using angles compensation for the three joint (A) and simulation cor-

rupted by servos position resolution (B) oo L 59

Simulation after adding gyroscope resolution (C) and simulation with dead-zone

response of the servos (D) L 60
Simulation after adding friction coefficient between hands and high bar (E) 61
Part 1 of the C-MEX S-function 70
Part 2 of the C-MEX S-function 71
Part 3 of the C-MEX S-function 72
Part 4 of the C-MEX S-function 73
Part 5 of the C-MEX S-function 74
Microprocessor C code for PC-Servo protocol 76
Part 1 of the C-MEX S-Function for PC-Servo protocol 7
Part 2 of the C-MEX S-Function for PC-Servo protocol 7
Block Diagram for PC-Servo protocol 78
Reference angular position blocko 78
Output estimated angular velocity using an online filter 78
Main Blocks of the Walking humanoid 79

xiii

LIST OF FIGURES

xiv

C.2 Lower Atm 80
C.3 Lower Arm 2D CAD 80
C.4 Upper Arm e 81
C.5 Upper Arm 2D CAD e 81
C.6 Shoulder e 82
C.7 Shoulder 2D CAD 82
C.8 Torso e e 83
C.9 Torso 2D CAD e 83
CA0Groin o e 84
C.11 Groin 2D CAD e 84
C.12Hip/Ankle e 85
C.13 Hip/Ankle 2D CAD 86
C.ld Upper Leg o e 87
C.15 Upper Leg 2D CAD e 87
C.16 Lower Leg o o o e 88
C.17 Lower Leg 2D CAD e 88
CABF0Ot . . o o e 89
C.19Foot 2D CAD o e 89
D.1 Main Blocks of the Gymnast Humanoid 91
D.2 Arms. 92
D3 Arms 2D CAD 92
D4 Torso e 93
D.5 Torso 2D CAD 93
D.6 Legs o e 94

LIST OF FIGURES

D.7 Legs 2D CAD o e 94
E.1 Poles and zeros for the first 3 states (g1 — 5,q2,¢3) - - 96
E.2 Poles and zeros for the last 3 states (G1,¢2,G43) - - « « « « « v o o oo 97

XV

LIST OF FIGURES

xvi

List of Tables

2.1

2.2

3.1

4.1

4.2

4.3

4.4

5.1

6.1

C1

C.2

C.3

C4

C.5

C.6

C.7

Status packet errors L

Project read-write instructions Lo Lo

Speed input signal to Torque correspondence

Main measurements of the Gymnastic humanoid

Mechanical properties of the main blocks of the Gymnastic humanoid

Position of the main blocks and its orientation axis of the Walking humanoid

Position of the main blocks and its orientation axis of the Gymnastic humanoid

Physical properties of the gymnast humanoid

Best Angle Compensation L L

Lower Arm Mechanical Properties

Upper Arm Mechanical Properties

Shoulder Mechanical Properties L L

Torso Mechanical Properties o

Groin Mechanical Properties

Main Blocks Mechanical Properties

Main Blocks Mechanical Properties o0

38

38

47

57

80

81

82

83

84

85

86

xvii

LIST OF TABLES

C.8 Upper Leg Mechanical Properties, 87
C.9 Lower Leg Mechanical Properties, 88
C.10 Foot Mechanical Properties L 89
D.1 Arms Mechanical Properties o 92
D.2 Torso Mechanical Properties 93
D.3 Legs Mechanical Properties o 94

xviii

Chapter 1

Introduction

We are all, human and humanoid alike,
whether made of flesh or of metal,

basically just sociable machines.

Robin Marantz Henig

A long-standing desire that human-like robots could coexist with human beings has made the
researchers think that the humanoid robotics industry will be a leading industry in the twentieth-
first century (Kim et al., 2007). This thought comes from the fact that technology is finally getting
ready for this purpose. Fastest micro-processors, super computers, high-torque servo-actuators,
precise sensors along with new advances in control techniques, artificial intelligent and artificial
sound/vision recognition, all embedded in better and better mechanical design machines made
the believe that this dream might became true in a nearly future. But, humanoid robots will
not only be able to socialize with the human-being but will also be able to replace him even in
the tedious and dangerous tasks, ranging from rescuing situations to interplanetary exploration

(Ramamoorthy, 2007).

1.1 State of Art

ASIMO from Honda (Figure 1.1a) is until this moment the most advanced humanoid robot ever
created, with voice, vision and gesture recognition (Sakagami et al., 2002), besides dynamic ad-
vanced locomotion control that make it able to walk, run, climb stairs and avoid static and dynamic
obstacles while walking (Chestnutt et al., 2005; Takenaka, 2006). In fact, locomotion is the main
characteristic studied in humanoid robotics for two reasons; first, a humanoid can only resemble
like a human if it is able to move like him; second and as cited by Wolpert (Wolpert et al., 2001),

"Movement provides the only means we have to interact with both the world and other people.”.

1.2 Purposes of this thesis

And only after achieving the natural walking and locomotion of a humanoid in the human envi-
ronment, are humanoid robots able to learn how to interact with it and socialize with humans,

making use of all of its artificial intelligent.

Walking locomotion is not a trivial concept for the human understanding. In fact, only recently
studies (Sockol et al., 2007) demonstrated, by comparing the oxygen consumption of humans and
chimpanzees while walking on a treadmill, that the human-being evolved to walk upright in two legs
(bipedalism) since it makes the walking far more efficient in terms of wasting energy. Understanding
the natural and smooth walking of a human is also another challenge since generating a stable
walking motion for this multi-body system, which is highly nonlinear, is a very complex one.

Hence, studies were done around this subject and successfully implemented in humanoid robots.

The most common strategy, nowadays, and based on dynamic walking, are the zero moment
point (ZMP) (Kim et al., 2007) and the contact wrench sum (CWS) (Hirukawa et al., 2007). These
techniques, which main principle is to cancel the total inertial forces actuating on the humanoid
with the floor reaction force, are implemented in some of the most famous researcher humanoid
robots like QRIO from Sony, ASIMO from Honda or HRP-2/HRP-3 from Kawada, allowing them
to walk on uneven terrain and inclined plans, to run and to climb stairs. Another control strategy
is based on biologically realistic walking (Popovic and Herr, 2004) and on the principle of spin
angular momentum regulation. Recently, a dynamic balancing strategy control has also been
successfully applied to the Dexter humanoid robot from Anybots. In this case and as opposite of
ZMP strategy, it does not need preprogrammed footprints, being able to walk like a human and
even to jump. Many other strategies have been studied, one last for instance is the passive-dynamic
walking (PDW) that requires no external control or energy input, being the movement governed

by the natural swinging of the legs (Collins et al., 2005; Asano and Luo, 2007).

In terms of current commercially available humanoid robots (see Figure 2.2), they are still de-
signed to perform motions using open-loop control providing the users a simple paradigm to create
pre-orchestrated multi-DOF walking gaits. These robots are usually not able to move on uneven
terrain and it is difficult or impossible to get them to perform movements that require instanta-
neous reaction to momentary instability. A popular way to compensate for these predicaments is
to over-capacitate servo torques and to incorporate large foot soles, low center-of-mass and better
shock absorption, resulting in humanoid robots with little resemblance to the human physique,

just as RoboSapiens from Wow Wee Toys (Figure 1.1b).

1.2 Purposes of this thesis

This thesis was developed in collaboration with Robosavvy Ltd and boosted the creation of the

Humanoid Robotics Laboratory (Figure 1.2) of IDMEC-Center of Intelligent Systems, at Instituto

2

Introduction

-
-
(a) Asimo from Honda (b) RoboSapiens from Wow Wee Toys

Figure 1.1: The humanoid robot from Honda and a commercial humanoid toy from Wow Wee Toys

Superior Técnico (http://humanoids.dem.ist.utl.pt/).

‘\ji IDMEC / IST Csi
7 Institute of Mechanical Engineering Centre of Intelligent Systams
g ¥ Hips (0°)
4 Robae

Shoulders (0°)

| Toe aquarions of matr e 2y5tam can be raprasartad oy She Biouing Tt ravazeniaten

|| %2 |

5
i w |
"

|| %2 H w4+

[
<

re |l 9s

Figure 1.2: The actual web page from Humanoid Robotics Laboratory

The long term objectives of this thesis are to allow affordable commercial humanoid robots to
walk, run, skateboard, jump and in general to react in a human-like physical way in dynamically
unstable situations and uneven terrain. These goals can be achieved by applying closed-loop control
techniques to the humanoid robot servos. The input data stream should consist of a multitude
of sensors including servo position and torque, acceleration and inertial moment. The closed-
loop control cycle should actuate the servos at rates of, at least 50Hz, which would give good

responsiveness in a dynamic environment.

This thesis, however, has a more humble goal since it initiates the study of humanoids. There-
fore, it is necessary to prepare the necessary conditions before achieving the desired long term

goals:

1. The selection of a humanoid with high-torque servos.

1.3 Control solutions for stabilizing underactuated robots

2. The establishment of a real-time protocol communication between the PC, using Matlab/Simulink®

Real-Time Workshop and the robot, for acquiring and sending data to the servos-actuators.
3. The identification of the physical and mechanical properties of the humanoid robot.

4. The identification and study of the behavior and responses of the high-torque servos.

After achieving this, then it is possible to create simulators incorporating all the information re-
garding the identification and behavior of the humanoid robot, aiming the control of the humanoid

while doing complex tasks such as walking or skating.

For this project a simple simulator was created which shows the viability of having a particular
control situation. The humanoid is seen as an underactuated three links robot hanging on a high
bar, trying to mimic a gymnast human doing the hand-stand like the three link gymnast robot
in (Takashima, 1989). The control strategy used is the well-known Linear Quadratic Regulator
(Lancaster and Rodman, 1995; Ayala Botto, 2006), with torque being the servos input. Since the
humanoid robot studied in this thesis has servo-actuators with speed as input, a relation between

velocity and torque were established in order to be able to control it with torque.

1.3 Control solutions for stabilizing underactuated robots

Many studies were done with underactuated robots (Lee and Coverstone-Carroll, 1998; Aurelie
et al., 2006). These robots are generally composed of two or three links in which the first joint is
not actuated, or passive, whereas the others are actuated, or active (Figure 1.3). The objective
is to swing up the robot from the vertical stable position to the upside-down position and then

maintaining its unstable pose.

Link 3

Active Joints

Figure 1.3: A 3-link underactuated robot in the upside-down region

Stabilizing the humanoid in his upright position is a challenging task and requires non-cancelation

control techniques since the system is non-minimum phase. The most common controller used

4

Introduction

as a first attempt is the Linear Quadratic Regulator (LQR) (Spong, 1994; Lee and Coverstone-
Carroll, 1998). In this type of controller, a vector of constant gains (LQR gains or Kalman gains)
are applied to the vector state of the system, obtaining new torque inputs for the system in order

to stabilized it.

Another popular technique uses Partial Feedback Linearization to swing up a two-link under-
actuated robot (Spong and Block, 1995) and to stabilized it (Lee and Coverstone-Carroll, 1998).
This control strategy derives from fully actuated robots, with no passive joints. For this type
of underactuated robots, the model can be fully feedback linearized by a nonlinear feedback law
(Spong and Vidyasagar, 1989). However, for underactuated robots, that is only true for the actu-
ated joints (Partial Feedback Linearization). The rest of the dynamics of the system would still
remain nonlinear. The solution found by (Spong, 1994) was to introduce a new condition called,
Strong Inertial Coupling, to linearize also the dynamics corresponding to the passive joints. In this

way, it was possible to feedback linearize an underactuated planar robot.

Partial Feedback Linearization demands a full knowledge of the model. Aiming a more robust
stabilization technique that could handle model uncertainty, other techniques, like for instance, the
nonlinear Sliding Mode Control (Utkin, 1992) technique was took in consideration for stabilizing a
two-link underactuated robot in his upright unstable position (Lee and Coverstone-Carroll, 1998)
and for the both phases, swing-up and stabilization (Qian et al., 2007). In this strategy, an
additional term responsible for handling the uncertainties of the model is summed to a feedback

linearizing controller improving the overall robustness of the controller.

Intelligent control has also been used to control underactuated robots. Among other strategies,
an intelligent adaptive fuzzy radial Gaussian neural networks system for stabilizing a two-link
underactuated robot in vertical unstable position (Qian et al., 2006) demonstrated to be globally
stable, while an adaptive GA-tuning fuzzy PID control scheme, for the swing-up and stabilization
of the same underactuated robot, has been implemented with some successfully results (Wu et al.,

2007).

1.4 Contributions of this thesis

This thesis aimed for the identification of the internal and external parameters of the chosen
humanoid, the Bioloid humanoid from Robotis.com®), and its application in a control situation
using simulation where the robot should be able to do the hand-stand on a high bar. Therefore,

some contributions were made within the development of the thesis, namely:

1. The construction of a serial protocol communication using Matlab/Simulink® and the hu-

manoid robot.

1.5 Structure of the thesis

2. The mass and inertia tensor calculation of every single component of the humanoid.
3. The analysis and identification of the internal behavior of the servo-actuators.

4. The development of a simulator for the humanoid doing a handstand on bar using virtual

reality as animation.

5. The two sets of the humanoid 3D CAD drawing and its constituents. One set is detailed,
resembling the reality pieces for mechanical analysis, while a less detailed one with precise

real measurements is used in virtual reality animation.

6. The deduction of the equations of motions for a n-link inverted pendulum and its linearization
along the vertical unstable position, and ways to control a n-link inverted pendulum with

eccentrics masses.

1.5 Structure of the thesis

The rest of the thesis is organized in the following way.

Chapter 2 describes the serial protocol communication between the PC and the humanoid robot

using Matlab/Simulink®) as a platform.

In chapter 3, the identification of the external mechanical properties of the humanoid robot

along with the internal properties of the servos is presented.

The construction of a simulator using virtual reality 3D humanoid as animation is shown in

chapter 4.

In chapter 5, the equations of motion for the humanoid robot in his 3-link underactuated
inverted pendulum configuration as well as for the generic n-link planar robot are presented. The

state space model of the humanoid robot is also deduced.

Control, implementation and simulation results are presented in Chapter 6. Special emphasis
is given to the Linear Quadratic Regulator (LQR) technique used to control the humanoid on a

high bar doing a hand-stand.

Finally, in chapter 7, some conclusions and new ideas for future development are presented,

pointing to the tasks left to be done in the future.

Chapter 2

Development environment set up

This chapter describes the hardware and software set up used along this thesis, that enabled the

real time communication between the PC using Matlab/Simulink® and the humanoid robot.

Our development environment includes Simulink running on a Windows PC. Simulink can
compile and offload control algorithms to various real-time hardware systems. The control loop is
able to run both on-board the humanoid and on the PC. In both scenarios the sensory data and

servo actuation commands should be streamed back and forth with the humanoid servos.

2.1 Humanoid robot

Given the above requirements, it was looked for a humanoid robot for our development environ-
ment. It was finally selected the Bioloid (Figure 2.1a) from Korean manufacturer Robotis.com.
This was the humanoid kit of choice due to its well designed servo controllers that provide cur-
rent, voltage, position and temperature sensing. It has a well documented open controller board
and a well documented servo control protocol. Other humanoids platforms previously considered
included: (a) KHR-1HV / KHR-2HV / Manoi / Robonova (Figure 2.2)- these are affordable hu-
manoid kits whose servos provide position and current sensing. Their weight to torque ratio is
probably better suited for running and skateboarding than Bioloid. However, documentation was
lacking at the time this option was evaluated. (b) Custom Humanoid - many of the RoboCup teams
and robot researchers build their own humanoid model using Aluminum and Fibreglass brackets
and high-torque RC servos. A popular choice is the Robotis high-power RX and DX servos to

actuate the robot.

