Section 22. Direct Memory Access (DMA)

HIGHLIGHTS

This section of the manual contains the following topics:

b2 R [01 1o To [0 Tox 1T o IO SO OPPPPPP 22-2
b 0 1 VN =T 1] (= PP 22-3
22.3 DMA BIOCK DIBGIAIM......eiiiiiiiiiiiiea et e ettt e e e e e e e e aatbe e e e e anbbee e e e e entnneeaaeeannsneeaeaas 22-12
22.4 DMA Data TranSTEIo et e e 22-13
B SR 1 Y= U o SR 22-15
22.6 DMA OpPErating MOUESccuveiiieiiiiiii e eee e e se e e e e e e e et ae e e e aantbaaeaeaas 22-20
22.7 Starting DIMA TranS eIcciiiiiiiie ettt e e e e e e e e e e tbaae e e 22-45
22.8 DMA Channel Arbitration and OVEITUNScccooiieeiiiieniiiee e 22-47
22.9 DebUGGING SUPPOITeeeeiiiiieee ettt e e e e ettt e e e e sattaee e e e e eabaneeeeeananeeeeeaaans
22.10 Data WIte COllISIONS.....ceiiiiiiiiie ettt e e e e e e e e e e e nnaeeaeean

22.11 Operation in Power-Saving Modes

b B =T o | R o ORISR
22.13 REGISIEI MAPS ...eiieiiiiiiiie e ittt e et e e s e e e e et ae e e e e etat bt e e e e e satbaeeeeesastaaaeeeseasssseaeeaans
22.14 Related Application Notes...................

22.15 REVISION HISTOIY ..ttt ettt e e et e e e e et ee e e e e nnaaeeaaean

© 2006 Microchip Technology Inc. DS70182A-page 22-1

dsPIC33F Family Reference Manual

22.1 INTRODUCTION

The Direct Memory Access (DMA) controller is an important subsystem in Microchip's high-per-
formance 16-bit Digital Signal Controller (DSC) families. This subsystem facilitates the transfer
of data between the CPU and its peripheral without CPU assistance. The dsPIC33F DMA con-
troller is optimized for high-performance, real-time, embedded applications, where determinism
and system latency are priorities.

The DMA controller transfers data between peripheral data registers and data space SRAM. The
dsPIC33F DMA subsystem uses dual-ported SRAM memory (DPSRAM) and register structures
that allow the DMA to operate across its own, independent address and data buses with no
impact on CPU operation. This architecture eliminates the need for cycle stealing, which halts
the CPU when a higher priority DMA transfer is requested. Both the CPU and DMA controller can
write and read to/from addresses within data space without interference, such as CPU stalls,
resulting in maximized, real-time performance. Alternatively, DMA operation and data transfer
to/from the memory and peripherals are not impacted by CPU processing. For example, when a
Run-Time Self-Programming (RTSP) operation is performed, the CPU does not execute any
instructions until RTSP is finished. This condition, however, does not impact data transfer to/from
memory and the peripherals.

Figure 22-1: DMA Controller

DPSRAM
—

PERIPHERAL |- DMA > g CPU

—

The DMA controller supports eight independent channels. Each channel can be configured for
transfers to or from selected peripherals. Peripherals supported by the DMA controller include:
« ECAN™ technology

« Data Converter Interface (DCI)

« 10-bit/12-bit Analog-to-Digital Converter (ADC)

 Serial Peripheral Interface (SPI)

* UART

¢ Input Capture

¢ Output Compare

In addition, DMA transfers can be triggered by Timers as well as external interrupts.

Each DMA channel is unidirectional. Two DMA channels must be allocated to read and write to
a peripheral. Should more than one channel receive a request to transfer data, a simple fixed
priority scheme, based on channel number, dictates which channel completes the transfer and
which channel, or channels, are left pending. Each DMA channel moves a block of up to 1024
data elements, after which it generates an interrupt to the CPU to indicate that the block is
available for processing.

DS70182A-page 22-2

© 2006 Microchip Technology Inc.

Section 22. Direct Memory Access (DMA)

The DMA controller provides these functional capabilities:

« Eight DMA channels

* Register Indirect With Post-increment Addressing mode

« Register Indirect Without Post-increment Addressing mode

« Peripheral Indirect Addressing mode (peripheral generates destination address)

e CPU interrupt after half or full block transfer complete

* Byte or word transfers

» Fixed priority channel arbitration

* Manual (software) or Automatic (peripheral DMA requests) transfer initiation

« One-Shot or Auto-Repeat block transfer modes

« Ping-Pong mode (automatic switch between two DPSRAM start addresses after each block
transfer complete)

* DMA request for each channel can be selected from any supported interrupt source

» Debug support features

22.2 DMA REGISTERS

Each DMA channel has a set of six status and control registers.
« DMAXCON: DMA Channel x Control Register

This register configures the corresponding DMA channel by enabling/disabling the channel,
specifying data transfer size, direction and block interrupt method, and selecting DMA
Channel Addressing mode, Operating mode and Null Data Write mode.

- DMAXREQ: DMA Channel x IRQ Select Register

This register associates the DMA channel with a specific DMA capable peripheral by
assigning the peripheral IRQ to the DMA channel.

« DMAXSTA: DMA Channel x DPSRAM Start Address Offset Register A

This register specifies the primary start address offset from the DMA DPSRAM base
address of the data block to be transferred by DMA channel x to or from the DPSRAM.
Reads of this register return the value of the latest DPSRAM transfer address offset. Writes
to this register while the channel x is enabled (i.e., active) may result in unpredictable behav-
ior and should be avoided.

« DMAXSTB: DMA Channel x DPSRAM Start Address Offset Register B

This register specifies the secondary start address offset from the DMA DPSRAM base
address of the data block to be transferred by DMA channel x to or from the DPSRAM.
Reads of this register return the value of the latest DPSRAM transfer address offset. Writes
to this register while the channel x is enabled (i.e., active) may result in unpredictable behav-
ior and should be avoided.

« DMAXPAD: DMA Channel x Peripheral Address Register

This read/write register contains the static address of the peripheral data register. Writes to
this register while the corresponding DMA channel is enabled (i.e., active) may result in
unpredictable behavior and should be avoided.

« DMAXCNT: DMA Channel x Transfer Count Register

This register contains the transfer count. DMAXCNT + 1 represents the number of DMA
requests the channel must service before the data block transfer is considered complete.
That is, a DMAXCNT value of ‘0’ will transfer one element. The value of the DMAXCNT reg-
ister is independent of the transfer data size (SIZE bit in the DMAXCON register). Writes to
this register while the corresponding DMA channel is enabled (i.e., active) may result in
unpredictable behavior and should be avoided.

© 2006 Microchip Technology Inc. DS70182A-page 22-3

dsPIC33F Family Reference Manual

In addition to the individual DMA channel registers, the DMA Controller has three DMA status
registers.

* DSADR: Most Recent DMA DPSRAM Address Register

This 16-bit, read-only, status register is common to all DMA channels. It captures the
address of the most recent DPSRAM access (read or write). It is cleared at Reset and, there-
fore, contains the value ‘Ox0000’ if read prior to any DMA activity. This register is accessible
at any time but is primarily intended as a debug aid.

« DMACSO0: DMA Controller Status Register 0

This 16-bit, read-only, status register contains the DPSRAM and Peripheral Write Collision
flags, XWCOLx and PWCOLX, respectively. See Section 22.10 “Data Write Collisions” for
more detailed information.

« DMACS1: DMA Controller Status Register 1

This 16-bit, read-only, status register indicates which DMA channel was most recently active
and provides the Ping-Pong mode status of each DMA channel by indicating which
DPSRAM Start Address Offset register is selected (DMAXSTA or DMAXSTB).

DS70182A-page 22-4 © 2006 Microchip Technology Inc.

Section 22. Direct Memory Access (DMA)

Register 22-1:

DMAXCON: DMA Channel x Control Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 uU-0 uU-0 uU-0
CHEN SIZE DIR HALF NULLW — — —
bit 15 bit 8
uU-0 uU-0 R/W-0 R/W-0 uU-0 uU-0 R/W-0 R/W-0
— — AMODE<1:0> — — MODE<1:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared X = Bit is unknown
bit 15 CHEN: Channel Enable bit
1= Channel enabled
0 = Channel disabled
bit 14 SIZE: Data Transfer Size bit
1= Byte
0= Word
bit 13 DIR: Transfer Direction bit (source/destination bus select)
1 = Read from DPSRAM address, write to peripheral address
0 = Read from Peripheral address, write to DPSRAM address
bit 12 HALF: Block Transfer Interrupt Select bit
1 = |Initiate interrupt when half of the data has been moved
0 = |Initiate interrupt when all of the data has been moved
bit 11 NULLW: Null Data Peripheral Write Mode Select bit
1 = Null data write to peripheral in addition to DPSRAM write (DIR bit must also be clear)
0 = Normal operation
bit 10-6 Unimplemented: Read as ‘0’
bit 5-4 AMODE<1:0>: DMA Channel Addressing Mode Select bits
11 = Reserved
10 = Peripheral Indirect Addressing mode
01 = Register Indirect without Post-Increment mode
00 = Register Indirect with Post-Increment mode
bit 3-2 Unimplemented: Read as ‘0’
bit 1-0 MODE<1:0>: DMA Channel Operating Mode Select bits

11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA RAM buffer)
10 = Continuous, Ping-Pong modes enabled

01 = One-Shot, Ping-Pong modes disabled

00 = Continuous, Ping-Pong modes disabled

© 2006 Microchip Technology Inc. DS70182A-page 22-5

dsPIC33F Family Reference Manual

Register 22-2:

DMAXREQ: DMA Channel x IRQ Select Register

R/S-0 U-0 U-0 U-0 u-0 u-0 U-0 U-0
FORCE® — - | = 1 = — — —
bit 15 bit 8
U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— IRQSEL<6:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared X = Bit is unknown

bit 15

FORCE: Force DMA Transfer bit™®

1 = Force a single DMA transfer (manual mode)
0 = Automatic DMA transfer initiation by DMA Request

bit 14-7
bit 6-0
0000000
0000001
0000010
0000101
0000110
0000111
0001000
0001010
0001011
0001100
0001101
0010101
0011110
0011111
0100001
0100010
0110111
0111100
1000110
1000111

Unimplemented: Read as ‘0’
IRQSEL<6 0>: DMA Peripheral IRQ Number Select bits

INTO — External Interrupt O
IC1 — Input Capture 1

OC1 — Output Compare 1

IC2 — Input Capture 2

OC2 — Output Compare 2
TMR2 — Timer 2

TMR3 - Timer 3

SPI1 — Transfer Done
UART1RX — UART1 Receiver
UARTITX — UART1 Transmitter
ADC1 — ADC1 convert done
ADC2 — ADC2 Convert Done
UART2RX — UART2 Receiver
UART2TX — UART2 Transmitter
SPI2 Transfer Done

ECANL1 — RX Data Ready
ECAN2 — RX Data Ready

DCI — CODEC Transfer Done
ECAN1 — TX Data Request
ECAN2 — TX Data Request

Note 1: The FORCE bit cannot be cleared by the user. The FORCE bhit is cleared by hardware when the forced
DMA transfer is complete.