Two different configurations of the Bioloid humanoid were studied (Walking humanoid and

Gymnastic humanoid). The humanoid showed in Figure 2.1a is the original humanoid configuration

7

2.1 Humanoid robot

CM5 Box

AX-S1
Sensor

-
f:’:’@!i@ el P g L

\

(a) Walking humanoid configuration (b) Gymnastic hu-

manoid configuration

Figure 2.1: Humanoid in two different configurations and its main elements

(a) KHR-1HV (b) KHR-2HV (¢) Manoi (d) Robonova

Figure 2.2: Current humanoid commercial platforms considered in the project

from Robotis set kit Bioloid, whereas the second robot (Figure 2.1b) is a modified version of that
one. In this last one, the humanoid assumes the configuration of a human gymnast hanging on a
bar. The resemblance is on purpose since it is our objective to have the robot doing a hand-stand
on a high bar. Consequently, it was necessary to equip this robot with two additional hand grips,
in order to allow it to hang on a bar, as well as a gyroscope plugged to a specified sensor board.

This board replaced the custom head of the humanoid.

The humanoid Robot has 18 degrees of freedom (DOF) powered by DC servos. The "brain"
of the robot is the CM5 board and it is located in the back of the humanoid. In the board, the
microprocessor Atmegal28 is responsible to send and receive information from the servos trough
serial protocol communication RS485 and to send and receive data from the PC through the RS232

serial port.

8

Development environment set up

AX-12+ Servo-actuator

The servos-actuators are the 'muscles’ of the humanoid. These in particular (Figure 2.3) have some

special features such as:

e precision DC motor and a control circuitry with networking functionality.

1 MBps communication speed.

Full feedback on Position (300°), Speed, DC current, Voltage and Temperature.

Voltage, DC current and Temperature automatic shutdown.

Can be set as an endless wheel.

High Torque servos.

Figure 2.3: AX-12-+ servo-actuator

AX-S1 Sensor

This sensor, resembling a servo, can detect distance, brightness, heat and sounds.

CM5 Box

The CM5 (Figure 2.4) is the main controller of the humanoid. It consists of a microprocessor

Atmegal28, that can receive/transmite data to the servos and to the PC.

Sensor board and gyroscope

This sensor board (Figure 2.5) allow different types of sensors to be plugged into this board. In
our case, the gyroscope KRG3 from Kondo was used. This gyro has 556 steps of resolution but

without directly correspondence between velocity and the output encoders.

2.2 Hardware architecture

A AmE
ATMEGA128
16AU 0601

LT

:0:\: .

(a) CM5 box and its board (b) CM5 microprocessor At-
megal28

Figure 2.4: CM5 box, CM5 board and Atmegal28

ﬁKRes

Figure 2.5: Pepper sensor board and KRG3 gyroscope from Kondo

2.2 Hardware architecture

Figure 2.6 shows the existing humanoid architecture and the control architecture used. The hu-
manoid controller named CM5 is connected to the controllers of the servos through a RS485 bus.
The usual approach to teach the robot is to use a humanoid proprietary software that connects to
a PC through the RS232 serial line. The CM5 has however an Atmegal28 microcontroller (Figure
2.4) with a bootloader which allows users to change the code and access directly to the servo con-
troller parameters. A small program was developed in the CM5 controller to implement a protocol

for transmitting/receiving through the serial port the data from/to the servos.

Note: The servos communicate through asynchronous serial communication with 8 bit, 1 stop

bit and no parity.

10

Development environment set up

Computer w/Simulink, RTW,
Real Time Windows Target

RS232 Connector
5 D)

O R X " Bioloid Jask
\ eeee
RS232 ;/

|5-GND 3-TxD 2-RxD|

...........

Servo 2 Servo 18

CM5 T Servo 1
RS485

Figure 2.6: Hardware architecture diagram

2.2.1 Protocol communication

Servos are wiling to receive/send package information from/to the CM5. Therefore, data instruc-

tions are sent to the servos and status packets are received from them.

Instruction packet

In order to give to a specific servo a specific command, an instruction packet is transmitted to it

with the following structure (Figure 2.7).

[oXFF] pXFF O LENGTH [NSTRUCTION] PARAMETER T .. PARAMETER N|[CHECK SUM|

Figure 2.7: Instruction packet

Where:

1. The first two bytes (0xFF 0xFF) means that a new instruction is going to be sent.

2. The third byte says which servo will receive the instruction. When the ID of the servo is set

to OxFE, then the instruction is sent to all servos.

3. The fourth byte represents the length of the instruction packet, i.e. the number of bytes of
the packet length without counting the first three bytes.

4. The fifth byte represents the instruction that the servo should execute. These can be:

0x01 Ping: Used for obtaining a status packet.

11

2.2 Hardware architecture

0x02 Read Data: Used to read values of one servo, such as its current position.

0x03 Write Data: Similar to Read Date, but used to write instead (e.g. send a new goal

position).

0x04 Reg Write: Similar to Write Data, but stays in standby mode until the Action instruc-

tion is given.
0x05 Action: Triggers the action registered by the Reg Write instruction.
0x06 Reset: Reset all the parameters of the servos to its original values.

0x83 Sync Action: Used for control servos at the same time.

5. The sixth byte stands for values to be sent along with the instruction (e.g. the value of the

goal position).

6. The last byte gives the checksum of the packet.

Status packet

After sending an instruction packet a status packet is sent back to the main controller (CM5)

(Figure 2.8).

[CXFF [0XFH IT LENGTH|[ERROR] PARAMETER 1| PARAMETERZ| . PARAMETER N|[CHECK SUM

Figure 2.8: Status packect

The status packet is similar to the instruction packet, with the difference of having a byte error
instead of the instruction command. When the error byte is 0x00, then the instruction packet went

well, otherwise one or more errors occurred (table 2.1).

Bit Error
0

Instruction Error
Overload Error
Checksum Error

Range Error

[N O R AT => B |

Overheating Error
1 Angle Limit Error
0 Input Voltage Error

Table 2.1: Status packet errors

12

Development environment set up

Read and write instructions

Read and write commands are defined as parameters in the instruction packet and they are different

depending they are sending or requesting an information (table 2.2).

When writing information to a servo, the first parameter byte stands for the command the
servo should undertake (e.g., Goal Position is 0x1E, and Moving Speed is 0x20). The remained of

the parameter bytes represent the value of the command.

Reading data is similar to writing, but the parameters bytes are always two, where the second

byte tells the number of bytes to be read from the first parameter byte.

Command Address Access
CW Angle 0x08 (8) Write
CCW Angle 0x08 (10) Write
Goal Position 0x1E (30) Write
Moving Speed 0x20 (32) Write
Present Position 0x25 (36) Read
Present Speed 0x27 (38) Read
Present Load 0x29 (40) Read

42 Read

Present Voltage 0x2A (42)
Present Temperature 0x2B (43) Read

Table 2.2: Project read-write instructions

Endless turn mode

Endless turn mode, e.g. the servo behaves like a continuous rotating wheel, can be set by turn

CW and CCW to zero.

Goal Position

The servos have 10 bit resolution in terms of position corresponding to 300°. However exists an
invalid zone that the servo can not reach. When the servo is set to endless turn mode, the sensor
is not able to read the position of the invalid zone. At 150°, the servos are in its middle position.
For instance, the physical configurations of the Humanoids of Figure 2.1(a,b) have all the servos

in that position.

Moving speed

Moving speed can be set in 1024 increments.

Present position

13

2.2 Hardware architecture

Middle Position (150°)

300/ 300~360° 0°
Invalid Zone

Figure 2.9: Status Packect

Reads the actual position of a servo (10 bits resolution for 300°).

Present speed

Reads the actual speed of a servo (10 bits resolution). No information about the units used.
Present load

Reads the actual DC current consumed by the servo (9 bits resolution with 10th being the load

direction). No information about the units used.
Present voltage
Reads the actual Voltage of the battery (8 bits resolution or 0.1 Volts resolution).
Present temperature

Reads the actual Temperature of the servo (8 bits resolution or 1° Celsius resolution).

2.2.2 Programming the micro-controller Atmegal28

The next step, was to build a small C program to run on the microprocessor Atmegal28 in order

to prepare the communications with the PC.

The C program was developed from an existent C code for the microprocessor inside the CD
that comes with the humanoid robot, the "example.c". The changes undertaken inside this code
were only done inside the main function. In the piece of code of Figure 2.10 a simple situation
is shown (starts at code to be inserted) in were the CM5 starts by reading two bytes from the
PC side corresponding to the final desired position for servo 1. Afterwards, this desired position

is sent to the servo. The cycle ends by sending the actual position of the servo back to the PC.

14

Development environment set up

The code was compiled by using the notepad programmers 2 from WinAVR using the command
Tools => [WinAVR] Make All . A .hex code is finally generated, and this code is uploaded to the
Atmegal28.

.. -

Eint main(void) {

byte bCount,bID, bTxPacketLength, bRxPacketLength;
PortInitialize(); //Port In/Out Direction Definition
RS485_RXD; //Set R5485 Direction to Input State.
//R5485 Initializing(RxInterrupt)
serialInitialize(SERIAL_PORTO,1,RX_INTERRUPT);
F/RS232 Imitializing(None Interrupt)
serialinitialize(SERIAL_PORT1, DEFAULT_BAUD_RATE,0);
ghrxBufferreadrointer = gbhrRxBufferwritepPointer = 0; //RS485 rRxBuffer Clearing.
sei(); //Enable Interrupt -- Compiler Function
[_] AR TR R T a R R il :I< AT A AT AT aw
* code to be inserted o
//servo to be used
bID = 1;
goa1 pos1t1on splited in lo and hi byte
byte o, hi;
while (1)
B f
//read from MATLAB the goal position
To=RxD8{);
hi=RxD&();
//send the goal position to the servo
gbpParameter [0] = P_GOAL_POSITION_L; //Address of Firmware version
gprarameter[l] = lo; f Wr1t1ng pata P_GOAL_POSITION_L
ghprarameter[2] = hi; Irnr1t1ﬂg pata P_GOAL_POSITION_H
ghpParameter [3] = Oxff riting Data P_GOAL_SPEED_L
Ebpparameter[4] = 0x3; //writing Data P_GOAL_SPEED_H
TxPacketLength = TxPacket (bID, INST_WRITE, 5);
bRxPacketLength = RxPacket (DEFAULT_RETURN_PACKET_SIZE);
//get present position
gbpParameter [0] = P_PRESENT_PGSITION_L; //Address 36 of present position LSB
ghpParameter[1] = // Read 2 bytes starting at address 36
TxPacket (bID, INST_ READ 2): S/ 2 means 2 bytes in parameter array
RxPacket (DEFAULT_RETURN_PACKET_SIZE+gbpParameter[1]) =
J/read a char
RxDE();
//send back to MATLAB the actual position of the servo
TxD81 (gbprxBuffer[5]);
TxD81 (gbprxeuffer [5]);
1
E_] R AR R R R R R R R
* end code #
1
.. - .)

Figure 2.10: main function of the C code to be uploaded to the CM5

In a similar way, the code can be changed to receive only desired speed and get other parameters

such as speed, dc current, voltage and temperature.

After this, it is necessary to upload the program to the microprocessor. For that purpose, the
robot terminal that comes with the Humanoid was used. After verifying that the serial cable is
plugged to the PC and CM5, the CM5 is turned on. In Setup => Connect verify if the CM5 is
connected at 57600bps and if the used port is the COM1. Now enter in the boot loader by pressing

15

2.3 Software architecture

in the same time the red button of the CM5 and #. The screen of Figure 2.11 must appear.

M Robot Terminal(Bioloid) ¥1.01
Setup Files

SYSTEM 0.K. (CH5 Boot loader U1.31)

Figure 2.11: Bootloader Screen

Write now the command Load. Press Enter, then go to Files => Transmit file and open the

.hex code. Finally go to Files => Disconnect.

2.3 Software architecture

The device drivers to send/receive data to/from the servos using the defined protocol were devel-
oped in Simulink / Real Time Windows Target. For doing this, a C program for Atmegal28 was
written (see section 2.2.2). Hereafter, it was necessary to establish a protocol for the serial com-
munication between the PC and the CM-5. Finally, a C-MEX S-function to communicate with the
CM-5 throughout UART (universal asynchronous receiver / transmitter) for completing the serial
communication bridge was written in C. This architecture was implemented as it transparently
maps Simulink variables into the servos motion. There is now a way to identify the parameters of
the humanoid models making online experiments, as Matlab/Simulink®) is a unique tool, widely

used, for system identification and control.

In order to guarantee data samples at precise time inputs sent to the servos, a Simulink/RTWT
implementation was used. The Real-Time Windows Target is a real-time kernel which permits C
code, generated and compiled by the Real-Time Workshop from Simulink block diagram models,

to run in real time, at ring zero, under the Windows operative system.

2.3.1 C-MEX S-function

A protocol for the serial communication between the PC and the CM-5 had to be established. A
C-MEX S-function written in C was created to communicate with the CM-5 throughout UART
(universal asynchronous receiver / transmitter). This code is meant to finish the protocol bridge
started by the C code for the CM5. Hence, its main goal is to sent, at each sample time, a desire
final position to a servo through CM5, receiving back its actual position. For full understanding

of the S-function code it was splited into 5 simple parts in Appendix A.

16

Development environment set up

2.3.2 Simulink block diagram

Finally, the construction of a Simulink diagram block is necessary to run the protocol communi-

cations. A small example is described bellow.

1. Open Matlab and then Simulink.

2. Build the block diagram shown in Figure 2.12.

B untitled * PR 5

File Edit View Simulation Format Tools Help

O | = ﬁé? ...*.‘.

P system

Step S5-Function

Scope

Ready [100% : : lodeds /

Figure 2.12: Simulink block diagram
3. Double click in the Step block and then change its parameters as follows: Step Time: 5;
Initial Value: 300; Final Value: 800; Sample Time: 0.01.

4. In Simulation > configuration Parameters » Solver, chose fixed-step and then 0.01 seconds

as the sample time.
5. In Simulation select external mode. This will allow to run Simulink in real time.
6. Save the block diagram in the same directory as the S-function code.
7. Double click in the S-function block to open Function Block Parameters: S-Function.
8. In the S-function name put the name of your S-function name and press Apply and then Ok.

9. Press Incremental build button to build the model and wait until the play button becomes

enable ().
10. Before testing the application, verify if the CM5 is plugged to the PC and if it is OFF.

11. Attach the servo number one to the CM5 (other can be chosen but it has to be declared it
in the MCU code).

17

2.4 Real time issues and communications delays

12. Finally, turn on the CM5 and then press the play button. Something similar to the next
graph (Figure 2.13) must be seen.

nSmpE E=1fc]

8B 550 ABEI O A S -]

Figure 2.13: Real-time servo step response

2.4 Real time issues and communications delays

A program in C++ was built to measure all the current positions of the servos and therefore to
verify the real frequency of the application. In this last case, 19 real servos were used. The servo
position is a 10 bit value that has to be divided in a high and low bit in order to be sent throughout
the RS232 to the PC. Hence, the theoretical value, without latency, is given by equation (2.1).

57600
- —144 H :
= Wrx2x10 ’ (2.1)

Where:

57600 bps is the Baud Rate.

e 1941 means the information sent by 19 servos plus 1 additional value used for resynchro-

nization.

2 stands for 2 bytes (the encoder number of each servo is 10 bits of resolution).

e 10 is the number of bits (8 bits for the data +1 parity bit +1 stop bit)

The measured frequency, 143.4 Hz, was not far from the theoretical value, being just 0.6Hz

bellow. This means that the latency is responsible for just 0.42% delay of the all process. Testing

18

Development environment set up

the latency when a given order is sent by the PC, read it and send it back to the PC by the CM5

takes about 1.29ms, as shown in Figure 2.14 after a running test of 1000 samples.

Latency

[I o]

Time (ms)

ST

- K

()~ Y Y S
1 68 131 196 261 326 391 456 521 586 651 716 781 846 911 97§

Samples

Figure 2.14: Communications delays from PC and CM5

Thus, it was decided to use a sample rate of 0.01 seconds (100 Hz) in all future tests.

19

2.4 Real time issues and communications delays

20

Chapter 3

Humanoid Identification

In order to capture the static and the dynamic properties of the humanoid robot, both the me-
chanical properties of all its components, such as mass and inertia, as well as its servos dynamic
responses, must be known to a certain degree of accuracy. These dynamic properties will be used
in Simulink® and SimMechanics® in order to get an accurate simulator for the real humanoid

robot aiming at a good control strategy.

3.1 Mechanical and physical properties identification

An accurate static model of the Humanoid Robot can be obtained based on the physical properties
of their components. Typically, by knowing the mass, center of mass and the inertia tensor of
each element of the robot it is possible to get a quite reliable model that can be further used
in simulation and control. For quantifying the masses of each element, a precision scale with a
resolution of 0.5 x 10™* Kg was used. The centroid of each mass was then found by using the
SolidWorks®) software package, after the detailed elements of all the pieces involved were drawn
in this 3D CAD software. It was assumed here that, except for the servos, all the pieces are
of isotropic nature. A simple experiment has shown that the maximum error obtained for the
geometric position of the servos’ centroid is of 0.5 mm on each Cartesian direction. Finally, the

inertia tensor of each element was determined through the SolidWorks®) software.

In this thesis, two different configurations were studied (Walking Humanoid and Gymnast
Humanoid). In the first configuration (from fabric), the humanoid can make use of all of its servos,
and therefore, is able to walk, jump, run, skating and so on. In order to accomplish this, the robot
can be seen as an assembly of 19 main blocks (Figure 3.1b) connected and powered by 18 smart
servo-actuators working as joints (Figure 3.2a). In the second configuration, the humanoid was

rebuilt in order to resemble a gymnast exercising on a high bar with that purpose. Designed like

21

3.1 Mechanical and physical properties identification

this, the robot can be split into 3 main blocks, arms, torso and legs (Figure 3.1b) powered by 4

servo-actuators, two for the shoulders and two for the hips (Figure 3.2b).

Another important feature to check is the structure and the disposition of the servos (joints)
in each humanoid configuration. This would give an idea of the real mobility of each humanoid
(Figure 3.2(a,b). In Figure 3.2b, however, only the main joints of the humanoid are presented in

its gymnast configuration, since it does not make use of the others servos.

The masses, tensor of inertias and drawings of the main blocks of each configuration are given
in Appendix C and D. These drawings also contains the position of the center of gravity of each

body.

D Lower Arm
[usper am
. Shoulder
. Torso
B sroin
] Hie

. Upper Leg
. Lower Leg
] Anke
. Foot

(a) Walking humanoid (b) Gymnastic humanoid

Figure 3.1: Walking and Gymnast humanoid main blocks

Y (Yaw)

Z (Pitch) X (Rolly

] Ebow (Yaw)
[[] shoulder (Yaw)

[shoulder (Pitch)
Y (Yaw)

W Hip (Yaw)
E Aol Z (Pitch) X (Roll)
Hip (Pitch)
. Knee (Pitch) . Shoulder (Pitch)
[[] Ankle (Pitch)] Hie (Pitch)
B Ankie (Roll)
(a) Walking humanoid (b) Gymnastic humanoid

Figure 3.2: Walking and Gymnast humanoid joints and skeleton

22

Humanoid Identification

3.2 Dynamic servo-actuators properties

The servo-actuators of the humanoid robot (Figure 3.3) are powered by a 10 Volts DC battery
inside the CM5-Box through a three-wire daisy chain (Figure 3.4). From the data wire the final
desired angular position and velocity can be sent to the servos, whereas a set of output signals can
be retrieved in the same way (RS485), such as the actual servos angular position, angular velocity,
DC current, temperature and voltage. These data are processed by the micro-controller Atmega8

inside each servo (Figure 3.5).

[
: J
o/ &
2|
3l
- st
1%

Figure 3.3: Servo Actuator AX-12 and drawings
1

Servo1 Servo 2

Figure 3.4: Daisy Chain Wiring

Figure 3.5: AX-12 microprocessor

23

3.2 Dynamic servo-actuators properties

3.2.1 DC motor

A common DC motor is a simple electromagnetism mechanism based on the Lorentz force law. It
defends that any current-carrying wire placed within a magnetic field experiences a mechanical force
which is proportional to the current and to the strength of the magnetic field and perpendicular
to both, causing a torque. In a DC motor (Figure 3.6), wires (coil) and the flux density of the
magnetic field (B) are arranged in order to develop a torque about the axis of the rotor (rotating
part of the motor). To maintain a DC motor spinning, commutators are used to reverse the current

every half a cycle, keeping in that way the torque in the same direction.

[commutator
|:| Brushes

[l single coil

Figure 3.6: DC motor operation

3.2.2 Mathematical model

By analyzing the behavior of the servos it is possible to deduce their mathematical model. Re-
membering that a servo is a DC motor, the only source of energy that makes its motion possible is
the current voltage of the battery. Therefore, and in order to be able to change the output angular
velocity of the servo, one out of two solutions can be taken. The first one is to use resistors. The
second one and much more effective in terms of dissipated energy is to use electronic control. The
most common technique in this last case it to use a circuit known as a chopper to regulate the
average voltage applied to the servo, and consequently the output velocity. To do this, the chopper
circuit, which is made of thyristors or any other mercury arc rectifiers, turns on and off the supply
voltage very rapidly. This technique is also known as pulse width modulation, best known as PWM
and it is often controlled by a micro-processor. Figure 3.7 presents the electrical equivalent circuit

of a simple DC motor using a simple chopper circuit.

where:

24

Humanoid Identification

B o S
| ;11 ; ia i Ra la i
1 T 1 1
| |+ LA .2
1 H i 1
+| | o : ﬂ
Vde =———! D& | Va! Ve J, B
T - w,
i e :
i i ;
eE—— QT 2

Figure 3.7: Electrical Representation of a DC motor

e V. is the voltage source.
e V, is the average voltage supply.

e V¢ is the induced voltage or the back or counter electromotive force (CEMF) which opposes

the voltage supply, proportional to the motor speed (Figure 3.6).

e Th is a GTO thyristor which function is to behave like a gate for opening and closing the

circuit.
e D is a free-wheeling diode, used in power switching applications.
e R, is the resistance of the armature coil.
e [, is the inductance of the armature coil.
e i, is the current in the armature coil.
e J is the inertia of the rotor.
e B is the damping coefficient of the rotor.
e T, is the electromagnetism torque.

e Ty is the mechanical load torque.

The Kirchoff’s voltage law for the electrical loop and an energy balance on the mechanical part

of the system, is:
Vo —iqRq — Lo %iq — kywa =0
T — Bwg — J %wa — T, =0

where:

e kyw, is the back EMF (V.) which is proportional to the angular velocity of the rotor (wg).
k, is determined by the flux density of the magnetic field.

25

3.2 Dynamic servo-actuators properties

Finally, it has been seen that the servo can receive a desired angular position and a desired
angular velocity as input. When the servo receives the desired angular velocity, it converts into
the necessary average voltage consumption and then into the correspondent PWM signal. This
procedure enables the output angular velocity to be equal to the desired one when working without

external load. Figure 3.8 provides a possible block diagram control of the servos.

Cantroller P Electrical Mechanical
— |+
I . T . 1 L 1
&' Position |w'+ Speed a+ 2= Current ot it
—» — —w —s(Ch —H k[H
¥- | Controller F- | Controller Controller T et - |Ls+R, | %' Js+ B
& w
PIWM g
S:%'m;rf]
i Bl

Figure 3.8: Possible internal block diagram control of the servos

Therefore, a set of tests were performed on the servos aiming the understanding of their behav-
ior, using for that purpose, the code developed in Appendix B, witch sends a reference speed to a
servo and receives from it a roll of different data, such as current angular position, angular veloc-
ity, DC current, voltage and temperature. Servo angular velocity is also estimated from current

position using an online filter. The results are presented in the following subsections.

3.2.3 Close-loop position control

By default the servos are configured for position control. In fact, all servos have an internal feedback
position control loop. This characteristic can be easily confirmed by the simple experiment shown
in Figure 3.9. The servo tries to follow the desired time varying sinusoidal reference position by
changing its actual D/C current (load) charge through time, even in the presence of an external

torque applied at time instant t=6 sec.

This result shows that the block diagram of the Figure 3.8 seems to be correct.

3.2.4 Open-loop velocity control

After some tests, it was shown that the servos do not have internally any angular velocity feedback
control. This can be experimentally confirmed by applying an external torque to the servo while

in constant rotating velocity. From Figure 3.10 it can be concluded that the current consumption

26

Humanoid Identification

1000

Serva following a reference Position

Encoders

i i) [
H 12T i it i
-200 i i 4 = L
H L H i i
i; F ! i
-400 [1] Input Pasition H i E'
----- [2] Output Position i i '-
B0 e (3] Output Load 5 4 f
Sy
—SDD I L L 4
] 2 4 B g8 10
Time (sec)

Figure 3.9: Close Loop Position Control

is not able to respond accordingly after the fifth second when a torque is applied, so the reference

angular position cannot be followed.

800

Servo following a reference Speed

600
400
200

Encoders

-200 5
P 5
-400 b HEE 15, i
! ¢ P e
-B00 | H i 3 = 1
i H ir
-800 | [= R
-1000 . L . .
a] 2 4 3)
Tirme (sec)

[1] Input Speed
[2] Output Estimated Speed
[3] Output Load

Figure 3.10: Open Loop Velocity Control

3.2.5 Stiction

Stiction is a physical phenomenon that is present in almost any system with moving components

Therefore, its characterization is essential for obtaining an accurate dynamic model of the servos

A simple way to quantify stiction can be made through the following experiment: starting with the

servo rotating at a constant speed in one direction, progressively slowing it down until it stops, and

then slowly increase its rotating speed in the opposite direction. With this experiment it should

be possible to identify the typical dead-zone effect due to stiction. In our case this was clearly

quantified to be around 7-10% of the full range when no load is applied to the servo, as can be

seen in Figure 3.11.

27

3.2 Dynamic servo-actuators properties

Servo following a reference Speed
1000 T T T T T T T

800
B00
400

200 +

Encoders
[}

-200

-400

[1] Input Speed h

-600
|2] Output Estimated Speed

-8a0

-1000
(]

Time (sec)

Figure 3.11: Stiction Dead Zone

3.2.6 Voltage

Another parameter with relevance to the behavior of the system is the voltage supplied to the
servos. Experiments show that the output estimated velocity error is proportional to the voltage
supplied to the servo. In fact, a good output velocity estimation is achieved only if the battery is

charged around 10 V, as can be seen from Figure 3.12

Servo following a reference Speed
1500 . [.

1000

S00

Encoders
o

-500

-1000

-1500

Time (sec)

[1] Input Speed

***** [2] Output Estimated Speed at 11.1%
someeesees [3] Output Estimated Speed at 9.0%
— [4] Output Estimated Speed at 6.8%

Figure 3.12: Effects of the supplied voltage to the servos in the outputs velocity response

3.2.7 Temperature

Temperature was the last parameter to be tested in order to check its influence in the behavior of

the servos. During the tests, the temperature of the servos were within the interval of 25° to 40°.

28

Humanoid Identification

At these conditions, no visible effect in the response of the servo was observed and therefore the

effect of temperature is negligible.

3.2.8 Load and Speed

Current load and speed are data possible to be retrieved from the servos, however, these data can
only be sampled at 10 Hz, being far from the desired 100 Hz for the project. Furthermore, it was
not possible to deduce a direct correspondence between the values of the encoders and the units

of the international system of units (SI).

3.2.9 Torque as input signal

Torque is a very important variable to control a mechanical system. Therefore, the relation between
torque and angular velocity when in free run mode (no directly control of the speed) has to be found.
It has been seen that the angular velocity input signal is directly proportional to the servos’s voltage
consumption, and consequently to the current intensity. Since torque is also directly proportional

to the current intensity, a proportional gain can be deduced from torque to angular velocity.

This gain was deduced making the servo lifting a well known mass, the humanoid leg (Figure
3.13a), for various input angular speed signals. Measuring for each case the correspondent torque
by knowing the angle of the leg about the vertical (Figure 3.13b), it was possible to determine the

correspondence between input speed signal and output torque (table 3.1) through equation (3.2).

9.21

by

151
115.93

184

Mass: 288.2 g

Y:4.54°
Leg: 116.3 mm

(a) Humanoid Leg (b) Humanoid Leg Inclination

Figure 3.13: Speed to Angle Inclination of a Humanoid Leg

29

3.2 Dynamic servo-actuators properties

T, = mgLcg sin (a —) (3.2)

Where:

m is the mass of the humanoid leg (Figure 3.13a).

g is the acceleration of gravity.

Leg is the length between the center of gravity of the leg and its rotational axis (Figure

3.13a).

a (Figure 3.13b) is the angle of the humanoid leg about the vertical.

v (Figure 3.13a) is the angle between the humanoid leg and its center of gravity.

Arms

Input Angular Speed (Enc) Angular displacements of CG (deg) Load Torque (Nm)

0 0 0
40 0 0
80 0 0

100 7.96 0.045
150 16.46 0.093
200 25.46 0.141
250 35.46 0.191
300 48.46 0.246
350 66.96 0.302

Table 3.1: Speed input signal to Torque correspondence

As observed in Figure 3.14 the relation between the output of the servo and the input angular
speed is not linear, due to the dead zone of the servo (section 3.2.5). Nevertheless, it was obtained
the real relation of Torque-Speed of the linear zones given in equation (3.3) when the nominal

voltage is 9.8V.

1.023 x 1073w — 60.61 x 1073 w >0
T= (3.3)
1.023 x 1073w +60.61 x 1073 w <0

When the velocity is set to a maximum of 1023 encoders/sec, the output torque is about 0.99

Nm.

30

Humanoid Identification

Relation between input Angular Speed and output Torque at 9.8V
,E n_4nn
=
g 8360
g
- o200
|
3 n_lnn
-400 200 200 . 100 200 200 4
’ n:lnn
Input Angular Speed (encoders)
Real output Torque Ideal output Torque
1023107 w -60.61x107 @ >0 T =0964x10"w
1.023%107 @ +60.61%x107 @ <0
Figure 3.14: Speed to Torque Relation
3.3 Dynamic Servo Identification and Validation

For the identification of the dynamic behavior of the servos it was considered the relation be-

tween the reference input velocity and the correspondent estimated velocity obtained through the

following equation:

(3.4)

Where

0(t) is the estimated velocity at time instant t.
0(15) is the angular velocity at time instant t.
6(t) is the the angular position at time instant t

O(t — 1) is the the angular position in the previous time instant

Ts = 0.01 sec. is the sampling period.

The classical prediction error method was used for the identification of the servo dynamic

model, using the identification data shown in Figure 3.15.

31

3.3 Dynamic Servo Identification and Validation

Servo ldentification Data

1500 T T T

[1] Input Speed
----- [2] Output Estimated Speed at 9.8V

1000

500 -

Encoders
[}

-500

-1000 -

1500 1 1 1 1 1 I 1 1 1
0

Time (sec)

Figure 3.15: Servo Identification Data

After testing several tentative models with different orders, a Box-Jenkins(2,1,2,1) (Ljung, 1987)
was found to best approximate the desired dynamical behavior of the servo. The Box-Jenkins model

that results in the best data fit is the following:

0.06217z
TF = 3.5
22 — 1.469z + 0.5544 (3:5)

Figure 3.16 compares the real output of the servo with the one estimated by the Box-Jenkins
model for the validation data. It can be concluded that the dynamic characteristics of the servo

are well captured by the Box-Jenkins model.