DS70182A-page 22-6

© 2006 Microchip Technology Inc.

Section 22. Direct Memory Access (DMA)

Register 22-3: DMAXSTA: DMA Channel x DPSRAM Start Address Offset Register A

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
STA<15:8>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
STA<7:.0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bitis cleared X = Bit is unknown
bit 15-0 STA<15:0>: Primary DPSRAM Start Address Offset bits (source or destination)

Register 22-4: DMAXSTB: DMA Channel x DPSRAM Start Address Offset Register B

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
STB<15:8>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
STB<7:0>
bit 7 bit 0
Legend:
R = Readable hit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared X = Bit is unknown
bit 15-0 STB<15:0>: Secondary DPSRAM Start Address Offset bits (source or destination)

Register 22-5: DMAXPAD: DMA Channel x Peripheral Address Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PAD<15:8>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PAD<7:0>
bit 7 bit 0
Legend:
R = Readable hit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared X = Bit is unknown
bit 15-0 PAD<15:0>: Peripheral Address Register bits

© 2006 Microchip Technology Inc. DS70182A-page 22-7

dsPIC33F Family Reference Manual

Register 22-6: DMAXCNT: DMA Channel x Transfer Count Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— — — — — — CNT<9:8>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
CNT<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared X = Bit is unknown
bit 15-10 Reserved
bit 9-0 CNT<9:0>: DMA Transfer Count Register bits

Register 22-7: DSADR: Most Recent DMA DPSRAM Address Register

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
DSADR<15:8>
bit 15 bit 8
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
DSADR<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared X = Bit is unknown
bit 15-0 DSADR<15:0>: Most Recent DMA DPSRAM Address Accessed by DMA bits

DS70182A-page 22-8 © 2006 Microchip Technology Inc.

Section 22. Direct Memory Access (DMA)

Register 22-8:

DMACSO0: DMA Controller Status Register 0

R = Readable bit
-n = Value at POR

W = Writable bit
‘1’ = Bit is set

‘0’ = Bit is cleared

U = Unimplemented bit, read as ‘0’

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
PWCOL7 PWCOL6 PWCOL5 PWCOL4 PWCOL3 PWCOL2 PWCOL1 PWCOLO
bit 15 bit 8
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
XWCOL7 XWCOL6 XWCOL5 XWCOL4 XWCOL3 XWCOL2 XWCOL1 XWCOLO
bit 7 bit 0

Legend:

X = Bit is unknown

bit 15

bit 14

bit 13

bit 12

bit 11

bit 10

bit 9

bit 8

bit 7

bit 6

bit 5

bit 4

bit 3

PWCOL7: Channel 7 Peripheral Write Collision Flag bit
1 = Write collision detected

0 = No write collision detected

PWCOLG6: Channel 6 Peripheral Write Collision Flag bit
1 = Write collision detected

0 = No write collision detected

PWCOLD5: Channel 5 Peripheral Write Collision Flag bit
1 = Write collision detected

0 = No write collision detected

PWCOL4: Channel 4 Peripheral Write Collision Flag bit
1 = Write collision detected

0 = No write collision detected

PWCOLS3: Channel 3 Peripheral Write Collision Flag bit
1 = Write collision detected

0 = No write collision detected

PWCOL2: Channel 2 Peripheral Write Collision Flag bit
1 = Write collision detected

0 = No write collision detected

PWCOL1: Channel 1 Peripheral Write Collision Flag bit
1 = Write collision detected

0 = No write collision detected

PWCOLO: Channel 0 Peripheral Write Collision Flag bit
1 = Write collision detected

0 = No write collision detected

XWCOL7: Channel 7 DPSRAM Write Collision Flag bit
1 = Write collision detected

0 = No write collision detected

XWCOLG6: Channel 6 DPSRAM Write Collision Flag bit
1 = Write collision detected

0 = No write collision detected

XWCOLS5: Channel 5 DPSRAM Write Collision Flag bit
1 = Write collision detected

0 = No write collision detected

XWCOLA4: Channel 4 DPSRAM Write Collision Flag bit
1 = Write collision detected

0 = No write collision detected

XWCOL3: Channel 3 DPSRAM Write Collision Flag bit
1 = Write collision detected

0 = No write collision detected

© 2006 Microchip Technology Inc.

DS70182A-page 22-9

dsPIC33F Family Reference Manual

Register 22-8: DMACSO0: DMA Controller Status Register 0 (Continued)

bit 2 XWCOLZ2: Channel 2 DPSRAM Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 1 XWCOL1: Channel 1 DPSRAM Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 0 XWCOLO: Channel 0 DPSRAM Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

DS70182A-page 22-10 © 2006 Microchip Technology Inc.

Section 22. Direct Memory Access (DMA)

Register 22-9:

DMACS1: DMA Controller Status Register 1

R = Readable bit
-n = Value at POR

U-0 U-0 U-0 U-0 R-1 R-1 R-1 R-1
_ — — — LSTCH<3:0>
bit 15 bit 8
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
PPST7 PPST6 PPST5 PPST4 PPST3 PPST2 PPST1 PPSTO
bit 7 bit 0
Legend:

W = Writable bit
‘1’ = Bit is set

U = Unimplemented bit, read as ‘0’

‘0’ = Bit is cleared X = Bit is unknown

bit 15-12
bit 11-8

bit 7

bit 6

bit 5

bit 4

bit 3

bit 2

bit 1

bit 0

Note:

Unimplemented: Read as ‘0’

LSTCH<3:0>: Last DMAC Channel Active bits

1111 = No DMA transfer has occurred since system reset
1110-1000 = Reserved

0111 = Last data transfer was by Channel 7

0110 = Last data transfer was by Channel 6

0101 = Last data transfer was by Channel 5

0100 = Last data transfer was by Channel 4

0011 = Last data transfer was by Channel 3

0010 = Last data transfer was by Channel 2

0001 = Last data transfer was by Channel 1

0000 = Last data transfer was by Channel 0

Setto ‘1111’ at Reset. This field is accessible at any time but is primarily intended as a debugging aid.

PPST7: Channel 7 ‘Ping-Pong’ Mode Status Flag
1 = DMAT7STB register selected
0 = DMAT7STA register selected

PPST6: Channel 6 ‘Ping-Pong’ Mode Status Flag
1 = DMAGSTB register selected
0 = DMAGSTA register selected

PPST5: Channel 5 ‘Ping-Pong’ Mode Status Flag
1 = DMAS5STB register selected
0 = DMASSTA register selected

PPST4: Channel 4 ‘Ping-Pong’ Mode Status Flag
1 = DMA4STB register selected
0 = DMAA4STA register selected

PPST3: Channel 3 ‘Ping-Pong’ Mode Status Flag
1 = DMA3STB register selected
0 = DMASSTA register selected

PPST2: Channel 2 ‘Ping-Pong’ Mode Status Flag
1 = DMA2STB register selected
0 = DMA2STA register selected

PPST1: Channel 1 ‘Ping-Pong’ Mode Status Flag
1 = DMAILSTB register selected
0 = DMALSTA register selected

PPSTO: Channel 0 ‘Ping-Pong’ Mode Status Flag
1 = DMAOSTB register selected
0 = DMAOSTA register selected

This register is read-only.

© 2006 Microchip Technology Inc.

DS70182A-page 22-11

dsPIC33F Family Reference Manual

22.3

Figure 22-2:

DMA BLOCK DIAGRAM

Figure 22-2 is a block diagram that shows how the DMA integrates into the dsPIC33F internal
architecture. The CPU communicates with conventional SRAM across the X-bus. It also commu-
nicates with Port 1 of the Dual Port SRAM (DPSRAM) block across the same X-bus. The CPU
communicates with the peripherals across a separate Peripheral X-bus, which also resides within
X data space.

The DMA channels communicate with Port 2 of the DPSRAM and the DMA port of each of the
DMA-ready peripherals across a dedicated DMA bus.

DMA Controller Block Diagram

Peripheral Indirect Address

DMA Controllery

SRAM

PORT 1 PORT 2

DMA
Ready
Peripheral 1

IRQ to DMA
and Interrupt
Controller
Modules

T T
. : DMA :
y 1 Channels

DPSRAM g
[a)

Control

121314,5,6,7

0,1

A

YSRAM X Busy Y

A A A

DMA X-Bus Y

A

Y CPU Peripheral X-Bus

A

Y

CPU

CPU DMA
DMA
Ready

Peripheral 2

CPU DMA
DMA
Ready

Peripheral 3

Non-DMA
Peripheral

Note: CPU and DMA address buses are not shown for clarity.

'

IRQ to DMA
and Interrupt
Controller
Modules

IRQ to DMA
and Interrupt
Controller
Modules

Unlike other architectures, the dsPIC33F CPU is capable of a read and a write access within
each CPU bus cycle. Similarly, the DMA can complete the transfer of a byte or word every bus
cycle across its dedicated bus. This also guarantees that all DMA transfers are not interrupted.
That is, once the transfer has started, it will complete within the same cycle, irrespective of other
channel activity.

The user application can designate any DMA-ready peripheral interrupt to be a DMA request, the
term given to an IRQ when it is directed to the DMA. It is assumed, of course, that when a DMA
channel is configured to respond to a particular interrupt as a DMA request, the corresponding
CPU interrupt is disabled, otherwise a CPU interrupt will also be requested.