Servo Validation
1500 T T T T T T T

1000

a00

Encoders
[}

-A00+ B

wf W Uy S b

1500 . 1 1 1 1 1 1 . 1
0

Time (gec)

— [1] Input Speed
----- [2] Output Estimated Speed at 9.8V
- [3] Model Output Speed Prediction at 9.8%

Figure 3.16: Servo Validation Data

32

Chapter 4

Simulator

This chapter presents the simulator of the Gymnastic humanoid hanging on a high bar. For
this simulator another set of the humanoid pieces were drawn in SolidWorks2006@®). These ones
are simpler than the first set, with less details and with the purpose of being used in a virtual
reality world. Nevertheless, these pieces not only allow the user to construct in virtual reality the

Gymnastic humanoid but also the Walking humanoid as any other Bioloid robot configuration.

The simulator was constructed in Simulink/SimMechanics@® with the capability of simulating

friction between hands and the high bar, the gyroscope sensor and servo properties.

4.1 The humanoid model

The simulator has the purpose of simulating the behavior of the humanoid hanging on a high bar.
Therefore, the exact mechanical properties of the humanoid, such as the real position of the centers
of gravity and also the real measurements of its constituents, are needed. These properties were

fully described in chapter 2 and implemented in the simulator (Figure 4.1 and tables 4.1 and 4.2).

L(mm) e (mm) €(°) ~(°)
Link 1 (Arms) 143.6 68.7 229 2.94
Link 2 (Torso) 1158 57.5 0.49 17.65
Link 3 (Legs) 1840 1163 0.00 4.54

Table 4.1: Main measurements of the Gymnastic humanoid

The inertia tensor is taken at the center of gravity of each block and oriented with the output

coordinated system. In our model the robot is facing left (minus x) when in the vertical unstable

33

4.1 The humanoid model

Torso (2)

Arms (1) 17.96 ¢

-
=
2
]
ligd
w0
homtl
] -«
g o
=t
o~
3 & %
0
©

@ Center of Gravity

@ Joint

Figure 4.1: Drawings of the main blocks of the Gymnastic humanoid and its centers of gravity

position (y axis). Therefore the robot can only rotate along the z axis. Figure 4.2 represents the

robot in the vertical unstable position along with its analog in the SimMechanics®) simulator.

Click On Object To Display Information

018 01 008 0 005 01 015
Yeaxis

(a) Virtual Reality (b) Simulator representation

Figure 4.2: Humanoid in its vertical unstable position in Virtual Reality and in the SimMechanics

simulator representation

Another important aspect to take in consideration are the limits of the angular displacements
of the servos. The shoulders servos have a limit of 150° angular position range for each side. When
the servo is in the middle position (150°, see Figure 2.9), it is assumed by the Simulator that the
servo is at the zero degrees position. The hips servo however are not able to go back more than 40

encoders (11.7°) in order to prevent collisions. In the other direction it can go up to 150°.

34

Simulator

Mass (g) | Inertia Tensor (gem?)
28479.93 59.0 -0.7
Arms 367.6 59.0 21258.1 —1.3
-0.7 —-1.3 7890.7
37029.8 —1750.1 —54.7
Torso 981.5 —1750.1 12211.3 134.6
—54.7 134.6 32898.6
16420.4 1329.6 0.1
Legs 576.4 1329.6 9032.2 14
0.1 14 11328.0

Table 4.2: Mechanical properties of the main blocks of the Gymnastic humanoid

4.2

SimMechanics simulator

Using Simulink® and SimMechanics®) it is possible to simulate the physical behavior of the

humanoid. For our system it was used the SimMechanics® blocks of Matlab 2007a. Figure 4.3

shows the diagram block of the implemented simulator for the Gymnastic humanoid.

= —{p—
Machine

Ground1

Enviranment1

Joint Spring & Damper

Rev Hands

Arms S

Rey Shoulders

I}

Trunk

o cs2 o ot

Rev Hips

H

Legs S

B Legs

7

Hio Sensor

S

Gyro Resolution

KTs
=1 =
Disorete-Time

Integrator

dg1

Disgete-Time
Int=gratort

Serve Resolution Dead Zone

g2
Diszrste-Tim@sturation
Integrator2

Figure 4.3: Gymnastic humanoid simulator plant

35

4.3 Virtual Reality animation

Friction and Gyroscope resolution

Using the gyroscope sensor it was possible to deduce not only the friction between the hands of
the gymnast humanoid and the bar, but also the correspondence between the gyroscope output

encoders and angular velocity in °/sec.

This experiment consisted by letting the humanoid fall from a knowing position and then
observing the response of the gyroscope while the humanoid robot is swinging until it stops.
Hereafter, friction models are used in the simulator in order to match the response of the gyroscope.
Since the angular velocity given by the simulator is in ©/sec, the correspondence to the gyroscope
resolution is direct. The damper coefficient is about 0.3 and each step encoder of the gyroscopes

is about 10°/sec.

Servos resolution

Servos have a 10 bit resolution for a full range of 300°, therefore each step of the servo encoder

corresponds to 0.293°.

4.3 Virtual Reality animation

Virtual reality animation is a very important tool for simulation, since it gives a real perception
of the behavior of a computer-simulated environment. Therefore and in order to have a smooth
animation, a less detailed version of the Walking and Gymnastic humanoid models used in chapter
3 for identification, were exported to the virtual reality V-Realm Builder 2.0®) program from its
respective SolidWorks® 3D CAD models (Figure 4.4). To serve as background scenario, a thematic
park was created as well (Figure 4.5). In this park, a humanoid can make use of its locomotion and
stability control algorithms and of its artificial intelligent to do complex tasks such as resolving a
maze, walking throughout a different types of floors and obstacles, running, climbing stairs, playing

football, push objects, training its stability, skating or even doing an handstand on a high bar.

(a) Walking humanoid (b) Gymnastic humanoid

Figure 4.4: Virtual reality models of the Walking and Gymnastic humanoids

36

Simulator

Figure 4.5: Humanoid virtual thematic park

The origin of each main block of the humanoid is coincident with its axis of rotation (joint).
Therefore, by setting up in the virtual reality the real position of each block and the correspondent
axis of rotation along with well defined parent-child hierarchy (Figure 4.6), the animation of the
humanoid can be seen smooth and well defined. Table 4.3 and table 4.4 show in detail the exact
position of each main block (or joint) and its axis of rotation, for both the Walking humanoid and
the Gymnastic humanoid, respectively. Figure 3.2, shows the position and the axis of rotation of

each joint.

Torso
¥
nghl Shoulder nght Groin Left Groin Left Shoulder
¥
Right Upper Arm nght Hip Left H|p Left Upper Arm
[]

N
S

Gymnast Bar

Left Upper Leg Left Lower Arm

Left Lower Leg Right Arm Left Arm

nghtAnk\e Left Ankle Trunk

Left Foot

S S |
Y Y Y

[
[
[
(=
[
[

e N TN TN Y Ty

]
)
)
)
)

Bl
i

Right Foot

Right Leg Left Leg

(a) Walking humanoid (b) Gymnastic humanoid

Figure 4.6: Parent-Child hierarchy for the Walking humanoid and the Gymnastic humanoid

37

4.3 Virtual Reality animation

Blocks Rot axis Pos x (mm

~—

Pos y (mm) Posi z (mm)

Torso 0 0 0

Left Shoulder zZ 0 0 -
Left Upper Arm y 15 - -76
Left Lower Arm y 15 - -114.25
Right Shoulder Z 0 0 -
Right Upper Arm y 15 - 76
Right Lower Arm y 15 - 114.25
Left Groin y -16 - -33

Left Hip X - -115.5 -33

Left Upper Leg zZ 1 -115.5 -
Left Lower Leg zZ -14 -191 -
Left Ankle z 1 -266.5 -

Left Foot X - -266.5 -33

Right Groin y -16 - 33
Right Hip X - -115.5 33

Right Upper Leg z 1 -115.5 -
Right Lower Leg zZ -14 -191 -
Right Ankle z 1 -266.5 -
Right Foot X - -266.5 33

Table 4.3: Position of the main blocks and its orientation axis of the Walking humanoid

Blocks Rot axis Pos x (mm) Posy (mm) Posiz (mm)

Gymnast Bar 6.5 144 0
Left Arm z 6.5 144 -
Right Arm zZ 6.5 144 -
Torso z 0 0 -

Left Leg z 1 -115.5 -
Right Leg z 1 -115.5 -

Table 4.4: Position of the main blocks and its orientation axis of the Gymnastic humanoid

38

Chapter 5

Humanoid model

The Gymnastic humanoid robot can be seen as being compound of three main blocks. One block
representing the arms, a second block representing the torso and a third block representing the
legs. The joints of the robot are therefore the hands, the shoulders and the hips. Both shoulders
and hips are actuated by two servos in each side. The hands are not actuated indeed, and therefore

the system can be approximated by a three link underactuated pendulum (Figure 5.1).

Active Joint Hip

Active Joint Shoulder

Passive Joint Hand

Figure 5.1: Active and Passive joints of the Gymnastic humanoid

39

5.1 Equations of Motion

In order to obtain the humanoid robot model the following steps will be taken:

1. Deduce the equations of motion of the system.

2. Linearize the system dynamics about the vertical unstable equilibrium and obtain state space

representation model.

3. Analyze the system poles and zeros and confirm that it is a non-minimum phase system
and therefore it is impossible to use classical cancelation techniques to stabilize it. For that

reason an optimal control algorithm shall be adopted, namely the Linear Quadratic Regulator

(LQR).

4. Use the emulation method with a zero order hold (ZOH), using different sampling times (To),

and obtain the discrete-time model of the humanoid robot.

For simplification, it is assumed that the centers of gravity of all the blocks (arms, torso and
legs) in the model of the humanoid, and therefore in its equations of motion, are aligned with the
joints (e.g. case of ideal 3-link pendulum). In this way, it will be possible to test the robustness of

the control strategy used.

5.1 Equations of Motion

In order to describe the dynamic behavior of this multi-body robotic system, it is necessary to de-
termine its equations of motion. These equations can be derived from the classical Euler-Lagrange

equations, according to Figure 5.2.

a2 R I

Joint; Joint; 44

Ie;

Joint; CG;

Figure 5.2: Representation of the humanoid seen as an underactuated triple pendulum.

Where:

40

Humanoid model

¢; is the angle of joint i in respect to the previous link.

m; 1s the mass of block 1.

I; is the inertia of block i.
e 7; is the torque actuated on the active joint i.

l; is the length between joint i and joint i+1.

e [c; is the length between joint i and the center of gravity of the mass i.

Deduction of Euler-Lagrange equations:

x1 = leg cos(qr)

(5.1)
Y1 = legsin (q1)
x9 =1y cos(q1) + lea cos(qr + g2)
(5.2)
yo = lysin (q1) + lea sin(qr + g2)
x3 =1 cos (q1) + l2 cos(q1 + g2) + lez cos(qr + g2 + g3) 53
ys = lisin(q1) + l2sin(q1 + g2) + lezsin(gr + g2 + g3)
Where:
e z; and y; are the coordinates of the center of gravity of mass i.
For a n-link pendulum:
i—1 7 7
= [l cos (Z qk> + lc; cos (Z qk> , 1=1,2,...n
j=1 k=1 k=1
i—1 j i (5.4)
yi = [l] sin <Z qk> + lc; sin (Z qk> , 1=1,2,..,n
j=1 k=1 k=1
The Kinetic energy (T') of each element (mass) of the system:
1 .9 .9 .2
= 5 [ma (&7 + 97) + 147)
1
=5 [mz (@3 +93) + I (1 + qzﬂ (5.5)
1
I=5 [mg (@5 +93) + Is (41 + do + (J3)2}

41

5.1 Equations of Motion

The Potential energy (U) of each element (mass) of the system:

Ui = mign
Us = moagyo (5.6)
Uz = m3gys

The Lagrangian of the system is therefore given by:

3
L=Y (T, - Uy (5.7)
i=1
For a n-link pendulum:
i 2
k=1
Ui =migy;, 1=1,2,...n (5.8)

Solving the Lagrange equations for each element of the system, the following equations of

motion result:

mi1 Miz M3 g1 o1 ha 0
ma1 M2z M23 Go + P2 + ha = T2 (5-9)
m31 M3z M33 G3 ¢3 h3 T3

Where:

42

Humanoid model

miy = mylcd +mal? + malcs +malt + mals + mslca
+ 2malyiles cos(qa) + 2mslyls cos(gz) + 2mglales cos(gs)
+ 2mglilescos(qa +q3) + I + o + I3
mia = malcs 4+ msl3 4+ mslcs 4+ malylcs cos(ga) + malils cos(qa)
+ 2mgslales cos(gs) + msliles cos(ga + q3) + I + I3
miz = mglcg + malalcs cos(gz) + maliles cos(qa + g3) + I
Mm21 = Mi2
Moo = malcs +msls +mslcs + 2malales cos(qz) + Io + I3
Mas = malcs 4+ mslales cos(qs) + I3
m31 = Mi3
m32 = Ma3

mas = malcs + malales cos(gs) + I3

b1 = (mqler + maly + mgly)gcos(qr) + (meles + mala)gcos(qr + o)
+ mgalesg cos(qr + g2 + g3)

p2 = (malcy +msla)g cos(qr + g2) + malesg cos(qr + g2 + g3)

¢3 = malesg cos(q1 + g2 + g3)

and,

hi = —malilcaga(241 + §2) sin(gz)
—malil2d2(2¢1 + g2) sin(ge)
— mglale3ds(2g1 + 242 + ¢3) sin(gs)
—mgliles(de + 43) (241 + g2 + g3) sin(q2 + g3)
ho = malilcadi sin(ga) + malilagi sin(gs)
+ malylesd? sin(qe + g3)
— mglalcsgs (241 + 242 + ¢3) sin(gs)
hs = malilesd? sin(ga + g3)

+ malales(dr + g2)? sin(gs)

Where:

e m,; are the inertial terms.

e ¢; are the gravitational terms.

(5.10a)

(5.11a)

(5.11b)

(5.11¢)

(5.12a)

(5.12b)

(5.12¢)

43

5.2 Linearization

e h; are the Corriolis and the centrifugal terms.

e 7; are the input torques.

For a n-link pendulum the equations of motion would be:

mipr Mz - Mip 41 o1 h1 T1
mo1 M2z -+ Map Go ¢2 ho T2
+) +) =) (5.13)
mnp1 mnp2 Tt Mpn Qn d)n hn Tn
Where:
n k k k [b—c]|
mij =3 Ame | Y () +D . Y blecos | > Gapminee | | Ik oy i<
k=j a=j b=i c=jAj#£i d=1 (5.14)
Mmi; = Myji, 1>7
n k a
o; = gZkala cos (Z qb> (5.15)
k=i a=1 b=1
hi =C; + Z 1M
j=i
with
n k k min(b,c) 2 |b—c| (516)
C; = Z Z mylple Z dq | sin Z Qd+min(b,e) | iff min(b,c) <1
k=i b=i c=1Ac#i d=1 d=1
n k k [b—c] [b—c]

Mi; = — Z Z Z mylyle Z (jd+min(b,c) sin Z qd+4min(b,c) iff min(b7 C) >1
j 3 j £ d=1

d=1

and,

lCi 1=k
I = (5.17)

L itk
5.2 Linearization

The above equations of motion of the system are highly nonlinear. Nevertheless, the goal of the

controller is to stabilize the humanoid at the vertical unstable equilibrium.
- T
= [5,0.0]
¢ {2

44

Humanoid model

¢ =1[0,0,0]"
Hence, for this situation in particular, the system can be linearized and controlled by linear
control algorithms.

Using a first order Taylor’s expansion of (5.9) results the following linearized system for the

vertical unstable equilibrium.