Each DMA channel can also be triggered manually through software. Setting the FORCE bit in
the DMAXCON register initiates a manual DMA request that is subject to the same arbitration as
all interrupt-based DMA requests (see Section 22.8 “DMA Channel Arbitration and Over-
runs”).

DS70182A-page 22-12

© 2006 Microchip Technology Inc.

Section 22. Direct Memory Access (DMA)

22.4 DMA DATA TRANSFER

Figure 22-3 illustrates a data transfer between a peripheral and Dual Port SRAM.

A. Inthis example, DMA Channel 5 is configured to operate with DMA-Ready Peripheral 1.

B. When data is ready to be transferred from the peripheral, a DMA Request is issued by the
peripheral. The DMA request is arbitrated with any other coincident requests. If this chan-
nel has the highest priority, the transfer is completed during the next cycle. Otherwise, the
DMA request remains pending until it becomes the highest priority.

C. The DMA Channel executes a data read from the designated peripheral address, which
is user-application defined within the active channel.

D. The DMA Channel writes the data to the designated DPSRAM address.

This example represents Register Indirect Mode, where the DPSRAM address is designated
within the DMA Channel via the DMA Status registers (DMAXSTA or DMAXSTB). In Peripheral
Indirect Mode, the DPSRAM address is derived from the peripheral, not the active channel. More
information on this topic is presented in Section 22.6.6 “Peripheral Indirect Addressing
Mode”.

The entire DMA read and write transfer operation is accomplished uninterrupted in a single
instruction cycle. During this entire process, DMA request remains latched in the DMA channel
until the data transfer is complete.

The DMA channel concurrently monitors the Transfer Counter register (DMAS5CNT). When the
transfer count reaches a user-application specified limit, data transfer is considered complete
and a CPU interrupt is asserted to alert the CPU to process the newly received data.

During the data transfer cycle, the DMA controller also continues to arbitrate pending or
subsequent DMA requests to maximize throughput.

© 2006 Microchip Technology Inc. DS70182A-page 22-13

dsPIC33F Family Reference Manual

Figure 22-3: DMA Data Transfer Example

° Peripheral 1 configured for DMA Channel 5
DMA Controller DMA
Lo o Ready
<05 1 | | |6 1 | X
SRAM DPSRAM SE| 1 oigl Peripheral 1
Q31 v 1 1 A=
PORT 1 PORT 2 Ol B CPU___ DMA
A A A A A A
YSRAM X Busy | / DMA Data Space Bus Y
CPU Y CPU Peripheral Data Space Bus Y
e Peripheral has data to transfer to DMA Channel 5
DMA Controller
<3 0 DATA
SRAM DPSRAM S °
DS g
PORT 1 PORT 2 CPU DMA
‘ DMA Request I
SRAM X Bus
CPU
e DMA Channel 5 reads data from Peripheral 1
DMA Controller
_ = DATA
SRAM DPSRAM ¥ o
[a <) s
PORT1 PORT 2 © e e
SRAM X Bus t Data Read
CPU
Peripheral Address
e DMA Channel 5 writes data to DPSRAM
DMA Controller DMA
<3 © Ready
SRAM DATA S£ > Peripheral 1
[ag9) =
PORT 1 PORT 2 © e CPU DMA
SRAM X Bus t Data Write|(DMA DS Bus) |
CPU
DPSRAM Address

DS70182A-page 22-14 © 2006 Microchip Technology Inc.

Section 22. Direct Memory Access (DMA)

22.5 DMA SET UP

For DMA data transfer to function properly, the DMA channels and peripherals must be
appropriately configured:

« DMA channels must be associated with peripherals (see Section 22.5.1)

 Peripherals must be properly configured (see Section 22.5.2)

+ DPSRAM data start addresses must be initialized (see Section 22.5.3)

« Initializing DMA transfer count must be initialized (see Section 22.5.4)

» Appropriate addressing and operating modes must be selected (see Section 22.6)

22.5.1 DMA Channel to Peripheral Association Set Up

The DMA Channel needs to know which peripheral target address to read from or write to, and
when to do so. This information is configured in the DMA Channel x Peripheral Address Register
(DMAXPAD) and DMA Channel x IRQ Select Register (DMAXREQ), respectively.

Table 22-1 shows which values should be written to these registers to associate a particular
peripheral with a given DMA channel.

Table 22-1: DMA Channel to Peripheral Associations

' o DMAXREQ Register DMAXPAD Register | DMAxPAD Register
Peripheral to DMA Association) . Values to Read From Values to Write to
IRQSEL<6:0> Bits . .
Peripheral Peripheral

INTO — External Interrupt 0 0000000 — —
IC1 — Input Capture 1 0000001 0x0140 (IC1BUF) —
IC2 — Input Capture 2 0000101 0x0144 (IC2BUF) —
OC1 - Output Compare 1 Data 0000010 — 0x0182 (OC1R)
OC1 - Output Compare 1 Secondary Data 0000010 — 0x0180 (OC1RS)
OC2 - Output Compare 2 Data 0000110 — 0x0188 (OC2R)
OC2 - Output Compare 2 Secondary Data 0000110 — 0x0186 (OC2RS)
TMR2 — Timer 2 0000111 — —
TMR3 — Timer 3 0001000 — —
SPI1 — Transfer Done 0001010 0x0248 (SPI1BUF) 0x0248 (SPI1BUF)
SPI2 — Transfer Done 0100001 0x0268 (SPI2BUF) 0x0268 (SPI2BUF)
UART1RX — UART1 Receiver 0001011 0x0226 (U1IRXREG) —
UARTITX — UART1 Transmitter 0001100 — 0x0224 (UITXREG)
UART2RX — UART2 Receiver 0011110 0x0236 (U2RXREG) —
UART2TX — UART2 Transmitter 0011111 — 0x0234 (U2TXREG)
ECAN1 — RX Data Ready 0100010 0x0440 (C1RXD) —
ECANL1 - TX Data Request 1000110 — 0x0442 (C1TXD)
ECAN2 — RX Data Ready 0110111 0x0540 (C2RXD) —
ECAN2 — TX Data Request 1000111 — 0x0542 (C2TXD)
DCI — CODEC Transfer Done 0111100 0x0290 (RXBUFO0) 0x0298 (TXBUFO0)
ADC1 — ADC1 Convert Done 0001101 0x0300 (ADC1BUFO0) —
ADC2 — ADC2 Convert Done 0010101 0x0340 (ADC2BUFO0) —

If two DMA channels select the same peripheral as the source of their DMA request, both chan-
nels receive the DMA request simultaneously. However, the highest priority channel executes its
transfer first, leaving the other channel pending. This situation is common where a single DMA
request is used to move data both from and to a peripheral (e.g. SPI). Two DMA channels are
used. One is allocated for peripheral reads, and the other is allocated for peripheral data writes.
Both use the same DMA request.

If the DMAXPAD register is initialized to a value not listed in the Table 1-1, DMA channel writes
to this peripheral address will be ignored. DMA channel reads from this address will result in a
read of ‘0.

© 2006 Microchip Technology Inc. DS70182A-page 22-15

dsPIC33F Family Reference Manual

22.5.2 Peripheral Configuration Set Up

The second step in the DMA set-up process is to properly configure DMA-ready peripherals for
DMA operation. Table 22-2 outlines the configuration requirements for DMA-ready peripherals.

Table 22-2: Configuration Considerations for DMA-Ready Peripherals

DMA-Ready Peripheral Configuration Considerations

ECAN ECAN buffers are allocated in the DMA RAM. The overall size of the CAN
buffer area and FIFO in the DMA RAM is specified by the user and must be
defined via the DMA Buffer Size bits DMABS<2:0> in the ECAN FIFO
Control (C1FCTRL) register. Sample code is shown in Example 22-8.

Data Converter Interface (DCI) The DCI must be configured to generate an interrupt for every buffered
data word by setting Buffer Length Control bits (BLEN<1:0>) to ‘00’ in the
DCI Control 2 (DCICONZ2) register. The same DCI interrupt must be used
as the request for two DMA channels to support Rx and Tx data transfers.
If the DCI module is operating as Master and only receiving data, the sec-
ond DMA channel must be used to send dummy transmit data. Sample
code is shown in Example 22-9.

10-bit/12-bit Analog-to-Digital When the ADC is used with the DMA in Peripheral Indirect mode, the
Converter (ADC) Increment Rate for the DMA Addresses bits (SMP1<3:0>) in the ADCx
Control 2 (ADCxCONZ2) register, and the number of DMA Buffer Locations
per Analog Input bits (DMABL<2:0>) in the ADCx Control 4 (ADCxCON4)
register must be set properly. Also, the DMA Buffer Build mode bit
(ADDMABM) in the ADCx Control 1 (ADxCON1) register must be properly
set for ADC address generation. See Section 22.6.6.1 “ADC Support for
DMA Address Generation” for detailed information. Sample code is
shown in Example 22-5 and Example 22-7.

Serial Peripheral Interface (SPI) If the SPI module is operating as master and only receiving data, the sec-
ond DMA channel must be allocated and used to send dummy transmit
data. Alternatively, a single DMA channel can be used in Null Data Write
mode. See Section 22.6.11 “Null Data Write Mode” for detailed
information. Sample code is shown in Example 22-10.

UART The UART must be configured to generate interrupts for every character
received or transmitted. For the UART receiver to generate an Rx interrupt
for each character received, Receive Interrupt Mode Selection bits
(URXISEL<1:0>) must be set to ‘00’ or ‘01’ in the Status and Control
register (UXSTA).

For the UART transmitter to generate a Tx interrupt for each character
transmitted, Transmission Interrupt Mode Selection bits UTXISELO and
UTXISEL1 must be set to ‘0’ in the Status and Control (UXSTA) register.
Sample code is shown in Example 22-9.

Input Capture The Input Capture module must be configured to generate an interrupt for
each capture event by setting Number of Captures per Interrupt bits
(ICI<1:0>) to ‘00’ in Input Capture Control (ICXxCON) register. Sample code
is shown in Example 22-4.