Mi—Sq=T1
mi1 Mmiz Ma3 G $11 P12 P13 @ -3 00 (5.18)
Mma1 Mgz Ma3 Go | = | P21 P22 P23 92 =110 &
m31 M3z M33 gs $31 P32 P33 3 01 "
Note that the h; terms disappeared in the linearization.
Expanding each element of (5.18) results:
mi1 = mllc% + mgl% + mglcg + mgl% + m3l% + mglc§
+ 2malylcs + 2mslyly + 2mslslcs (5.19a)
4+ 2mgsliles + 11 + 1o + I3
Mg = mglcg + m3l§ + mglc?), + moliles + mslils
(5.19b)
+ 2malales + maliles + Is + I3
mi3 = mglc§ + mglales + mslyles + I3 (5.19¢)
Ma] = M2 (5.19d)
Moy = mzlcg + mglg + mglc?), + 2mslsales + Is + I3 (5.19¢)
Mao3 = mglc§ + malsles + I3 (5.19f)
M3y = M13 (5.19g)
M3y = Mo3 (5.19h)
mas = malcs + malales + I3 (5.19i)

45

5.2 Linearization

d11 = (muler +maly +maly + maleg + malz + males)g (5.20a
$12 = (malca + msly + msles)g (
$13 = (m3les)g (
P22 = P21 = P12 (5.20d
P33 = P31 = P32 = P23 = P13 (5.20e

For a n-link pendulum:

MG—®q=T1
mir Mz o My) $11 P12 - b @ -5 1
q1
m21 Ma22 -+ Map . P21 P22 o Pop q2 T2
q2 | — = Taxn
Gs
mMn1 mnp2 e Mnpn (bnl ¢n2 e ¢nn dn Tn

(5.21)

Note: The columns in the matrix T that corresponds to passive joints should be eliminated

(see equation (5.18)).

Expanding 5.21 results:

n k k
mig = Sme D W) +Y, > ble| + Iy, i<

k=j a=j b=i c=jAj#i (5.22)

M = Mji, 1>]

n k
Gii :gZkala, i=1,2,...,n

k=i a=1 (5.23)
Gij = b5 = Qj5, 1<
and
lCi 1=k
I = (5.24)
L, itk

Note:
cos(q1 + Q) = cos(q1) cos(Q) — sin(q1) sin(Q)
= —sin (g1 — §) cos(Q) — sin(g1) sin(Q)
-3 -0Q

when: q —3; Q—0

Il

46

Humanoid model

5.3 Continuous state space model

Given the above linearization of a generalized n-link pendulum system, the state space model is
easily obtained.
T T
Letz=| ¢ —-% ¢ -~ ¢ @ ¢ - Gn | bethestatevectorandu = [TL Ty e Tn }
the input vector. Let m be the order of the system and [the number of columns of matrix T. Then

the matrices A,B,C,D of the state space model representation:

(5.25)
y(t) = Cz(t) + Du(t)
are giving respectively by:
A — 0n><n Ian
M0 Opxn
B— On><l
M-'T
L (5.26)
C= Imxm
D= 07n><l

From the mechanical properties we have the following parameters:

[(mm) lc(mm) m(g) I (gem?)
Link 1 (Arms) 143.6 68.7 367.6 7890.7
Link 2 (Torso) 115.8 57.5 981.5 32898.6
Link 3 (Legs) 184.0 116.3 576.4 11328.0

Table 5.1: Physical properties of the gymnast humanoid

Substituting these values in the linearized equations of motion (equations (5.19) and (5.20)),

we obtain:

47

5.4 Discrete state space model

0 0 0 1 00
0 0 0 0 10
0 0 0 0 0 1
A:
74.2389 —117.8764 0.0028 0 0 O
—81.5857 3487777 —76.0776 0 0 0
7.3471 —230.9113 2158591 0 0 O
0 0
0 0
(5.27)
0 0
B =
—176.2065 97.5517
527.7831 —467.2635
—467.2635 697.9566
C = Isxs
D = Ogx2
The eigenvalues of the matrix A are the poles of the system. Thus, the poles are:
Poles = | —21.2157 —12.5086 —5.6837 5.6837 12.5086 21.2157 (5.28)

The zeros can be determined by finding the transfer function between each output and input.

The full list can be found in Appendix E.

From the analysis of the position of the poles and zeros of the system model, it can be seen
that there are zeros and poles in the right half plane, and thus the system is unstable and presents
a non-minimum phase behavior. Classical cancelation techniques are then inefficient to stabilize
the system. Taking this in consideration, an optimal control strategy will be adopted to control

the system.

5.4 Discrete state space model

In order to control the humanoid robot through the PC, it is necessary to design a digital controller.
This can be easily done by using the emulation method and assuming a zero order hold (ZOH) for

the input to the continuous system.

48

Humanoid model

The discrete state-space model takes the following form:

x(k+1) = Agz (k) + Bau (k)
y (k) = Cqx (k) + Dgu (k)

(5.29)

Where the discrete matrices Ay and By can be deduced from the continues state-space model

(5.26) by integrating the state evolution through time:
t
x(t) = A0y (tg) + / A=) By (1) dr (5.30)
to

Assuming T as the sample time of the discrete system, tg = kT and t = tg+ T, then equation

(5.30) takes the form:

(k+1)Ts
z((k+1)Ty) = e Tox (KTy) + / eAlHDT =TI By (1) dr (5.31)
kT

Assuming now that the input of the system is constant over the integration interval:

T

2 ((k+1)Ty) = eATow (KT,) + (/ seATdT> Bu (KT,) (5.32)
0

Finally results:

Ad = CATS

By = <f0TS eATdT) B (5.33)

(c.f. chapter 5.1.2 in (Ayala Botto, 2003b))

Matrices C and D do not change when converted to the discrete time domain. Hence Cy = C

and Dy = D.

5.4.1 Sample time determination

By analyzing the position of the dominant poles of the system from Figure E.1 and Figure E.2,

the main natural frequency of the system can be attained:

wy, = 5.6592 rad/s (5.34)

49

5.4 Discrete state space model

And then, the biggest component of the frequency is:

f =5.6592/27 = 0.90 Hz (5.35)

This means that the frequency of 100 Hz imposed seems a reasonable one since it is approxi-
mately 2000 times biger. Hence, we are going to use a sample time of 0.01 sec and also another of

0.02 sec (50 Hz) for comparison.

As a result, the matrices A; and By from the discrete-time state-space model for T5=0.01 sec

and Ts=0.02 sec are given by expressions (5.36) and (5.37), respectively:

1.0037 —0.0059 0 0.01 0 0
—0.0041 1.0175 —0.0038 0 0.0101 0
. 0.0004 —0.0116 1.0108 0 0 0.01
0.7449 —1.1871 0.0015 1.0037 —0.0059 0
—0.8217 3.5252 —0.7623 —0.0041 1.0175 —0.0038
0.0770 —2.3535 2.1587 0.0004 —0.0116 1.0108
(5.36)
[_0.0088 0.0049 |
0.0265 —0.0235
B —0.0235 0.035
—1.7746 0.9859
5.3169 —4.7101
—4.7101 7.0229
[10149 —0.0239 0.0001 0.0201 —0.0002 0 |
—0.0166 1.0708 —0.0155 —0.0001 0.0205 —0.0001
. 0.0016 —0.0471 1.0436 0 —0.0003 0.0203
15051 —2.4246 0.0122 1.0149 —0.0239 0.0001
~1.6789 7.1758 —1.5794 —0.0166 1.0708 —0.0155
| 01752 47949 44034 0.0016 —0.0471 1.0436 |
(5.37)

—0.0357 0.0199
0.1071 —0.095
—-0.095 0.1413
—-3.6254 2.035

10.8705 —9.6467
—9.6467 14.3077

By =

50

Humanoid model

5.4.2 Reachability and observability

The system is completely reachable and observable, if the rank of the reachability and observability

matrices is to the order of the system.
Reachability matrix:
C= { Bd AdBd A?le
Observability matrix:
Cq

CaAg
O=| €442

[Caa™ |

AmUp, } (5.38)

(5.39)

In our problem, the rank of each matrix is 6 for both configurations, (5.36) and (5.37), which

means that the system is reachable and observable.

51

5.4 Discrete state space model

52

Chapter 6

Humanoid Control and Simulation

Results

In this chapter, a control situation is presented. The objective is to have the humanoid robot doing

a handstand on a high bar, i.e. behaving like an underactuated triple pendulum.

The control of the humanoid in a high bar can be divided into two individual phases. The
first phase is the swing-up control, where the robot is ought from the down vertical stable position
to the up vertical unstable position. The other phase is to control the humanoid in the unstable

vertical position (balancing control).

The Linear Quadratic Regulator (LQR) will be adopted throughout (Lancaster and Rodman,
1995). Linear Quadratic Regulator is a feedback controller for solving dynamic systems of linear
differential equations by minimizing a quadratic function cost. This cost can be seen as the sum

of undesired deviations from the optimal value.

6.1 Linear Quadratic Regulator (LQR)

This control technique provides a linear state feedback control law for the system. This law has

the following form:

u=—kTg (6.1)

where k is a m x [matrix that contains the state feedback gains (Kalman gains) and can be

obtained by minimizing the following performance index:

53

6.2 LQR Simulation Results

J = /00 (2" Qz + u" Ru)dt (6.2)
0

Where @Q and R are the "weighting matrices". @ is a m X m matrix and R is a [x [one.

The solution of equation (6.2) is found by solving to P (Lyapunov function matrix) the Alge-
braic Riccati Equation (6.3) and then equation (6.4). A and B are the A and B matrices of the

humanoid state-space model.

ATP+PA—PBR'BTP+Q=0 (6.3)

BT = R1BTP (6.4)

For our system we use () as the 6 x 6 identity matrix and R as the 2 x 2 identity matrix.

Therefore we have for the model (5.27):

KT —146.7206 —63.3382 —23.2078 —25.2863 —11.8534 —5.0644 (6.5)
—92.6369 —41.0629 —13.3245 —-15.8651 —8.1298 —2.2096 .

6.2 LQR Simulation Results

The plots shown in Figure 6.2 (a,c,e) show the behavior of the LQR controlled system when the
state vector is defined as x = [-5 @ @ @ @ @ }T. As it can be seen, the system
could not be stabilized. The reason is due to the fact that the real position of the centers of gravity
of the arms, torso and legs were not taken into account when building the model (c.f. chapter 5.1).
Nevertheless, a simple solution for this problem consists in compensating the system with a angle
« obtained from the resultant center of gravity of the three bodies about the vertical (Figure 6.1).
the new state vector is then x = [an—(5+a) @ ¢ @ d 43 T. The controller is now

able to stabilize the system (Figure 6.2 (b,d,f)).

Figure 6.1: Position of the Centers of gravity of the arms, torso and legs and its equivalent one

54

Humanoid Control and Simulation Results

Velocity (rad/sec) Angular Displacements (degrees)

Torque (Nm)

Figure 6.2: Simulation using Linear Quadratic Regulator for balancing without angle compensation

(A

Angular Displacements

N
o
o

= =
o [&)]
[=] [=]

Angular Displacements (degrees)

501
O T S T T T — e
-50/ RN
!
-100}| —4, .
---q
-150 2 '
-- 0
-200 : : : :
0 0.1 0.2 0.3 0.4 0.5
Time (second)
(a) (A) Without angle compensation
Angular Velocity
200 T .
0 -
.
[l
{
—200+ 'I
1
1
-400t .
1
—— velocity of g, .
~600| _ _ _velocity of a, .
.= = velocity of dg '
-800 ; : : :
0 0.1 0.2 0.3 0.4 0.5
Time (second)
(¢) (A) Without angle compensation
Applied Torque
1000 T .

0 4
—1000f w 1
—2000f 1
-3000 1
~4000 1
-5000f 1
—6000 | — Torque (Shoulders) 1

- = -Torque (Hips)
~7000 ; : : :
0 0.1 0.2 0.3 0.4 0.5

Time (second)

(e) (A) Without angle compensation

) and with (B)

Velocity (rad/sec)

Torque (Nm)

Angular Displacements

=
[
o

=
o
o
T
L

_ql
- _q2

._._.q3

o]
[=]
T
I

[o2]
o
T

I

N
o
T
.

N
o
T
L

Of~+.]
N~l~‘~‘-‘--\-\-\-\-\------.-\-\------------
S

-20+

2
Time (second)

(b) (B) With angle compensation

Angular Velocity
0.4 ‘

——velocity of qa,

- - -velocity of q, ||

o
)

.=.=.velocity of d,

o

I
o
N
o

.~

~

~

L

1 2 3 a
Time (second)

(d) (B) With angle compensation

Applied Torque

—— Torque (Shoulders)
- = -Torque (Hips)

1 2 3 4
Time (second)

(f) (B) With angle compensation

6.3 Discrete Linear Quadratic Regulator (DLQR)

6.3 Discrete Linear Quadratic Regulator (DLQR)

The implementation of the DLQR controller (Figure 6.3) requires a discrete-time model of the
system to be controlled. Its formulation is practically the same as for the continuous-time case.
It has the same objective of finding the optimal feedback gains or Kalman gains, which optimize
a discrete time version of the performance index given in (6.2). The solution will be based on the

discrete-time Riccati Equation (6.6), plus finding the optimal gains given by (6.7).

AY[P — PB4(BYPBs+ R)™'BIPlA,; + Q=P (6.6)

kT =(BYPB;+ R)"'BYP (6.7)
Next, it is presented the discrete optimal feedback gains when T5=0.01 sec and T5=0.02 sec

(equations (6.8) and (6.9) respectively) for the model (5.36) and (5.37) respectively, with Q being
the identity matrix times 100 and R being the identity matrix.

—75.7584 —32.1872 —11.4543 —13.0048 —6.2134 —2.3442

ki T=0.01s (6.8)
—62.057 26.9283 —-9.0351 —-10.6539 -—5.1619 —1.8225
T —37.8516 —15.5385 —5.5276 —6.4685 —3.0698 —1.154
kaq |T:0.023 = (6.9)

—31.0699 —13.2839 —4.2395 —5.3157 —2.5617 —0.8983

=

Angular Displacements {deg)

Velocity (rag’s)

B

Figure 6.3: Implemented DLQR controller

56

Humanoid Control and Simulation Results

6.4 DLQR Simulation Results

From Figure 6.4, it is noticeable that it is indeed possible to control the humanoid such that it is
able to do the hand-stand on a high bar. Recall the fact that the maximum allowed torque of the
servos are 1.0 Nm. Since each joint has two servos, then the maximum torque is 2.0 Nm, which
is never reached during the simulation. Also the angular displacements are inside the allowable

intervals.

Adopting the sampling time of 0.01 seconds, different simulations were made. In the plots of
Figure 6.4 it was used only the angle compensation in the first joint. Experiments show, however,
that by introducing angles compensation for the other joints too, the final torque input would be
smaller and the humanoid final configuration more appealing (stretcher). For these experiments,

the best angles compensation are shown in table 6.1.

Joint Angle Compensation (rad)

Hands 0.04
Shoulders 0.05
Hips -0.05

Table 6.1: Best Angle Compensation

The plots in Figure 6.5(a,c,e) show the evolution of the system when these angles compensation
are applied. As it can be seen the input torques are smaller, being the system more stable. In the

rest of the simulations, it is used the same angles compensations.

The plots in Figure 6.5(b,d,f) show the behavior of the system when the angular position
resolution of a real servo (10 bits resolution for 300 degrees) is used. As it can be seen, the system

starts to present some chattering, although the controller is able to stabilize it.

The controller starts to present some difficulty in terms of stabilizing the system when the
gyroscope resolution is added to the simulator. Since the resolution of the gyro is only 10°/s,
the system presents a higher amplitude input control actions in order to compensate the lack of
information from the gyro. Nevertheless, the controller is still able to stabilize the system, even

with constant disturbances (plots in Figure 6.6(a,c,e)).

If the dead zone of the servos for lower velocities (10% of the full range of 10 bits resolution
for 300°) are considered, then it can be seen from the plots in Figure 6.6(b,d,f) that the controller
is not able to stabilize the system. Moreover, the system input torques would saturate since the

maximum allowable value is 2 Nm.

By adding the friction effect of the hands on the bar, the system destabilizes completely in less
then 6 seconds (plots of the Figure 6.7).

57

6.4 DLQR Simulation Results

Angular Displacements Angular Displacements
100 T T T T 100 T T T T
m m
o o
5, 80f — 9 | 5, 80t 1
3] (3]
= % Z
@ 6o0r a, 1 & 60f]
= 3 = T et ettt
£ £ —a
g 40y . g 401 R 1
@ e 8 . ---gq,
= e = A q
9 20¢ > — 9 20F ¢ 3|
[a) K [a) K
— K4 = 7
< R4 = ’
S Of 1 S Of 1
D N e mmmmmm [=)) v
c R e e B c N -
< < S
_20 L L L L _20 L 1 T m—_mmmm=—=-
0 1 2 3 4 5 1 2 3 4 5
Time (second) Time (second)
(a) (A) Ts=0.01 sec (b) (B) Ts=0.02 sec
Angular Velocity Angular Velocity
1 . : . . 1 .
~ ‘ —— velocity of a,
05 | 05 - _ve:ocrty o: a, |
§ g _____ velocity of q,
2] 2
S 0 S 0 =
8 8
2 2 !
g -05 1 g -05/ K 1
(] [} 1
> — velocity of q > !
~1i - - _velocity of q, 1 -1 ‘I,]
.=. = velocity of dy !
H
-15 ; : : : -15 ; : : :
0 1 2 3 4 5 0 1 2 3 4 5
Time (second) Time (second)
(c) (A) Ts=0.01 sec (d) (B) Ts=0.02 sec
Applied Torque Applied Torque
0.3 : : : : 0.4 : : : :
—— Torque (Shoulders)
0.2] 0.3 - = =Torque (Hips) i
01 | 0.2 1
1S [S |
Z of] g ™
\
g . g 0]
g -0.1 iR] <3 Y
}9 \\\ ﬁ -0.1 \‘ 1
-0.2 ~ 1
S -0.2 ' 1
____________ \
-0.3{| — Torque (Shoulders) 1 -0.3t ' 1
- = =Torque (Hips) D,
_04 T T L L _04 L 1 1 m=mr====4
0 1 2 3 4 5 0 1 2 3 4 5
Time (second) Time (second)
(e) (A) Ts=0.01 sec (f) (B) Ts=0.02 sec

Figure 6.4: Simulation using discrete Linear Quadratic Regulator for balancing with T5=0.01 sec

(A) and T5=0.02 sec (B)

58

Humanoid Control and Simulation Results

[N
o
=]

Angular Displacements

©
=]

@
o

Angular Displacements (degrees)
D
o

20t 1
—q -
O e ey e e e a2]
_____ qa
0 1 2 3 4 : 6
Time (second)
(a) (A) Ts=0.01 sec
Angular Velocity
0.6 . : : . ;

’o‘ 4
o) ~a
£ T
k=] - Y a
g
2
£ j
ke)
Q)
= i
velocity of qa,
-0.6} = = - velocity of d, b
_____ velocity of q,
—08 : : . . .
0 1 2 3 4
Time (second)
(¢) (A) Ts=0.01 sec
Applied Torque
0.3 T T T T T
O'ZM
0.1 -
£ =~
Z o "~]
o Ssel
3 Seeal
g-01f TTTTTmmmmm---e-oo
S
[l
_02 4
~0.37| — Torque (Shoulders) 1
- - -Torque (Hips)
_04 T T T 1 L
0 1 2 3 4 5 6

Time (second)

(e) (A) Ts=0.01 sec

Torque (Nm)

Angular Displacements (degrees)
B
o

Velocity (rad/sec)

Angular Displacements

[N
o
=]

©
=]

@
o

20t 1
—y SE A
ON e ety | 22]
_____ q3
20 :
0 1 2 3 4 6
Time (second)
(b) (B) Ts=0.01 sec
Angular Velocity
0.6 . : : . :

velocity of q
—0.65' - - - velocity of q,,]
_____ velocity of q,
-0.8 ; : : : :
0 1 2 5 6

3 4
Time (second)

(d) (B) T5s=0.01 sec

Applied Torque
0.3 ; . : .

0.2]
0.1

T SR

o

1
o
[

I
o
)

1
o
w

[| —— Torque (Shoulders)
- = =Torque (Hips)

0 1 2 3 4 5 6
Time (second)

1
©
N

(f) (B) Ts=0.01 sec

Figure 6.5: Simulation using angles compensation for the three joint (A) and simulation corrupted

by servos position resolution (B)

59

6.4 DLQR Simulation Results

Angular Displacements

Angular Displacements

i
o
=1
=
]
=1

[N
o
=]

p— -’V/\A'

©

=]
®
o

@

o
@
o

N 4 a
-@l-"'.""."' v "v‘""'"

n
=]

N

Angular Displacements (degrees)
o 5
Angular Displacements (degrees)
B
o

!
[N)
o

o
- H
Ny S
|
N
o

(a) (C) Ts=0.01 sec (b) (D) Ts=0.01 sec

Angular Velocity Angular Velocity

o o
Q Q
%) %)
2 2
i=l °
g 8
= =
P >
E2 =
o o
o o
(] (]

> > Ko Dl

velocity of qa, i velocity of a,

- = = velocity of , - = = velocity of q,

_____ velocity of q, P
1 n ; . . . -8 n . . .
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Time (second) Time (second)
(c) (C) T5=0.01 sec (d) (D) Ts=0.01 sec

Applied Torque Applied Torque

Torque (Nm)
Torque (Nm)
o

—— Torque (Shoulders)
- - -Torque (Hips)

1 2

1 2 3 4 5 6 3
Time (second) Time (second)

(e) (C) Ts=0.01 sec (f) (D) Ts=0.01 sec

Figure 6.6: Simulation after adding gyroscope resolution (C) and simulation with dead-zone re-

sponse of the servos (D)

60

Humanoid Control and Simulation Results

Angular Displacements
150 : : : :

, A

’

=
o
o

-
pore RS aadiiea

3]
o

RS

e asmee T
-

¥000vanas,

LTINS oy o
eossaeon, 0% N

So7 e N !

AL

Angular Displacements (degrees)
o

]
-501 wl 4
1
1007 n ! 1
-- _q2 :
ETECA 1
_150 : ‘ . . .
1 2 3 4 5 6
Time (second)
(a) (E) Ts=0.01 sec
«10° Angular Velocity
15 . : : : ;
1t 1 4
1
1
—~ 05 [
8 1
2 9 .
°
g
< o5 i
2 !
8 - .
s i
-15¢ velocity of g, [
=== velocity of g, : |
<= = velocity of q, |
-25 ; ' : ; —
1 2 3 4 5 6
Time (second)
(b) (E) T5=0.01 sec
% 10° Applied Torque
1 : : : : :
0 i
_l b 4

Torque (Nm)
o

|
IS
.

—6| —— Torque (Shoulders)
- = =Torque (Hips)

0 1 2 3 4 5 6
Time (second)

(c) (E) Ts=0.01 sec

Figure 6.7: Simulation after adding friction coefficient between hands and high bar (E)

61

6.4 DLQR Simulation Results

62

Chapter 7

Conclusions and future work

The work developed in this thesis in collaboration with Robosavvy Ltd was the basis for the
creation of the Humanoid Robotics Laboratory of the IDMEC-Center of Intelligent Systems at
Instituto Superior Técnico in (http://humanoids.dem.ist.utl.pt/). Consequently, this work aimed
the creation of the foundations for future developments in humanoid robots. It is important to note
that the process of modeling the multi-body structure of a humanoid robot, either for the purpose
of doing a hand-stand on a high bar or for generating a stable walking motion, is a very complex
one. One must deal with the formulation and solution of highly nonlinear dynamics equations of

a very large size since a standard humanoid robot has typically 18 servos.

During this project, the following topics have been successfully achieved:

1. The construction of a serial protocol communication in real time between the PC and the

humanoid robot, using Matlab/Simulink® Real-Time Workshop Toolbox®).

2. The external physics parameter identification of the humanoid structure, such as the mass,

inertia tensor and centers of gravity of its main parts.
3. The dynamic analysis and identification of the internal behavior of the servo-actuators.

4. The development of a simulator for the humanoid doing a handstand on bar using virtual

reality as animation.

5. The two sets of the humanoid 3D CAD drawing and its constituents. One set is detailed,
resembling the reality pieces for mechanical analysis, while a less detailed one with precise

real measurements is used in virtual reality animation.

6. The dynamics modeling and simulation using SimMechanics®) and Virtual Reality Toolbox®)

for the equilibrium phase of the humanoid doing a hand-stand on a high-bar.

63

7. The deduction of the equations of motions for a n-link inverted pendulum and its linearization
along the vertical unstable position, and ways to control a n-link inverted pendulum with

eccentrics masses using a linear quadratic regulator.

8. The simulation of a linear quadratic regulator controller for the equilibrium phase of the

humanoid doing a hand-stand on a high bar.

In terms of control and simulation, the humanoid was treated as a three body serial chain in an
inverted pendulum configuration. The system is underactuated, being the motion of the legs and
torso prescribed in order to stabilize the full body of the humanoid above the high bar. Optimal
control methodologies were explored, being the Linear Quadratic Regulator (LQR) adopted in this
thesis. This strategy was successfully applied in the stabilization of the humanoid on a high-bar
although only in simulation. In fact, the real-time implementation of this controller proved to be

unfeasible due to the high nonlinearities present on the servo dynamics, namely their dead-zone.

In this project a LQR controller was implemented to stabilize the humanoid robot on a high
bar in simulation. This controller was shown not to be able to handle the nonlinearities present on
the servos, and hence a new type of controllers must be developed and tested. The sliding mode
control is seen at this moment a good alternative since it can handle uncertainty in a robust way
(Utkin, 1992; Lee and Coverstone-Carroll, 1998; Qian et al., 2007). Nevertheless, intelligent control
should be considered as well due to its new advances and results in controlling an underactuated

inverted pendulum (Qian et al., 2006; Wu et al., 2007).

The dynamics of the humanoid robot used by the controller neglected the servo dynamics,
despite their transfer functions have been accurately identified. Therefore these transfer functions

should be considered in a future implementation of the controller.

The problem of stabilizing a walking motion is much more complex than that of stabilizing
a hand-stand on a high-bar. At each step there are impact forces and transient mechanical con-
straints, and the high model size reduction of the former case may no longer be performed. Thus,
nonlinear control approaches must be explored. A stable walking gait controller is the basis for
more complex motions such as running and jumping, and this constitutes the main path for future

work.

64

Bibliography

Asano, F. and Luo, Z.-W. (2007). “Dynamic analyses of underactuated virtual passive dynamic

walking”, Robotics and Automation, 2007 IEEE International Conference on, pp. 3210-3217.

Aurelie, D., Benjamin, M., Eric, B., Erik, H. and Jacob, R. (2006). Pendubot, Technical report,
KTU.

Ayala Botto, M. (2003a). Controlo de Sistemas - Acetatos das Aulas Tedricas, Lisboa, Instituto
Superior Técnico, AEIST.

Ayala Botto, M. (2003b). Identifica¢ao de Sistemas - Acetatos das Aulas Tedricas, Lisboa, Instituto
Superior Técnico, AEIST.

Ayala Botto, M. (2004). Controlo Nao Linear - Acetatos das Aulas Tedricas, Lisboa, Instituto
Superior Técnico, AEIST.

Ayala Botto, M. (2006). Controlo Optimo - Acetatos das Aulas Tedricas, Lisboa, Instituto Superior
Técnico, AEIST.

Brown, S. C. and Passino, K. M. (1997). “Intelligent control for an acrobot”, Journal of Intelligent
and Robotic Systems, 18(3), 209-248.

Bryant, R., Griffiths, P. and Grossman, D. (2003). FEuterior Differential Systems and Fuler-
Lagrange Partial Differential Equations, University of Chicago Press.

Chestnutt, J., Lau, M., Cheung, G., Kuffner, J., Hodgins, J. and Kanade, T. (2005). “Footstep
planning for the honda ASIMO humanoid”, Robotics and Automation, 2005. ICRA 2005.
Proceedings of the 2005 IEEE International Conference on, pp. 629-634.

Collins, S., Ruina, A., Tedrake, R. and Wisse, M. (2005). “Efficient bipedal robots based on
passive-dynamic walkers”, Science Magazine, 307, 1082-1085.

Hirukawa, H., Hattori, S., Kajita, S., Harada, K., Kaneko, K., Kanehiro, F., Morisawa, M. and
Nakaoka, S. (2007). “A pattern generator of humanoid robots walking on a rough terrain”,

Robotics and Automation, 2007 IEEE International Conference on, pp. 2181-2187.

65

BIBLIOGRAPHY

Kim, J., Park, I. and Oh, J. (2007). “Walking control algorithm of biped humanoid robot on uneven
and inclined floor”; Journal of Intelligent and Robotic Systems, 48(4), 457-484.

Lancaster, P. and Rodman, L. (1995). Algebraic Riccati Equations, Oxford University Press.

Lee, K., Coates, S. and Coverstone-Carroll, V. (1997). “Variable structure control applied to
underactuated robots”, Robotica, 15(3), 313-318.

Lee, K. and Coverstone-Carroll, V. (1998). “Control algorithms for stabilizing underactuated
robots”, Journal of Robotic Systems, 15(12), 681-697.

Ljung, L. (1987). System Identification: theory for the user, Prentice-Hall.
Maia, N. M. M. (2000). Introdu¢ao d dindmica analitica, Lisboa, IST Press.

Miron, R., Hrimiue, D., Shimada, H. and Sabau, S. V. (2002). The Geometry of Hamilton and

Lagrange Spaces, Kluwer Academic Publishers.

Ogata, K. (2002). Modern Control Engineering, Vol. Fourth Edition, University of Minnesota,
Prentice Hall.

Popovic, M.;and Hofmann, A. and Herr, H. (2004). “Angular momentum regulation during human
walking: biomechanics and control”, Robotics and Automation, 2004. Proceedings. ICRA’04.
2004 IEEE International Conference on, 3, 2405-2411.

Qian, D., Yi, J. and Zhao, D. (2006). “Direct adaptive control for underactuated mechatronic
systems using fuzzy systems and neural networks: A pendubot case”, Electrical and Computer

Engineering, 2006. CCECE ’06. Canadian Conference on, pp. 1490-1493.

Qian, D., Yi, J. and Zhao, D. (2007). “Hierarchical sliding mode control to swing up a pendubot”,
American Control Conference, 2007. ACC 07, pp. 5254-5259.

Ramamoorthy, S. (2007). Task Encoding, Motion Planning and Intelligent Control using Qualita-
tive Models, PhD thesis, The University of Texas at Austin.

Ribeiro, M. 1. (2002). Andlise de Sistemas Lineares, Vol. 1 and 2, Lisboa, IST Press.

Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N. and Fujimura, K. (2002).
“The intelligent ASIMO: System overview and integration”, Intelligent Robots and System,
2002. IEEE/RSJ International Conference on, 3, 2478— 2483.

Sockol, M., Raichlen, D. and Pontzer, H. (2007). “Chimpanzee locomotor energetics and the origin
of human bipedalism”, Proceedings of the National Academy of Sciences, 104(30), 12265—
12269.

Spong, M. W. (1994). “Partial feedback linearization of underactuated mechanical systems”, In-
telligent Robots and Systems ’94. ’Advanced Robotic Systems and the Real World’, IROS ’9,.
Proceedings of the IEEE/RSJ/GI International Conference on, 1, 314-321.