Output Compare The Output Compare module requires no special configuration to work with
DMA. Typically, however, the Timer is used to provide the DMA request,
and it needs to be properly configured. Sample code is shown in

Example 22-3.

External Interrupt and Timers Only External Interrupt 0 and Timers 2 and 3 can be selected for DMA
request. Although these peripherals do not support DMA transfer them-
selves, they can be used to trigger DMA transfers for other DMA-supported
peripherals. For example, Timer 2 can trigger DMA transactions for the
Output Compare peripheral in PWM mode. Sample code is shown in
Example 22-3.

DS70182A-page 22-16 © 2006 Microchip Technology Inc.

Section 22. Direct Memory Access (DMA)

An error condition within a DMA-enabled peripheral generally sets a status flag and generates
an interrupt (if interrupts are enabled by the user application). When a peripheral is serviced by
the CPU, the data interrupt handler is required to check for error flags and, if necessary, take
appropriate action. However, when a peripheral is serviced by the DMA channel, the DMA can
only respond to data transfer requests and it is not aware of any subsequent error conditions. All
error conditions in DMA compatible peripherals, therefore, must have an associated interrupt
enabled and be serviced by the user-defined Interrupt Service Routine (ISR), if such an interrupt
is present in the peripheral.

22.5.3 Memory Address Initialization

The third DMA setup requirement is to allocate memory buffers within a specific memory area for
DMA access. The location and size of this memory area depends on the dsPIC33F device (refer
to the device data sheet for specific information). Figure 22-4 shows a DMA memory area of 2
KB for dsPIC33F devices with 30 Kbytes of RAM.

Figure 22-4: Data Memory Map for dsPIC33 Family Devices with 30 Kbytes RAM

MSB LSB
Address 16 bits Address
- P
MSB LSB
— 0x0001 f 0x0000
2Kbyte | SFR Space
SFR Space | OxO7FF | OXQ7FE 8 Kbyte
~ 0x0801 ' 0x0800 Near
| Data
| Space
X Data RAM (X)
_____ L _ 1
I
30 Kbyte |
SRAM Space Ox47FF O0x47FE
0x4801 | 0x4800
|
Y Data RAM (Y)
OX77FF | Ox77FE
0x7800 1 0x7800
 Ox7FFF DMA RAM OX7FFE
0x8001 i 0x8000
I
I
I
I
Optionally X Data
Mapped Unimplemented (X)
into Program
Memory I
I
I
I
I
OXFFFF : OXFFFE

To operate properly, the DMA needs to know the DPSRAM address to read from or write to as
an offset from the beginning of the DMA memory. This information is configured in the DMA
Channel x DPSRAM Start Address Offset A (DMAXSTA) register and DMA Channel x DPSRAM
Start Address Offset B (DMAXSTB) register.

© 2006 Microchip Technology Inc. DS70182A-page 22-17

dsPIC33F Family Reference Manual

Figure 22-5 is an example that shows how the primary and secondary DMA Channel 4 buffers
are set up on the dsPIC33FJ256GP710 device at address 0x7800 and 0x7810, respectively.

Figure 22-5: Primary and Secondary Buffer Allocation in DMA Memory

o~
& DMA BASE (defined in p33FJ256GP710.91d)
r - 0x7800
Primary W
Buffer & DMA BASE+DMA4STA (0x7800 + 0x0000 = 0x7800)
2 Secondary 0x7810
& Buffer & DMA BASE+DMA4STA (0x7800 + 0x0010 = 0x7810)
< | F — — — —
=
a
Code Example:
DMA4STA = 0x0000;
~ DMA4STB = 0x0010;
T~

In this example, you must be familiar with the memory layout for the device in order to hard code
this information into the application. Also, you must use pointer arithmetic to access these buffers
after the DMA transfer is complete. As a result, this implementation is difficult to port from one
processor to another.

The MPLAB® C30 compiler simplifies DMA buffer initialization and access by providing built-in C
language primitives for that purpose. For example, the code in Figure 22-6 allocates two buffers
in the DMA memory and initializes the DMA channel to point to them.

Figure 22-6: Primary and Secondary DMA Buffer Allocation with MPLAB® IDE

- & DMA BASE
= | L - - —
2 OX7FEO
< Buffer B
> (Secondary)
o L] OX7FEE
Buffer A Ox7FFO
(Primary)
— Ox7FFE
e, 0x8000
Code Example:
unsigned int BufferA[8] _ attribute ((space(dma)));
unsigned int BufferB[8] _ attribute ((space(dma)));
DMAOSTA = _ builtin_ dmaoffset (Buffera);
DMAOSTB = _ builtin_ dmaoffset (BufferB) ;

Note: MPLAB LINK3O0 linker allocates the primary and secondary buffers in reverse order
starting at the bottom of the DMA memory space.

DS70182A-page 22-18 © 2006 Microchip Technology Inc.

Section 22. Direct Memory Access (DMA)

If the DMAXSTA (and/or DMAXSTB) register is initialized to a value that will result in the DMA
channel reading or writing RAM addresses outside of DMA RAM space, DMA channel writes to
this memory address are ignored. DMA channel reads from this memory address result in a read
of ‘0’.

22.5.4 DMA Transfer Count Set Up

In the fourth step of the DMA set-up process, each DMA channel must be programmed to service
N + 1 number of requests before the data block transfer is considered complete. The value ‘N’ is
specified by programming DMA Channel x Transfer Count (DMAXCNT) register. That is, a
DMAXCNT value of ‘0’ will transfer one element.

The value of the DMAXCNT register is independent of the transfer data size (byte or word), which 22
is specified in the SIZE bit in the DMAXCON register.

If the DMAXCNT register is initialized to a value that will result in the DMA channel reading or
writing RAM addresses outside of DMA RAM space, DMA channel writes to this memory address
are ignored. DMA channel reads from this memory address result in a read of ‘0’.

2255 Operating Mode Set Up

The fifth and final DMA set-up step is to specify the mode of operation for each DMA channel by
configuring the DMA Channel x Control (DMAXCON) register. See Section 22.6 “DMA Operat-
ing Modes” for specific setup information.

© 2006 Microchip Technology Inc. DS70182A-page 22-19

dsPIC33F Family Reference Manual

22.6 DMA OPERATING MODES

The DMA channel supports these modes of operation:

« Word or Byte data transfer

« Transfer direction (peripheral to DPSRAM, or DPSRAM to peripheral)

« Full or half transfer interrupts to CPU

» Post-Increment or static DPSRAM addressing

» Peripheral Indirect Addressing

* One-Shot or continuous block transfers

« Auto-switch between two start addresses offsets (DMAXSTA or DMAXSTB) after each
transfer complete (Ping-Pong mode)

* Null Data Write mode

Additionally, DMA supports a manual mode, which forces a single DMA transfer.

22.6.1 Word or Byte Data Transfer

Each DMA channel can be configured to transfer data by word or byte. Word data can only be
moved to and from aligned (even) addresses. Byte data, on the other hand, can be moved to or
from any (legal) address.

If the SIZE bit (DMAXCON<14>) is clear, word-sized data is transferred. If Register Indirect With
Post-Increment Addressing mode is enabled, the address is post-incremented by 2 after every
word transfer (see Section 22.6.5 “Register Indirect Without Post-increment Addressing
Mode”).

If the SIZE bit is set, byte-sized data is transferred. If Register Indirect With Post-Increment
Addressing mode is enabled, the address is incremented by 1 after every byte transfer.

22.6.2 Transfer Direction

Each DMA channel can be configured to transfer data from a peripheral to the DPSRAM or from
the DPSRAM to a peripheral.

If the Transfer Direction (DIR) bit in DMAXCON is clear, data is read from the peripheral (using
the Peripheral Address as provided by DMAXPAD) and the destination write is directed to the
DPSRAM DMA memory address offset (using DMAXSTA or DMAXSTB).

If the DIR bit is set, data is read from the DPSRAM DMA memory address offset (using
DMAXSTA or DMAXSTB) and the destination write is directed to the peripheral (using the
peripheral address, as provided by DMAXPAD).

Once configured, each channel is a unidirectional data conduit. That is, should a peripheral
require read and write data using the DMA module, two channels must be assigned — one for
read and one for write.

22.6.3 Full or Half Block Transfer Interrupts

Each DMA channel provides an interrupt to the interrupt controller when block data transfer is
complete or half complete. This mode is designated by clearing or setting the HALF bit in the
DMA Channel x Control (DMAXCON) register:

HALF = 0 (initiate interrupt when all of the data has been moved)
HALF = 1 (initiate interrupt when half of the data has been moved)

When DMA Continuous mode is used, the CPU must be able to process the incoming or outgoing
data at least as fast as the DMA is moving it. The half transfer interrupt helps mitigate this prob-
lem by generating an interrupt when only half of the data has been transferred. For example, if
an ADC is being continuously read by the DMA controller, the half transfer interrupt allows the
CPU to process the buffer before it becomes completely full. Provided it never gets ahead of the
DMA writes, this scheme can be used to relax the CPU response time requirements. Figure 22-7
illustrates this process.

DS70182A-page 22-20

© 2006 Microchip Technology Inc.

Section 22. Direct Memory Access (DMA)

Figure 22-7: Half Block Transfer Mode

T~

& DMA BASE

& DMA BASE + DMAxSTA Transfer #1

C: Transfer #2 .

g Transfer #3 £ <@—p COUNT = DMszﬂ
]) g
[o
[O
] 1

<: Transfer #n

COUNT = 0 Half Transfer IRQ
to CPU

T~

In all modes, when the HALF bit is set, the DMA issues an interrupt only when the first half of
Buffer A and/or B is transferred. No interrupt is issued when Buffer A and/or B is completely trans-
ferred. In other words, interrupts are only issued when DMA completes (DMAXCNT + 1)/2 trans-
fers. If (DMAXCNT + 1) is equal to an odd number, interrupts are issued after (DMAXCNT + 2)/2
transfers.

For example, if DMA3 is configured for One-Shot, Ping-Pong buffers (MODE<1:0> = 11), and
DMA3CNT = 7, two DMAS3 interrupts are issued — one after transferring four elements from Buffer
A, and one after transferring four elements from Buffer B. (For more information see Section
22.6.7 “One-Shot Mode” and Section 22.6.9 “Ping-Pong Mode”.)