66

BIBLIOGRAPHY

Spong, M. W. and Block, D. J. (1995). “The pendubot: a mechatronic system for control re-
search and education”, Decision and Control, 1995., Proceedings of the 34th IEEE Conference
on, 1, 555-556.

Spong, M. W. and Vidyasagar, M. (1989). Robots Dynamics and Control, New York, John Wiley

and Sons, Inc.

Takashima, S. (1989). Robots Dynamics and Control, Osaka, Japan, IEEE Workshop on Inteligent
Robots and Systems, IROS’91.

Takenaka, T. (2006). “The control system for the honda humanoid robot”, Age and Age-
ing, 35(1), 1i24-i26.

Utkin, V. L. (1992). Sliding Modes in Control and Optimization, New York, Springer-Verlag.

White, W.N., J., Niemann, D. and Lynch, P. (1989). “The presentation of lagranges equations in
introductory robotics courses”, Fducation, IEEE Transactions on, 32(1), 39-46.

Wolpert, D., Ghahramani, Z. and Flanagan, J. (2001). “Perspectives and problems in motor
learning”, Trends in Cognitive Sciences, 5(11), 487-494.

Wu, C.-J., Lee, T.-L., Fu, Y.-Y. and Lai, L.-C. (2007). “Auto-tuning fuzzy pid control of a pendubot
system”, Mechatronics, ICM2007 4th IEEE International Conference on, pp. 1-6.

67

BIBLIOGRAPHY

68

Appendix A

C-MEX S-Function code for

real-time communication

The C-MEX S-Function code used for establishing the protocol communication between the PC
using Matlab/Simulink@® and the humanoid robot is described in this appendix. The code is

splited into 5 simple parts for full understanding.
The first part of the code is for the declarations, just as setting the COM port (Figure A.1).

The second part of the program initializes the Input and Output signal of the S-function and
RS232 protocol communication at the baudrate (Figure A.2).

In the third part (Figure A.3), the read function from CMS5 is presented. Two bytes, corre-
sponding to the actual position of the servo, are read. A system of flags were used in order to

prevent possible receiving errors.

The fourth part is the principal block (Figure A.4). It receives the desired final position for the
servo from Simulink and sends it as two bytes for the AX-12 throughout CM5. After sending the
bytes, it receives the actual position of the servos, sending to the CM5 first a confirmation that it

is ready to start reading the values.

The last part stands for the conclusion of the S-Function (Figure A.5).

69

70

{*PC_code

*
*This £
*and re

*

w

#define
#define
Hinclude
Hinclude
Hinclude
Hinclude
Hinclude
#define
#define

#define
#define
#define

#define
#define

short co
short £;

unction writes a wvalue of two bytes to the CHS and reads
ads from the CH5 also a walue of two bytes

5 _FUMNCTICHN NAME PC_code
5 _FUNCTION LEVEL 2

"zimstruc.h"

"stdlib.h"

"stdio.h"

"math.h"

"oonio.h™ S dinpi), outp(), inpw(), outpwi) */
inporthinuwn) | {unsigned char) inp(nwn)]
outporthinum, wvalue] |[(wvold) outp(nun, value)]

Declarations for use ————-

WRITEERROR EYTE -1 Jferror when writing Z hytes
WRITEERROR CHAR -2 fferror when writing 1 hyte
READERROR_EYTE -11 fferror when reading 1 hyte

CHS_SERVOS 1 J/nunber of servos that sfunction receives
FORT1 Ox3F3S ffdefine COM1 as the port for communication
J% COM1 Ox3FG ny
J* COMZ OxZF& ny
J* COM3 Ox3EG ny
J% COM2 OxZEG ny

unter; Jfcounts nb of ticks hetween request and write or read a byte
ffflag turns if a byte was read or write

Figure A.1: Part 1 of the C-MEX S-function

C-MEX S-Function code for real-time communication

37
38
39
40
41
4z
43
44
45
46
47
43
49
50
5l
52
53
54
55
56
57
58
59
&0
6l
6z
63
64
65
13
a7
63
69
70
71
Tz
73
T4
75
e
T

static vold mdlInitializeSizes (3im3truct *3)

{

if ['ssSetHumInputPorts(3, 1)) return;
sgSetInputPortWidth(3, 0, 1):
ssSetInputPortbirectFeedThrough(3, 0, 1):
/fsaFetInputPortRequiredContiguous (3, 0O,

if (!'ssSetHumlutputPorts=(3, 1)) return;
sgSetOutputPortWidth(s, 0, 1):

szSetHumSampleTimes (3, 1);

#ifndef MATLAE MEX FILE

outporth (PORT1 + 1 , 0}
outporth (PCRT1 + 3 , O0xE50):
outporth (PCRT1 + 0 , O0x02):
PR
PR
PR
PR
PR
PR
PR
outporth (PCRT1 + 1 , 0x00):
outporth (PCRT1 + 3 , 0x03):
/f FIFD Control Register used to he OxCF
outporth (PCRT1 + 2 , 0x00):

#endif

i

Jfcheck if there is only 1 input signal
Jfthe input signal is a scalar
ffsignal to be used in mdlOutputs

1):

ffcheck if there is only 1 output signal
f/the output signal is a scalar

Jinumber of sample times

Ox03
Ox01
Ox0z
Ox0a
Oxoc
Ox15
Ox30

static volid mdlInitializeSampleTimes [(3im3truct *3)

{

ssSetSampleTime (3, 0, INHERITED ZAMPLE TIHME):

sgSet0ffzetTime (3, O, 0.0):

44 Turn off interrupts - Portl
/f SET DLAE <N
/% Zet Baud rate - Divisor Latch Low Eyte

38,400 BP3
115,200 EBP3
57,600 BP3
19,200 EF3
9,600 EBP3
4,500 EBP3
Z,400 BP3

/f Zet Baud rate - Divisor Latch High EByte
/4 8 Bits, No Parity, 1 3top Bit
ie: enabled with 14 bytez of fifo*/

Figure A.2: Part 2 of the C-MEX S-function

w

w
w
w
w
w
w
w

71

72

78
79
&0
gl
G2
g3
G4
G5
g6
g7
it
g9
a0
91
9z
93
94
a5
96
a7
95
99
100
10l
10z
103
104

A% Function: zerial resad ushort

* Lbhstract

+ In thi=s function, PC reads fromwm CH5S 2 hytes

*

unsigned short serial read ushort () {

unsignes
unsignes

d char lo;
d char hi:

#ifndef MATLAE MEX FILE

Ff———— read 1zt bhyte from CHS:
counter=0;
while (counter<10000) {
if (inporth (PORT1 + 51 &l1) { //if byte ready to read
lo = inporth (FPORT1) ; firead the byte
f=1; fiflag=1
hreak; flexit
Tt
counter++;
i
Ff———— read Znd byte frowm CHMS if 1=t bhyte was read:
if (f==1){
counter=0;
while (counter<10000) {
if (inporth (PORT1 + 51 &l1) { //if byte ready to read
hi = inporth (PORT1); firead the byte
f=z; fiflag=2
hreak; flexit
i
counter++;
i
i
Ff———— return the nwrber if the 2 hytes were read or error otherwise
if (f==2)
i
return | [junsigned short) lo) +
[fun=signed short) hi) <<8) 1:
i
el=e
i
return READERROR BYTE:
i
return | [junsigned short) lo) + ([{unsigned short) hi) <<8) 1:
felse
static unsigned short simulation=0;
return (simulation++) ;
#endif

b

Figure A.3: Part 3 of the C-MEX S-function

C-MEX S-Function code for real-time communication

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
14a
149
150
151
152
153
154
155
156
157
158
159
1&0
161
162
163
1le4
165
166
167
1leg
169
170
171
17z
173
174
175
176
177
178
179
1s0
151
152
183
1s4
185
186
187
1lsg
159
150
1591
19z
193
194
185
196
187
198
1599
200
201
202
203
z04
205
206
207
Z08
209
z10

&
*
*

*

i

Function: mdlOutputs

Abstract:
In this function, you compute the cutputs of your S-function
block.

static void mdlOutputs (SimStruct *3, int T tid)

{

unsigned short w; £4 input walue
real T *simulink input = (real T*) ssGetInputPortSignal(s,0): S walues -1..1
real T *simulink output = (real T *) ssGetOutputPortSignal(3,0): f# scalar
unsigned char out_buf[z]; f/wector that contains the lo and hi byte of the input wvalue

v=({unsigned short) (Simulink input[0]):

out_buf[0] = veDxIL;
out_buf[1] = w>>8;

#ifndef MATLAB_MEX FILE

AAIT0I0I0I01 0] write 2 bytes to CMS: [J[I[1L01[1[]

ff——— write 1st byte to CH5:
counter=0;
while (counter<10000) {

if (inporth (FORT1 + 5)&(1<<5)){ f/1if byte ready to write
outporth (FORT1, out_buf[0]): fiwrite hyte
£=1; SiElag=1
break; flexit
¥
counter++;
H
ff———— write Znd byte to CHM5 if 1st byte was write:
if (f==1]{

counter=0;
while (counter<10000) {

if (inporth (PORTL + 5) &(1<<5))4 f/1if byte ready to write
outporth (FORT1, out_buf[1]): ffwrite hyte
£=2; S AElag=2
brealk; flexit

i

counter++;

AATIIIIIMI01 0] read 2 hytes from CHS: [I[1[I101010]

ff———— if the 2 bytes ere sent nicely then
ff——— write a character to CH5, meaning that the PC wants to read Z hytes
if (£==2) {
counter=0;
f=0;
while (counter<10000) {
if (inporth (PORT1 + 5)&(1<<5)) { //1f byte ready to write
outporth (PORT1, 'c'): ffwrite just s char
f=1; Siflag=1
brealk; flexit
i
i
f - call function to read & bhytes from CMS5 if char was write
if(f==1)1{

v = serial read ushort():
i
elsef
v=WRITEERROR_CHAR:
i
Simulink output[0] = w;
i
elseq
zirulink output[0] = WRITEERROR_BYTE:
i

#endif

Figure A.4: Part 4 of the C-MEX S-function

73

74

zlz
213
214
zZ15
zlae
217
z18
z19
220
221
222
223
224
225
226
227
228
229
230
231
232

f% Function: mwdlTerminate
* Lbhstract:

+ In thi= function, vou should perform any actions that are necessary
+ at the termination of a simulation. For example, if wmemory was

+ allocated in wdlStart, this i=s the place to fres it.

*

static void mdlTerminate (3iwm3truct *3)
i

‘k=============================‘k‘f
#ifdef MALTLALE MEX FILE f*% I this file being cowpiled as a MEX-file? #/
g#include "simulink.c™ f% MEX-file interface mwechanism */
felse
#include "ocg sfun.h' /% Code generation registration function #/
#endif

Figure A.5: Part 5 of the C-MEX S-function

Appendix B

Protocol communication C code for

PC and humanoid robot

In this appendix, the required C code for establishing a serial protocol communication between
PC and a servo of the humanoid robot is presented. The objective of this protocol is to send a
reference angular velocity to servo ever 0.01s and to receive from it a roll of different data, such
as current angular position, angular velocity, DC current, voltage and temperature. Servo angular
velocity is also estimated from current position using an online filter. The required steps for this

protocol implementation are:

1. C code for the microprocessor Atmegal28. Figure B.1 shows the main function to be used

inside the "example.c" code of Robotis.

2. C-MEX S-Function code to use in the Matlab/Simulink®. In Appendix A, it is shown the
full C-MEX S-Function developed for sending and receiving position from a servo. The same
C-MEX S-Function is used in this case with minor changes shown in the Figures B.2 and

B.3.

3. Simulink block diagram shown in Figure B.4. This diagram also compares the response of
the estimated current speed of a servo (online derivating of the current position (Figure B.6))
with the output speed given by the transfer function. It also calculate the reference position

by integrating the reference speed (Figure B.5).

75

[CHPEES |

Eint mainCvoid) {

byte bCount,bID, bTxPacketLength,brxPacketlLength;

FortInitialize(); //Port In/out Direction Defimition
RS485_RXD; //Set RS485 Direction to Input State

//RS485 Initializing(RxInterrupt)
serialInitialize(SERIAL_PORTO, 1, R¥_INTERRUPT);

//Rs232 Initializing(None Interrupt)
serialInitialize(SERIAL_PORTL, DEFAULT_BAUD_RATE, 0);

gbrxBufferreadpPointer = ghrRxsufferwritepointer = 0; //RS485 rxsuffer Clearing

sei(); //Enable Interrupt —— Compiler Function

8
'" code to be inserted i

//servo to be used
bIp = 13

f/goal position splited in To and hi byte
byte 1o, hi;

//array of servo data to be sent to PC
byte send[10];

while(Ll)
1
//read from MATLAE the reference speed
To=RxDB();
hi=rRxDE();
//send the goal position to the servo
gbpParameter [0] = P_GOAL_SPEED_L; /ﬁAddress of Firmware version
gbprarameter[1] = 10' ,,hr1t1ng Data P_GOAL_SPEED_L
bpParameter [2] = JAwriting Data P_GOAL_SPEED H
ngPacketLength = HF’aEkEt(bID INST_WRITE, 3);
brxPacketLength = RxPacket (DEFAULT_RETURN PACKET_SIZE);
//get present position
gprarameter[O% P_PRESENT_POSITION_L; //Address 36 of present position LSB
gbpParameter [L] = 23 // Read 2 bytes starting at address 36
TxPacket (bID, INST_READ, 2); // 2 means 2 bytes in parameter array
RxPacket (DEFAULT_RETURN_PACKET_ SIZE+gprar‘ameter‘ [11);
send[0]=gbprxBuffer [5];
send[L]=gprx5uffer[6];
//get present speed
gbprarameter [0] = P PRESENT_SPEED_L; //Address 38 of present speed LSEB
gbpParameter [1L] = // Read 2 bytes starting at address 38
TxPacket (bID, INST_| READ 233 // 2 means 2 bytes in parameter array
RxPacket (DEFAULT_RETURN_PACKET_ SIZE+gprar‘ameter‘ [11);
send[2]=gbprxBuffer [5];
send[3]=gprx5uffer[6];
//get present dc current
gbpParameter [0] = P_PRESENT_LOAD_L; //Address 40 of present load LSE
gbpParameter [1] = 23 // Read 2 bytes starting at address 40
TxPacket (bID, INST_READ, 2); // 2 means 2 bytes in parameter array
RxPacket (DEFAULT_RETURN_PACKET_ SIZE+gprar‘ameter‘ [11);
send[4]=gbprxBuffer [5];
send[5]=gprx5uffer[6];
//get present voltage
gbpParameter [0] = P_PRESENT_VOLTAGE; //Address 42 of present volatge
gbpParameter [L] = 13 // Read 1 byte starting at address 42
TxPacket (bID, INST_READ,1); // 1 means 1 byte in parameter array
RxPacket (DEFAULT_RETURN_PACKET_ SIZE+gprar‘ameter‘ [11);
send[&]=gbprxBuffer [5];
send[7]1=0x00;
//get present temperature
gbprarameter [0] = P_PRESENT_TEMPERATURE; //address 43 of present Ttemperature
gbpParameter [1] = 1; /¢ Read 1 bytes starting at address 43
TxPacket (bID, INST_READ,1); // 1 means 1 byte in parameter array
RxPacket (DEFAULT_RETURN_PACKET_ SIZE+gprarameter‘ [11);
send[&] gprxBuffer[S],
send[2]=0x00;
”fui)each instruction to be sent read first 1 byte from pc
RXDE
TxD81 (s5end[0]);
TxD8L (send[1]);
RxDE();
TxDBl(send[:]);
TxD8L (send[3]);
RXDE();
TxD81 (send[41);
TxDEL(send[5]);
RXDS();
TxD8L (send[6]);
TxDEL (send[7]1);
RXDE();
TxDBl(send[35 H
TxDE81(send[2]);
e
s end code ;
H
| G |