Even though the DMA channel issues an interrupt on either half- or full-block transfers, the user
application can “trick” the DMA channel into issuing an interrupt on half- and full-block transfers
by toggling the value of the HALF bit during each DMA interrupt. For example, if the DMA channel
is set up with the HALF bit set to ‘1’, an interrupt is issued after each half block transfer. If the
user application resets the HALF bit to ‘0’ while the interrupt is being serviced, the DMA issues
another interrupt when the full block transfer is complete.

To enable these interrupts, the corresponding DMA Interrupt Enable bit (DMAXIE) must be set in
the Interrupt Enable Control (IECx) register in the interrupt controller module, as shown in

Table 22-3.
Table 22-3: Interrupt Controller Settings for Enabling/Disabling DMA Interrupts
CE;\:I]?GI Inte’\rlraun?; gggté?glﬁzaigelfter Correspom’j\ll;r?qgeglster Bit C Structure Access Code
0 IEC0<4> DMAOIE IECObits.DMAOIE
1 IEC0<14> DMALIE IEClbits.DMA1IE
2 IEC1<8> DMAZ2IE IEClbits.DMA2IE
3 IEC2<4> DMASIE IEC2bits.DMA3IE
4 IEC2<14> DMAJ4IE IEC2bits.DMA4IE
5 IEC3<13> DMAGSIE IEC3bits.DMASIE
6 IEC4<4> DMAGIE IEC4bits.DMAGIE
7 IEC4<5> DAM7IE IEC4bits.DMA7IE

Example 22-1shows how DMA channel 0O interrupt is enabled:

Example 22-1: Code to Enable DMA Channel 0O Interrupt
IECObits.DMAOIE = 1;

© 2006 Microchip Technology Inc. DS70182A-page 22-21

dsPIC33F Family Reference Manual

Each DMA channel transfer interrupt sets a corresponding status flag in the interrupt controller,
which triggers the interrupt service routine (ISR). The user application must then clear that status
flag to prevent the transfer-complete ISR from re-executing.

Table 22-4 shows the Interrupt Flag Status (IFSx) register and corresponding bit name (DMAXIF)
in the interrupt controller module. It also shows the C Structure Access Code that clears the flag.

Table 22-4: Interrupt Controller Settings for Clearing DMA Interrupt Status Flags

cr?::ﬁd Intel\rlgluni)(te gggtlrg(i)tllﬁrlﬁ]ig;ter Correspon(’j\llgg]seglster Bit C Structure Access Code
0 IFS0<4> DMAOIF IFSObits.DMAOIE
1 IFS0<14> DMALIF IFSObits.DMALIE
2 IFS1<8> DMA2IF IFSlbits.DMA2IE
3 IFS2<4> DMASZIF IFS2bits.DMA3IE
4 IFS2<14> DMAA4IF IFS2bits.DMA4IE
5 IFS3<13> DMASIF IFS3bits.DMASIE
6 IFS4<4> DMAGIF IFS4bits.DMAGIE
7 IFS4<5> DMAYIF IFS4bits.DMA7IE

As an example, assume DMA channel 0O interrupt is enabled, DMA channel 0 transfer has fin-
ished and the associated interrupt has been issued to the Interrupt controller. The following code
must be present in the DMA channel 0 ISR to clear the status flag and prevent a pending
interrupt.

Example 22-2: Code to Clear DMA Channel O Interrupt

void _ attribute ((__interrupt)) _DMAOInterrupt (void)

{

IFSObits.DMAOIF = 0;

}

DS70182A-page 22-22

© 2006 Microchip Technology Inc.

Section 22. Direct Memory Access (DMA)

22.6.4 Register Indirect With Post-Increment Addressing Mode

Register Indirect With Post-Increment Addressing is used to move blocks of data by incrementing
the DPSRAM address after each transfer.

The DMA channel defaults to this mode after the DMA controller is reset. This mode is selected
by programming Addressing Mode Select bits AMODE<1:0> to ‘00’ in the DMA Channel Control
(DMAXCON) register. In this mode, the DPSRAM Start Address Offset (DMAXSTA or DMAXSTB)
register provides the starting address of DPSRAM buffer.

The user application determines the latest DPSRAM transfer address offset by reading the
DPSRAM Start Address Offset register. However, the contents of this register are not modified
by the DMA controller.

Figure 22-8 illustrates data transfer in this mode.

Figure 22-8: Data Transfer With Register Indirect With Post-Increment Addressing

o DMA Channel 3, First Transfer
o~
& DMA BASE
Peripheral DMA Transt,
1 <@ Channel 3 w
Data 1 & DMA BASE + DMA3STA + 0
Data 2 & DMA BASE + DMA3STA + 1
Data 3 & DMA BASE + DMA3STA + 2
o~
e DMA Channel 3, Second Transfer
o~
& DMA BASE
Peripheral DMA
1 1 annel 3 T’ansf
er o Data 1 & DMA_BASE + DMA3STA + 0
¥ Data 2 & DMA BASE + DMA3STA + 1
Data 3 & DMA BASE + DMA3STA + 4
r ~—__/
e DMA Channel 3, Third Transfer
o~
& DMA BASE
Peripheral DMA
1 == Channel 3 7
’ao%r Data 1 & DMA_BASE + DMA3STA + 0
3 Data 2 & DMA BASE + DMA3STA + 1
y Data3 & DMA BASE + DMA3STA + 2
o~

© 2006 Microchip Technology Inc. DS70182A-page 22-23

dsPIC33F Family Reference Manual

Example 22-3: Code for Output Compare and DMA with Register Indirect
Post-Increment Mode

Set up Output Compare 1 module for PWM mode:

OC1CON = 0; // Reset OC module

OC1lR = 0x60; // Initialize PWM Duty Cycle

OC1RS = 0x60; // Initialize PWM Duty Cycle Buffer
OC1CONbits.OCM = 6; // Configure OC for the PWM mode

Set up DMA Channel 3 for in Post Increment mode with Timer 2 Request Source:

unsigned int BufferA[32] _ attribute_ ((space(dma))) ;
/* Insert code here to initialize BufferA with desired Duty Cycle values */

DMA3CONbits.AMODE = 0; // Configure DMA for Register indirect mode
// with post-increment

DMA3CONbits.MODE = 0; // Configure DMA for Continuous mode

DMA3CONbits.DIR = 1; // RAM-to-Peripheral data transfers

DMA3PAD = (volatile unsigned int)&OC1RS;// Point DMA to OC1RS

DMA3CNT = 31; // 32 DMA request

DMA3REQ = 7; // Select Timer2 as DMA Request source

DMA3STA = _ builtin_ dmaoffset (Buffera) ;

IFS2bits.DMA3IF = 0; // Clear the DMA interrupt flag bit

IEC2bits.DMA3IE = 1; // Set the DMA interrupt enable bit

DMA3CONbits.CHEN = 1; // Enable DMA

Setup Timer 2 for Output Compare PWM mode:

PR2 = OxBF; // Initialize PWM period
T2CONbits.TON = 1; // Start timer 2

Setup DMA Channel 3 Interrupt handler:

void __ attribute ((__interrupt)) _DMA3Interrupt (void)

{

/* Update BufferA with new Duty Cycle values if desired here*/

IFS2bits.DMA3IF = 0; //Clear the DMA3 Interrupt Flag

22.6.5 Register Indirect Without Post-increment Addressing Mode

Register Indirect Without Post-Increment Addressing is used to move blocks of data without
incrementing the starting address of the data buffer after each transfer. In this mode, the
DPSRAM Start Address Offset (DMAXSTA or DMAXSTB) register provides offset to the starting
address of the DPSRAM buffer. When the DMA data transfer takes place, the DPSRAM Address
does not increment to the next location. So, the next DMA data transfer is initiated to the same
DPSRAM address.

This mode is selected by programming Addressing Mode Select bits AMODE<1:0>to ‘01’ in the
DMA Channel Control (DMAXCON) register.

If the addressing mode is changed to Register Indirect Without Post-Increment Addressing while
the DMA channel is active (i.e., after some DMA transfers have occurred), the DMA DPSRAM
address will point to the current DPSRAM buffer location (i.e., not the contents of the DMAXSTA
or DMAXSTB, which by then could differ from the current DPSRAM buffer location). Figure 22-9
illustrates data transfer from the peripheral to the DMA DPSRAM, contrasting the use with and
without post-increment addressing.

DS70182A-page 22-24

© 2006 Microchip Technology Inc.

Section 22. Direct Memory Access (DMA)

Figure 22-9: Contrast of Data Transfer With and Without Post-Increment Addressing

o DMA Channel 0, First Transfer (with Post-Increment Addressing)

o~
& DMA BASE
Peripheral DMA Transfer 1
1 | Channel 0]
Data 0 & DMA BASE + DMA3STA + 0
& DMA BASE + DMA3STA + 1
& DMA BASE + DMA3STA + 2
& DMA BASE + DMA3STA + 3
o~

e DMA Channel 0, Second Transfer (with Post-Increment Addressing)
o~

& DMA BASE

Peripheral DMA Tra
1 - | Channel O] "sfe,Q
Data 0 & DMA BASE + DMA3STA +
Data 1 & DMA BASE + DMA3STA +

& DMA BASE + DMA3STA +

w N B O

& DMA BASE + DMA3STA +

o~

a DMA Channel 0, Third Transfer (mode changed to “Without Post-Increment” Addressing)

o~
& DMA_ BASE
Peripheral DMA »
| | Channel 0 &
f@’e Data 0 & DMA BASE + DMA3STA + 0
Data 1 & DMA BASE + DMA3STA + 1
Data 2 & DMA BASE + DMA3STA + 2
& DMA BASE + DMA3STA + 3
T~
e DMA Channel 0, Fourth Transfer (without Post-Increment Addressing)
o~
& DMA BASE
Peripheral DMA P
1 s> Channel 0 U2
Sr, Data 0 & DMA BASE + DMA3STA + 0
Data 1 & DMA BASE + DMA3STA + 1
Data 3 & DMA BASE + DMA3STA + 2
& DMA BASE + DMA3STA + 3
T~

© 2006 Microchip Technology Inc. DS70182A-page 22-25

dsPIC33F Family Reference Manual

Example 22-4: Code for Input Capture and DMA with Register Indirect Without
Post-Increment Addressing

Set up Input Capture 1 module for DMA operation:

IC1CON = 0; // Reset IC module

IC1CONbits.ICTMR = 1; // Select Timer2 contents for capture
IC1CONbits.ICM = 2; // Capture every falling edge

IC1CONbits.ICI = 0; // Generate DMA request on every capture event

Set up Timer 2 to be used by Input Capture module:

PR2 = OxBF; // Initialize count value
T2CONbits.TON = 1; // Start timer

Set up DMA Channel 0 for no Post Increment mode:

unsigned int CaptureValue _ attribute_ ((space(dma))) ;
DMAOCONbits.AMODE = 1; // Configure DMA for Register indirect
// without post-increment
DMAOCONbits.MODE = 0; // Configure DMA for Continuous mode
DMAOPAD = (volatile unsigned int)&IC1BUF;// Point DMA to IC1BUF
DMAOCNT = 0; // Interrupt after each transfer
DMAOREQ = 1; // Select Input Capture module as DMA Request source
DMA3STA = _ builtin dmaoffset (&CapturevValue) ;

IFSObits.DMAOIF
IECObits.DMAOIE

1]
o

// Clear the DMA interrupt flag bit
// Set the DMA interrupt enable bit

1]
funy

DMAOCONbits.CHEN = 1; // Enable DMA

Set up DMA Channel 0 Interrupt Handler:

void _ attribute ((__interrupt)) _DMA3Interrupt (void)

{

/* Process CaptureValue variable herex/

IFSObits.DMAOIF = 0; //Clear the DMA3 Interrupt Flag

22.6.6 Peripheral Indirect Addressing Mode

Peripheral Indirect Addressing mode is a special addressing mode where the peripheral, not the
DMA channel, provides the variable part of the DPSRAM address. That is, the peripheral gener-
ates the Least Significant bits (LSbs) of the DPSRAM address while the DMA channel provides
the fixed buffer base address. However, the DMA channel continues to coordinate the actual data
transfer, keep track of the transfer count and generate the corresponding CPU interrupts.

Peripheral Indirect Addressing mode can operate bidirectionally, depending upon the peripheral
need, so the DMA channel still needs to be configured appropriately to support target peripheral
reads or writes.

Peripheral Indirect Addressing mode is selected by programming Addressing Mode Select bits
AMODE<1:0> to ‘1x’ in the DMA Channel Control (DMAXCON) register.

The DMA capability in Peripheral Indirect Addressing mode can be specifically tailored to meet
the needs of each peripheral that supports it. The peripheral defines the address sequence for
accessing the data within the DPSRAM, allowing it, for example, to sort incoming ADC data into
multiple buffers, relieving the CPU of the task.

If Peripheral Indirect Addressing mode is supported by a peripheral, a DMA request interrupt
from that peripheral is accompanied by an address that is presented to the DMA channel. If the
DMA channel that responds to the request is also enabled for Peripheral Indirect Addressing, it
will logically OR the buffer base address with the zero extended incoming Peripheral Indirect
Address to create the actual DPSRAM offset address, as shown in Figure 22-10.

DS70182A-page 22-26

© 2006 Microchip Technology Inc.

Section 22. Direct Memory Access (DMA)

Figure 22-10: Address Offset Generation in Peripheral Indirect Addressing Mode

Peripheral Indirect Address
(from peripheral)

\i %

Zero Extend

0....0 PIA Address
(S)
]::E>—> DPSRAM Address Offset
4 A
Offset Address 0....0

L Application Responsibility:

Offset Address Setto ‘0’

(from DMAXSTA or DMAXSTB)

The peripheral determines how many Least Significant address bits it will control. The application
program must select a base address for the buffer in DPSRAM and ensure that the correspond-
ing number of Least Significant bits of that address offset are zero. As with other modes, when
the DPSRAM Start Address Offset register is read, it returns a value of the latest DPSRAM trans-
fer address offset, which includes the address offset calculation described above. If the DMA
channel is not configured for Peripheral Indirect Addressing, the incoming address is ignored and
the data transfer occurs as normal.

Peripheral Indirect Addressing mode is compatible with all other operating modes and is currently
supported by the ADC and ECAN modules.

22.6.6.1 ADC SUPPORT FOR DMA ADDRESS GENERATION

In Peripheral Indirect Addressing mode, the peripheral defines the addressing sequence, which
is more tailored to peripheral functionality. For example, if the ADC is configured to continuously
convert inputs 0 through 3 in sequence (0, 1, 2, 3, 0, 1, etc.), and it is associated with a DMA
channel that is configured for Register Indirect Addressing with Post-Increment, DMA transfer
moves this data into a sequential buffer as shown in Figure 22-11. Example 22-5 illustrates the
code for this configuration.

Figure 22-11: Data Transfer from ADC with Register Indirect Addressing

N

& DMA BASE

Data Transfer 1
————— | & DMA BASE+DMAS5STA+PIA (for Transfer 1
cho > DMA [Trangers ChO Sample 1 | & DMA + +PIA (|)
Ch1 ADC Channel ‘Tr‘ins\fer_g‘ Ch1 Sample 1
chg 5 T Ch2 Sample 1
ch3 > Ch3 Sample 1
Lhag | N
DMA \ Ch0 Sample 2
Request \\ : Ch1 Sample 2
vl Ch2 Sample 2
\\5}% Ch3 Sample 2

\‘%i Cho Sample 3
% | Chl Sample 3

A 4| _Ch2 Sample 3

N ch3 Sample 3

b~

© 2006 Microchip Technology Inc. DS70182A-page 22-27

dsPIC33F Family Reference Manual

Example 22-5: Code for Data Transfer from ADC with Register Indirect Addressing

Set up ADCL1 for channel 0-3 sampling:

AD1CON1lbits.FORM = 3; // Data Output Format: Signed Fraction (Q15 format)
AD1CONlbits.SSRC = 2; // Sample Clock Source: GP Timer starts conversion
AD1CON1lbits.ASAM = 1; // Sampling begins immediately after conversion
AD1CON1lbits.AD12B = 0; // 10-bit ADC operation

AD1CON1lbits.SIMSAM = 0; // Samples individual channels sequentially
AD1CON2bits.BUFM = 0;

AD1CON2bits.CSCNA = 1; // Scan CHO+ Input Selections during Sample A bit
AD1CON2bits.CHPS = 0; // Converts CHO

AD1CON3bits.ADRC = 0; // ADC Clock is derived from Systems Clock
AD1CON3bits.ADCS = 63; // ADC Conversion Clock

//AD1CHSO: A/D Input Select Register
AD1CHSObits.CHOSA = 0; // MUXA +ve input selection (AINO) for CHO
AD1CHSObits.CHONA = 0; // MUXA -ve input selection (Vref-) for CHO

//AD1CHS123: A/D Input Select Register
AD1CHS123bits.CH123SA = 0; // MUXA +ve input selection (AINO) for CH1
AD1CHS123bits.CH123NA = 0; // MUXA -ve input selection (Vref-) for CH1

//AD1CSSH/AD1CSSL: A/D Input Scan Selection Register
ADICSSH = 0x0000;
AD1CSSL = 0x000F; // Scan AINO, AIN1, AIN2, AIN3 inputs

Set up Timer3 to trigger ADC1 conversions:

TMR3 = 0x0000;

PR3 = 4999; // Trigger ADC1l every 1l25usec @ 40 MIPS
IFSObits.T3IF = 0; // Clear Timer 3 interrupt
IECObits.T3IE = 0; // Disable Timer 3 interrupt
T3CONbits.TON = 1; //Start Timer 3

Set up DMA Channel 5 for Register Indirect with Post-Increment Addressing:

unsigned int BufferA([32] _ attribute_ ((space(dma))) ;

unsigned int BufferB[32] _ attribute_ ((space(dma))) ;

DMA5CONbits.AMODE = O0; // Configure DMA for Register indirect mode
// with post-increment

DMA5CONbits.MODE = 2; // Configure DMA for Continuous Ping-Pong mode

DMASPAD = (volatile unsigned int)&ADC1BUFO0;// Point DMA to ADC1BUFO

DMASCNT = 31; // 32 DMA request

DMASREQ = 13; // Select ADC1l as DMA Request source

DMA5STA = _ builtin dmaoffset (Buffera);

DMA5STB = _ builtin dmaoffset (BufferB) ;

IFS3bits.DMASIF = 0; //Clear the DMA interrupt flag bit

IEC3bits.DMASIE = 1; //Set the DMA interrupt enable bit

DMAS5CONbits.CHEN=1; // Enable DMA

DS70182A-page 22-28 © 2006 Microchip Technology Inc.

Section 22. Direct Memory Access (DMA)

Example 22-5: Code for Data Transfer from ADC with Register Indirect Addressing
(Continued)

Setup DMA channel 5 Interrupt handler:

unsigned int DmaBuffer = 0;

void _ attribute ((__interrupt)) _DMASInterrupt (void)

{

// Switch between Primary and Secondary Ping-Pong buffers
if (DmaBuffer == 0)

{
}
else

{
}

ProcessADCSamples (Bufferd) ;

ProcessADCSamples (BufferB) ;

A

DmaBuffer "= 1;

IFS3bits.DMASIF = 0; //Clear the DMA5 Interrupt Flag
}
Setup ADC1 for DMA operation:

AD1CONlbits.ADDMABM

1]
o
~
~

Don't Care: ADC address generation is
// ignored by DMA

AD1CON2bits.SMPI = 3; // Don't Care

AD1CON4bits.DMABL = 3; // Don't Care

IFSObits.AD1IF = 0; // Clear the A/D interrupt flag bit
IECObits.AD1IE = 0; // Do Not Enable A/D interrupt
AD1CON1bits.ADON = 1; // Turn on the A/D converter

A typical algorithm would operate on a per ADC data channel basis, requiring it to either sort
transferred data or index it by jumping unwanted data. Either of these methods requires more
code and consumes more execution time. ADC Peripheral Indirect Addressing mode defines a
special addressing technique where data for each ADC channel is placed into its own buffer. For
the example above, if the DMA channel is configured for Peripheral Indirect Addressing mode,
DMA transfer moves ADC data into separate buffers, as shown in Figure 22-12.