Figure B.1: Microprocessor C code for PC-Servo protocol

Protocol communication C code for PC and humanoid robot

[

static void mdlInitializeSizes (SimStruct *3) {

ficheck if there iz only 1 input signal

if [!ssSetHumInputPorts (3, 1)) return:

Jfthe input signal is a scalar
ssSetInputPortWidth(3, 0, 1); //Reference Speed
fi2ignal to be used in mdloutputs
ssSetInputPortDirectFeedThrough(3, 0O, 1):
//ss3etInputFortRequiredContiguous (5, 0, 1):

Jicheck if there is five 5 output signal

if [!ssSetHumbutputPorts (S, 5)) return:

//the output signals are scalar
ssSetOutputPortWidthi3, 0, 1); //Servo Position
ssSetOutputPortWidth(s, 1, 1): //Servo Speed
szSetOutputPortWidth(3, 2, 1); //Servo DC current
ssSetOutputPortWidth (3, 3, 1); //Servo Voltage
ssSetOutputPortWidth (3, 4

Sinunber of sample times

sgSetHumSampleTimes (3, 1)

, 1): //8ervo Temperature

Figure B.2: Part 1 of the C-MEX S-Function for PC-Servo protocol

bl
AALITI0I0I01[] read date from CMS: [JL1LICIL010]

if the 2 bytes ere sent hicely then

during 5 times, write & character to CM5, and read 2 bytes; £
Servo present Position

Servo present Speed

Servo present DC current

Serwvo Present Voltage

Servo Present Temperature

for (int i=0, 1i<5, i++)1{

if (f==2) {

counter=0;

f=0:

while (counter<10000) {

if (inporth (PORT1 + 5)j&({1<<5)1) { //if byte ready to write

outporth (FORT1, 'c'); ffwrite just a char
f=1: //Elag=1
break: flexit

call function to read 2 bytes from CM5 if char was write

v = serial read ushort{);
=z

i
elae{
w=WRITEERRCOR CHAR;

i
simulink cutput[i] = w;
i
elsef{
simulink output[i] = WRITEERROR BYTE:

flendif

Figure B.3: Part 2 of the C-MEX S-Function for PC-Servo protocol

77

Servo Input-Output Signals

Goal: send anguler velocity in 0-1022 encoders’sec to a serve and receive from it desired data,

L
0.08217z
r 22-1.4692+0.5544
TF - ohtained by Speed-Speed bj 9.8 v
= Reference Ang Speed Reference Ang Position
—={ Dutput Ang Postion Qutput &ng. Position
Ref Speed to Ref Fosition
Cutput Ang Position |
L Qutput Ang Posttion Output Ang Estimated Speed
A anline filter
Quiput Ang Speed >
@ Signal 1 [-Hw|Reference Ang Speed OUtput DC curtent >
Reference Ang Speed '
Output Voltage >
‘Oulput Temperature B

Flant

Figure B.4: Block Diagram for PC-Servo protocol

Calculate the reference position by integrating the reference spesd and summing,

enly in the firs sampla time, the cument position of the serve

Refarance Ang Spesd Referance Ang Paosition

Cutput Ang Paosition

Switch Unit Delay

cis
2

Dutput Ang. Position

Figure B.5: Reference angular position block

Estimete the sutput angular speed by detivating and filtering online the cument position of the serve

D o0 TH

Dutput Ang Estimated Speed

Output Ang Paosition

Figure B.6: Output estimated angular velocity using an online filter

Appendix C

Drawings and mechanical properties

of the Walking humanoid

Figure C.1: Main Blocks of the Walking humanoid

79

Lower Arm

" el P vt
% i -
-t Y oL
® o8
o i L%
‘1'. ey "_a .
|
(a) Left Lower (b) 3D CAD (¢) Right Lower (d) 3D CAD
Arm Arm
Figure C.2: Lower Arm
Left Lower Arm Right Lower Arm
Mass (g) Inertia Tensor (gem?) Inertia Tensor (gem?)
28460.9 34.2 3214.1 28460.9 34.2 —3214.1
76.7 342 26727.7 508.9 34.21 26727.7 —508.9
3214.1 508.9 5417.1 —3214.1 —-508.9 5417.1

Table C.1: Lower Arm Mechanical Properties

111.33

Figure C.3: Lower Arm 2D CAD

80

Drawings and mechanical properties of the Walking humanoid

Upper Arm
-1 !n g
e n
53 "_ T
o, -l
-y _-L g
(a) Left Upper (b) 3D CAD (¢) Right Upper (d) 3D CAD
Arm Arm
Figure C.4: Upper Arm
Left Upper Arm Right Upper Arm
Mass (g) Inertia Tensor (gem?) Inertia Tensor (gem?)
23871.8 0.1 -0.3 23871.8 —0.1 -0.3
76.5 0.1 19040.0 363.6 —0.1 19040.0 —-363.6
-0.3 363.6 7748.7 —0.3 —363.6 7748.7

Table C.2: Upper Arm Mechanical Properties

_ 90.50
5 68 -

‘i - 45.42 &i%2.58 " mw
ki o A
2

! Q| Lo

z 7 =

Figure C.5: Upper Arm 2D CAD

81

Shoulder

[‘l ge
i L g i
‘;‘! (R
o A4 o
(a) Left shoulder (b) Right shoulder

Figure C.6: Shoulder

Left Shoulder Right Shoulder
Mass (g) Inertia Tensor (gem?) Inertia Tensor (gem?)
5168.6 0.0 —469.78 5168.6 0.0 469.78
11.9 0.0 2205.0 0.0 0.0 2205.0 0.0
—469.78 0.0 5295.7 469.78 0.0 5295.7

Table C.3: Shoulder Mechanical Properties

= 48 =
. 10.94 A 21 21 B }
BE
| -
S 2y .
il 28 i} i
Y]
0 /
=) ¢ 0 ¢ 0 0
L n-tea——o
h _c_:.o o o o." i CO
:(' 1
i

Figure C.7: Shoulder 2D CAD

82

Drawings and mechanical properties of the Walking humanoid
Torso
e
B
- w
of
Simie
(a) Left shoulder (b) Right CAD
Figure C.8: Torso
Torso
Mass (g) Inertia Tensor (gem?)
1043443.0 —118883.3 —5181.6
648.5 —118883.3 775943.7 2242.5
—5181.6 2242.5 844180.1
Table C.4: Torso Mechanical Properties
1/.77 v 52.48
<
oy
I : i
(] iy
U '
ol S e \
Dl 93
e o™ g
i) e
I E
e ¥
i) T
o ABEEE) o {106

Figure C.9: Torso 2D CAD

83

Groin

® s % o
B R
oo o
(a) Left Groin (b) Right Groin (¢) 3D CAD

Figure C.10: Groin

Left Groin Right Groin
Mass (g) Inertia Tensor (gem?) Inertia Tensor (gem?)
19579 78.2 —-0.5 19579 78.2 —-0.5
15.1 782 93880 0.0 782 93880 0.0
—-0.5 0.0 9832.1 —0.5 0.0 9832.1

Table C.5: Groin Mechanical Properties

19.03

(28.67) !
(39.76)

o

=

foe

7

(59)

(27.50

Figure C.11: Groin 2D CAD

84

Drawings and mechanical properties of the Walking humanoid

Hip/Ankle
| % ’ { 8
=% N
5 et 110 o2 g 18
‘- , :u. -y A
(a) Left Hip (b) 3D CAD (c) Right Hip
BoaE o
=1 L,
-y . o
L] e
__'i & 'n_. ._.'H_“ -
(e) Left Ankle (f) 3D CAD (g) Right Ankle (h) 3D CAD
Figure C.12: Hip/Ankle
Left Ankle Right Ankle
Mass (g) Inertia Tensor (gem?) Inertia Tensor (gem?)
11354.7 —1443.2 —-1016.7 11354.7 —1443.2 -1016.7
137.9 —1443.12 54852.3 —114.8 —1443.12 54852.3 —114.8
—1016.7 —114.8 53390.0 —1016.7 —114.8 53390.0

Table C.6: Main Blocks Mechanical Properties

85

86

Left Ankle Right Ankle
Mass (g)

Inertia Tensor (gem?) Inertia Tensor (gem?)

17688.8 —974.1 T74.3
—-974.1 59738.1 —-979.4
7743 —979.4 48519.1

11354.7 —1443.2 -1016.7

137.9 —1443.12 54852.3 —114.8

—-1016.7 —114.8 53390.0

Table C.7: Main Blocks Mechanical Properties

Figure C.13: Hip/Ankle 2D CAD

Drawings and mechanical properties of the Walking humanoid

Upper Leg
B [t

T

i

o

Sk

(a) Left Upper Leg (b) Right Upper
Leg
Figure C.14: Upper Leg
Left Upper Leg Right Upper Leg
Mass (g) Inertia Tensor (gem?) Inertia Tensor (gem?)
25374.1 1393.5 0.0 25374.1 1393.5 0.0
31.2 1393.5 13828.1 0.0 1393.5 13828.1 0.0
0.0 0.0 16927.5 0.0 0.0 16927.5

Table C.8: Upper Leg Mechanical Properties

—-l 42

Figure C.15: Upper Leg 2D CAD

87

Lower Leg

B em - [l =
’ .-_? b i ,‘
(a) Left Lower Leg (b) 3D CAD (¢) Right Lower (d) 3D CAD
Leg
Figure C.16: Lower Leg
Left Lower Leg Right Lower Leg

Mass (g) Inertia Tensor (gem?) Inertia Tensor (gem?)
43545.7 124.6 101.4 43545.7 1246 —101.4
86.6 124.6 135254 703.2 124.6 135254 —703.2
101.4 703.2 372324 —101.4 —703.2 372324

Table C.9: Lower Leg Mechanical Properties

e, LAB) s

= L2175

—

[75.50)

20.27%
{42)
{48)

/

-
]

Figure C.17: Lower Leg 2D CAD

88

Drawings and mechanical properties of the Walking humanoid

Foot
5 . a
s 1 L] I"
e e
3 w i
(a) Left Foot (b) 3D CAD (c) Right Foot (d) 3D CAD
Figure C.18: Foot
Left Foot Right Foot
Mass (g) Inertia Tensor (gem?) Inertia Tensor (gem?)

43545.7 124.6 101.4 43545.7 1246 —1014
54.4 124.6 135254 703.2 124.6 135254 —703.2
101.4 703.2 372324 —101.4 —-703.2 372324

Table C.10: Foot Mechanical Properties

{100)

—1

L2196
10

i
X V
A P 50.85 < Z

Figure C.19: Foot 2D CAD

89

90

Appendix D

Drawings and mechanical properties

of the Gymnast Humanoid

Figure D.1: Main Blocks of the Gymnast Humanoid

91

Arms

L £ 4

h.,'- *!_ F
e v
< N
(a) Arms (b) 3D CAD
Figure D.2: Arms
Arms
Mass (g) Inertia Tensor (gem?)
28479.93 59.0 —0.7
367.6 59.0 21258.1 —-1.3
—0.7 —-1.3 7890.7

Table D.1: Arms Mechanical Properties

184
- 152 629
. 106 -
= = l
f'\ 1
o
o
=0
2 -
o i
GEE 2 !
%
P
i
] —
| | 575

Figure D.3: Arms 2D CAD

92

Drawings and mechanical properties of the Gymnast Humanoid

Torso

(a) Arms (b) 3D CAD

and Torso

Figure D.4: Torso

Arms
Mass (g) Inertia Tensor (gem?)
37029.8 —1750.1 —54.7
981.5 —1750.1 12211.3 134.6

—54.7 134.6 32898.6

Table D.2: Torso Mechanical Properties

53.36 : o

23 L F ,i‘

L o 1

< | |

\—__/—[Q‘

7

~T

T o

1157

el s ‘ _ 17.96

Figure D.5: Torso 2D CAD

93

Legs

vV ol
% «®-
R
(O
(a) Arms (b) 3D CAD

and Torso

Figure D.6: Legs

Legs
Mass (g) Inertia Tensor (gem?)
16420.4 1329.6 0.1
576.4 1329.6 9032.2 1.4
0.1 14 11328.0

Table D.3: Legs Mechanical Properties

Figure D.7: Legs 2D CAD

94

Appendix E

Poles and zeros of the Gymnast

Humanoid model

95

Sl
—
T T T T T i T T T T T B T T T T i
x® *
i = L ' = L da
o ! = 3 & 5}
L i Jw L : dw L Jduw
* #*
L " ls I @ la | le
| ' !
| | i
L * Hw o @ Hw F &
o H o H a @
] : . 2 : o = T
o ; m 5 3 o &
W | e e o e =i S T s e =
= i Lk H ;] ™
&) -4 : -4 b [
o ' =} ' o T
o] o ; o '
L & Hu i & Hu L & -
L ! s I ! 1= L ; e
% ¢ *
) s ¥ ul : u
r 1 T= r | 1= r o} 1=
: o ! do ; = -
r 2 & F ! & F : &
5 * i "
L L i ' L) L I I | | | | i L L Il
& &
T T T T T B T T T T T & : T T 9
r : 18 r : & F —4&
L ! Jw L . Juw L Jw
L it i) L ! do | Ja
L & i L & d L Lan
= | a | a
= H & H
= : o = :] =2 "
| o | o
m st e A s e e s s 1= W B by sy ey A e R e R 1= W T —a W
I ! 2 r : F o i
0 i
5 : 4 & ! & b 4
=] i =] 1
o | o H &
L Huw s ! Hu - <
@ _ & _ _
L ¥ Je L 5 & [e
*
8 o
L 3 Juw i i J{wn L Jwn
i v ! - =
r : 18 ¥ 5 & F 18
x ! : 4 :
L L H L L wy L L H L ' L L ' ' i
s — W = uy - w w — i = i = iy 2 e s — w 'y
-4 = = = = b =2 =] = b= = = & =] = =
= = £ 2 = = e =1 = o =] = = 2 = =1 =
= = & 7 = = = = T = b= = T =
_ Sy AdRUIDELW | spoy feuiBew| Sy AIELIGE W

Poles and zeros for the first 3 states (q1 — 5, q2,¢3)

Figure E.1

96

Poles and zeros of the Gymnast Humanoid model

Imaginary Axis

Imaginary fxis

Pole-Zero Idap Pole-Zero Map
0015 ! ! ! T T T T T T T T T T : T T T
!]
0.01 | | 4k ' e
| @
0.005 - f 1 f 5 il
| i
2]
B 1 H
Q- Ko nmm e Qe - G L e S R S S R Hommmen ABpem-a Hmmmnm o Pe-mmmnmmnnad K==
& : !
E !
0.005 | 3 4 L : |
| o]
o0 | 4 F ¢ B
bois A S R S
225 20 15 A0 5 0 5 10 15 20 25 25 20 15 10 5 i 5 10 15 20 2=
Real Axiz Real Axiz
Pole-Zero Map Pole-Zero Map
0.015 ; : : . T T T T T T T T T T T T T T
Bo1 !
0.005 |
2 i R FBE 6
0.005 | !
001t !
0.015 : : : : i
25 20 -15 10 = D
Real Axis
Pole-Zero Map Pole-Zero Map
0.015 : : ; T T T T T T T T T T T T . T T
001 | ' 4k i 4
0.005 : 4t ! N
0 feens Kemmmem s Wl - - LBne- B B e S CEEES I Xommmmen L B o Bommee FLIE s EERRRSE: K-~
0.005 | 4 F : 4
-0.01 H N s : i
0.015 1 1 L 1 i 1 1 1 1 1 1 1 1 i 1 L 1 L
25 20 -5 10 35 0 5 10 15 20 25 25 20 -15 10 5 o 5 10 15 20 2t
Real Auxis Rea) 835 ...

Figure E.2: Poles and zeros for the last 3 states (41, g2, ¢3)

97