Figure 22-12: Data Transfer from ADC with Peripheral Indirect Addressing

Peripheral Indirect Address (PIA)

—
& DMA BASE
\i
Transfer 1
cho Data= ova | 7'r5ns_fer_5-> ChO Sample 1 | &_DMA_BASE+DMA5STA+PIA (for Transfer 1)
Ch1 Channel |. 5 ~ ~ = ChO Sample 2
Chi | Apc e
Ch ~S& ChO Sample 3
—?b \ A0 /'9
ch3 > AR :
DMA \\\ . A chlSample 1 | & DMA_BASE+DMASSTA+PIA (for Transfer 2)
Request \\ A Ch1 Sample 2
a
\ EL\\ Ch1l Sample 3
VNS :
P
\A \ Ch2 Sample 1
3 Ch2 Sample 2
N
ve\ | Ch2 Sample 3
\ .
\\\;, .
\ Ch3 Sample 1
V| Ch3 Sample 2
‘ Ch3 Sample 3 | &_DMA BASE+DMASSTA+PIA (for Transfer 12)
—

© 2006 Microchip Technology Inc. DS70182A-page 22-29

dsPIC33F Family Reference Manual

To enable this kind of ADC addressing, the DMA Buffer Build Mode (ADDMABM) bit in the ADCx
Control 1 (ADxCONL1) register must be cleared. If this bit is set, the ADC generates addresses in
the order of conversion (same as DMA Register Indirect Addressing with Post-Increment mode).

As mentioned earlier, you must pay special attention to the number of Least Significant bits that
are reserved for the peripheral when the DPSRAM Start Address Offset registers (DMAXSTA and
DMAXSTB) are initialized by the user application. For the ADC, the number of bits will depend on
the size and number of the ADC bulffers.

The number of ADC buffers is initialized with Increment Rate for DMA Addresses bits SMPI<3:0>
in the ADCx Control 2 (ADxCONZ2) register. The size of each ADC buffer is initialized with Num-
ber of DMA Buffer Locations per Analog Input bits DMABL<2:0> in the ADCx Control 4
(ADCxCON4) register. For example, if SMPI<3:0> is initialized to 3 and DMABL<2:0> is initial-
ized to 3, there will be 4 ADC buffers (SMPI<3:0> + 1), each with 8 words (2 PMABL<2:0>) for the
total of 32 words (64 bytes). This means that the address offset that is written into the DMAXSTA
and DMAXSTB must have 6 (26 bits — g4 bytes) Least Significant bits set to zero.

If the MPLAB® C30 compiler is used to initialized the DMAXSTA and DMAXSTAB registers,
proper data alignment must be specified via data attributes. For the above conditions, the code
shown in Example 22-6 will properly initialize DMAXSTA and DMAXSTB registers.

Example 22-6: DMA buffer alignment with MPLAB® C30

int BufferA[4][8] _ attribute ((space(dma),aligned(64))) ;
int BufferB[4] [8] _ attribute ((space(dma),aligned(64)));

DMAOSTA = _ builtin_dmaoffset (&BufferA([0] [0]) ;
DMAOSTB = _ builtin dmaoffset (&BufferB[0] [0]) ;

Example 22-7 illustrates the code for this configuration.

DS70182A-page 22-30

© 2006 Microchip Technology Inc.

Section 22. Direct Memory Access (DMA)

Example 22-7: Code for ADC and DMA with Peripheral Indirect Addressing
Set up ADCL1 for channel 0-3 sampling:

AD1CONlbits.FORM = 3; // Data Output Format: Signed Fraction (Q15 format)
AD1CONlbits.SSRC = 2; // Sample Clock Source: GP Timer starts conversion
AD1CON1lbits.ASAM = 1; // Sampling begins immediately after conversion
AD1CONlbits.AD12B = 0; // 10-bit ADC operation

AD1CONlbits.SIMSAM = 0; // Samples multiple channels sequentially
AD1CON2bits.BUFM = 0O;

AD1CON2bits.CSCNA = 1; // Scan CHO+ Input Selections during Sample A
bit

AD1CON2bits.CHPS = 0; // Converts CHO

AD1CON3bits.ADRC = 0; // BADC Clock is derived from Systems Clock
AD1CON3bits.ADCS = 63; // ADC Conversion Clock

//AD1CHSO0: A/D Input Select Register
AD1CHSObits.CHOSA = 0; // MUXA +ve input selection (AINO) for CHO
AD1CHSObits.CHONA = 0; // MUXA -ve input selection (Vref-) for CHO

//AD1CHS123: A/D Input Select Register
AD1CHS123bits.CH123SA = 0; // MUXA +ve input selection (AINO) for CH1
AD1CHS123bits.CH123NA = 0; // MUXA -ve input selection (Vref-) for CH1

//AD1CSSH/AD1CSSL: A/D Input Scan Selection Register
AD1ICSSH = 0x0000;
AD1CSSL = 0x000F; // Scan AINO, AIN1, AIN2, AIN3 inputs

Set up Timer3 to trigger ADC1 conversions:

TMR3 = 0x0000;
PR3 = 4999; // Trigger ADCl every l25usec

IFSObits.T3IF = 0; // Clear Timer 3 interrupt
IECObits.T3IE = 0; // Disable Timer 3 interrupt
T3CONbits.TON = 1; //Start Timer 3

Set up DMA Channel 5 for Peripheral Indirect Addressing:

struct
{
unsigned int AdclCho[8];
unsigned int AdclChl[8];
unsigned int AdclCh2([8];
unsigned int AdclCh3[8];
} BufferA attribute ((space(dma)));

struct

{
unsigned int AdclCho[8];
unsigned int AdclChl[8];
unsigned int AdclCh2([8];
unsigned int AdclCh3[8];

} BufferB _ attribute ((space(dma)));

DMA5SCONbits.AMODE = 2; // Configure DMA for Peripheral indirect mode
DMAS5CONbits.MODE = 2; // Configure DMA for Continuous Ping-Pong mode
DMASPAD = (volatile unsigned int)&ADC1BUFO0;// Point DMA to ADC1BUFO

DMASCNT = 31; // 32 DMA request (4 buffers, each with 8 words
DMASREQ = 13; // Select ADC1l as DMA Request source

DMASSTA = _ builtin dmaoffset (&Buffera);

DMA5SSTB = _ builtin dmaoffset (&BufferB) ;

IFS3bits.DMASIF = 0; //Clear the DMA interrupt flag bit
IEC3bits.DMASIE = 1; //Set the DMA interrupt enable bit

© 2006 Microchip Technology Inc. DS70182A-page 22-31

dsPIC33F Family Reference Manual

Example 22-6: Code for ADC and DMA with Peripheral Indirect Addressing (Continued)

Set up DMA Channel 5 Interrupt Handler

unsigned int DmaBuffer = 0;

void _ attribute_ ((__interrupt)) _DMASInterrupt (void)
{

// Switch between Primary and Secondary Ping-Pong buffers
if (DmaBuffer == 0)

{

7

ProcessADCSamples (BufferA.AdclCho)
ProcessADCSamples (BufferA.AdclChl) ;
ProcessADCSamples (BufferA.AdclCh2) ;
ProcessADCSamples (BufferA.AdclCh3)

7

}

else

{

BufferB.AdclChO) ;

ProcessADCSamples)
BufferB.AdclChl) ;
)
)

ProcessADCSamples
ProcessADCSamples
ProcessADCSamples

7

BufferB.AdclCh2
BufferB.AdclCh3

7

}

A

DmaBuffer "= 1;

IFS3bits.DMASIF = 0; //Clear the DMAS5 Interrupt Flag

Set up ADCL1 for DMA operation:

AD1CONlbits.ADDMABM = 0; // DMA buffers are built in scatter/gather mode
AD1CON2bits.SMPI = 3; // 4 ADC buffers

AD1CON4bits.DMABL = 3; // Each buffer contains 8 words

IFSObits.AD1IF = 0; // Clear the A/D interrupt flag bit
IECObits.AD1IE = 0; // Do Not Enable A/D interrupt
AD1CON1lbits.ADON = 1; // Turn on the A/D converter

22.6.6.2 ECAN SUPPORT FOR DMA ADDRESS GENERATION

Peripheral Indirect Addressing can also be used with the ECAN module to let ECAN define more
specific addressing functionality. When the dsPIC33F device filters and receives messages via
the CAN bus, the messages can be categorized into two groups:

* Received messages that must be processed
* Received messages that must be forwarded to other CAN nodes without processing

In the first case, received messages must be reconstructed into buffers of eight words each
before they can be processed by the user application. With multiple ECAN buffers located in the
DMA RAM, it would be easier to let the ECAN peripheral generate RAM addresses for incoming
(or outgoing) data, as shown in Figure 22-13. In this example, Buffer 2 is received first, followed
by Buffer 0. The ECAN module generates destination addresses to properly place data in the
DMA RAM (Peripheral Indirect Addressing).

DS70182A-page 22-32

© 2006 Microchip Technology Inc.

Section 22. Direct Memory Access (DMA)

Figure 22-13: Data Transfer from ECAN with Peripheral Indirect Addressing

Peripheral Indirect Address
/X/
\/ Sfe‘/g' Buffer 0: SID & DMA BASE 7
Data Tl Buffer 0: EID
> DMA
Rx_ | ECAN Channel : ——— Buffer 0
L I ;
e~
- St ;
N 160 ;
DMA NN 6 . -
Request AN
AR
Ve
2
)
\\ \\@ ——— Buffer1
\}
I\ N\
PAR
A% \
By | =
&\ Buffer 2: SID
\ Buffer 2: EID
wee—— =
el - | Buffer2
Vel v
L
/\/

As mentioned earlier, you must pay special attention to the number of Least Significant bits that
are reserved for the peripheral when the DPSRAM Start Address Offset registers (DMAXSTA and
DMAXSTB) are initialized by the user application and the DMA is operating in Peripheral Indirect
Addressing mode. For the ECAN, the number of bits depends on the number of ECAN buffers
defined by the DMA Buffer Size bits (DMABS<2:0>) in the ECAN FIFO Control register
(CIFCTRL).

For example, if the ECAN module reserves 12 buffers by setting DMABS<2:0> bits to ‘3, there
will be 12 buffers with 8 words each, for a total of 96 words (192 bytes). This means that the
address offset that is written into the DMAXSTA and DMAXSTB registers must have 8 (28 bits —
256 bytes) Least Significant bits set to ‘0’. If the MPLAB C30 compiler is used to initialize the
DMAXSTA register, proper data alignment must be specified via data attributes. For the above
example, the code in Example 22-7 properly initializes the DMAXSTA register.

Example 22-7: DMA buffer alignment with MPLAB® C30
int BufferA[12][8] _ attribute_ ((space(dma),aligned(256))) ;

DMAOSTA = _ builtin dmaoffset (&BufferA[0] [0]);

Example 22-8 illustrates the code for this configuration.

However, processing of incoming messages may not always be a requirement. For instance, in
some automotive applications, received messages can simply be forwarded to another node
rather than being processed by the CPU. In this case, received buffers do not have to be sorted
in memory and can be forwarded as they become available.

This mode of data transfer can be achieved with the DMA in Register Indirect Addressing with
Post-Increment. Figure 22-14 illustrates this scenario.

© 2006 Microchip Technology Inc. DS70182A-page 22-33

dsPIC33F Family Reference Manual

Example 22-8: Code for ECAN and DMA with Peripheral Indirect Addressing

Set up ECANL1 with two filters:

/* Initialize ECAN clock first. See ECAN section for example code */

C1CTRL1bits.WIN = 1; // Enable filter window
ClFENlbits.FLTENO = 1; // Filter 0 is enabled
ClFENlbits.FLTEN1 = 1; // Filter 1 is enabled
C1BUFPNT1lbits.FOBP = 0; // Filter 0 points to Buffer0
C1BUFPNT1lbits.F1BP = 2; // Filter 1 points to Buffer2
C1RXF0SID = OXFFEA; // Filter 0 configuration
C1lRXFOEID = OxFFFF;

C1RXF1SID = OxXFFEB; // Filter 1 configuration
C1lRXF1EID = OxFFFF;

C1FMSKSEL1bits.FOMSK = 0; // Mask 0 used for both filters
C1FMSKSEL1lbits.FIMSK = 0; // Mask 0 used for both filters

C1RXMOSID = OXFFEB;
C1RXMOEID = OxFFFF;

C1lFCTRLbits.DMABS = 3; // 12 buffers in DMA RAM
C1lFCTRLbits.FSA = 3; // FIFO starts from TX/RX Buffer 3
C1CTRL1bits.WIN = 0;

C1TRO1CONbits.TXENO = O; // Buffer 0 is a receive buffer
C1TR23CONbits.TXEN2 = 0; // Buffer 2 is a receive buffer

C1TRO1CONbits.TX0OPRI = 0bll; //High Priority
CLlTRO1CONbits.TX1PRI = 0b10; //Intermediate High Priority

C1CTRL1bits.REQOP = 0;// Enable Normal Operation Mode

Set up DMA Channel 0 for Peripheral Indirect Addressing:

unsigned int EcanlRx[12] [8] _ attribute_ ((space(dma)));// 12 buffers, 8
words each

DMAOCONbits.AMODE = 2; // Continuous mode, single buffer
DMAOCONbits.MODE = 0; // Peripheral Indirect Addressing

DMAOPAD = (volatile unsigned int) &C1RXD; // Point to ECAN1 Rx register
DMAOSTA = _ builtin dmaoffset (EcanlRx) ; // Point DMA to ECAN1 buffers
DMAOCNT = 7; // 8 DMA request (1 buffer, each with 8 words)
DMAOREQ = 0x22; // Select ECAN1l Rx as DMA Request source

IECObits.DMAOIE = 1; // Enable DMA Channel 0 interrupt
DMAOCONbits.CHEN = 1; // Enable DMA Channel 0

Set up DMA Interrupt handlers:

void __ attribute_ ((__interrupt)) _DMAOInterrupt (void)

{
ProcessData (EcanlRx [C1VECbits.ICODE]) ; // Process received buffer;
IFSObits.DMAOIF = 0; // Clear the DMAO Interrupt Flag;

DS70182A-page 22-34

© 2006 Microchip Technology Inc.

Section 22. Direct Memory Access (DMA)

Figure 22-14: Data Transfer from ECAN with Register Indirect Addressing

o Receive Buffer 2
/\/
Data ot Buffer 2: SID | & DMA_BASE
> T‘j“f’t > Buffer 2: EID
RX DMA r .
> ECAN 1 Channel
0 Buffer 2
= NS
s
DMA Usp
(SN
Request LN
/_/
e Receive Buffer 0 and Transmit Buffer 2
/_\/
- T
Data Buffer 2: SID_|- “fangy,
> A Buffer 2: EID ~er1 Data_
Rx DMA | % : DMA T
> ECAN 1 Channel \?J}& ; Channel ECAN 1|—
0 N ’:9 : v 1 -
DMA AR ' {e(% DMA
-
Request \ \ O Request
K \ Y : <&
A | Buffer 0: SID
X Buffer 0: EID
>
PA :
A .
o - Buffer 0
\ ;
\ ;
/—\/
e Transmit Buffer 0
/\/
Buffer 2: SID_|& DMA BASE
Buffer 2: EID
: Data
- ansfer 9 4
Bufler 051D |} 12~ = | pua > TX
Buffer 0: EID Channel ECAN 1—»
. 1 <
4 DMA
L o Request
/,\e\
e (\6
G\
/_/

© 2006 Microchip Technology Inc. DS70182A-page 22-35

dsPIC33F Family Reference Manual

22.6.7 One-Shot Mode

One-Shot mode is used by the application program when repetitive data transfer is not required.
One-Shot mode is selected by programming the Operating Mode Select bits (MODE<1:0>) to
‘x1’ in the DMA Channel Control (DMAXCON) register. In this mode, when the entire data block
is moved (block length as defined by DMAXCNT), the data block end is detected and the channel
is automatically disabled (i.e., the CHEN bit in the DMA Channel Control (DMAXCON) register is
cleared by the hardware). Figure 22-15 illustrates One-Shot mode.

Figure 22-15: Data Block Transfer with One-Shot Mode

o~

& DMA BASE

& DMA BASE+DMAXSTA TRANSFER #1
C: TRANSFER #2
o
g TRANSFER #3 E
] 1
[E
1 O
1 1
: TRANSFER #n ~4—P COUNT =DMAxXCNT+1
CPU
Block Transfer
Complete
IRQ

If the HALF bit is set in the DMA Channel Control (DMAXCON) register, the DMAXIF bit is set
(and the DMA interrupt is generated, if enabled by the application program) when half of the data
block transfer is complete and the channel remains enabled. When the full block transfer is com-
plete, no interrupt flag is set and the channel is automatically disabled. See Section 22.6.3 “Full
or Half Block Transfer Interrupts” for information on how to set up the DMA channel to interrupt
on both half and full block transfer.

If the channel is re-enabled by setting CHEN in DMAXCON to ‘1’, the block transfer takes place
from the start address, as provided by DPSRAM Start Address Offset (DMAXSTA and DMAXSTB)
registers. Example 22-9 illustrates the code for One-Shot operation.

Example 22-9: Code for UART and DMA with One-Shot Mode
Setup UART for Rx and Tx:

#define FCY 40000000

#define BAUDRATE 9600

#define BRGVAL ((FCY/BAUDRATE) /16) -1
U2MODEbits.STSEL = 0; // l-stop bit
U2MODEbits.PDSEL = 0; // No Parity, 8-data bits
U2MODEbits.ABAUD = 0; // Autobaud Disabled

U2BRG = BRGVAL;// BAUD Rate Setting for 9600

U2STAbits.UTXISELO = O; // Interrupt after one Tx character is transmitted
U2STAbits.UTXISELL1 = 0;

U2STAbits.URXISEL = O; // Interrupt after one RX character is received
U2MODEbits.UARTEN =1; // Enable UART
U2STAbits.UTXEN = 1; // Enable UART Tx

DS70182A-page 22-36

© 2006 Microchip Technology Inc.

Section 22. Direct Memory Access (DMA)

Example 22-8: Code for UART and DMA with One-Shot Mode (Continued)
Set up DMA Channel 0 to Transmit in One-Shot, Single-Buffer mode:

unsigned int BufferA[8] _ attribute_ ((space(dma))) ;

unsigned int BufferB[8] _ attribute_ ((space(dma))) ;

DMAOCON = 0x2001; // One-Shot, Post-Increment, RAM-to-Peripheral
DMAOCNT = 7; // 8 DMA requests

DMAOREQ = O0xO001F; // Select UART2 Transmitter

DMAOPAD = (volatile unsigned int) &U2TXREG;

DMAOSTA = _ builtin_ dmaoffset (Buffera);

IFSObits.DMAOIF = 0; // Clear DMA Interrupt Flag

IECObits.DMAOIE = 1; // Enable DMA interrupt

Set up DMA Channel 1 to Receive in Continuous Ping-Pong mode:

DMA1CON = 0x0002; // Continuous, Ping-Pong, Post-Inc., Periph-RAM
DMA1CNT = 7; // 8 DMA requests

DMA1REQ = Ox001E; // Select UART2 Receiver

DMA1PAD = (volatile unsigned int) &U2RXREG;

DMA1STA = _ builtin_ dmaoffset (Buffera);

DMA1STB = _ builtin dmaoffset (BufferB) ;

IFSObits.DMALIIF = O; // Clear DMA interrupt
IECObits.DMA1IE = 1; // Enable DMA interrupt
DMA1CONbits.CHEN = 1; // Enable DMA Channel
Set up DMA Interrupt Handlers:
void _ attribute_ ((__interrupt)) _DMAOInterrupt (void)
{

IFSObits.DMAOIF = 0; // Clear the DMAO Interrupt Flag;
}
void _ attribute_ ((__interrupt)) _DMAlInterrupt (void)
{

static unsigned int BufferCount = 0; // Keep record of which buffer

// contains Rx Data

if (BufferCount == 0)
{
DMAOSTA = _ builtin dmaoffset (Buffera); // Point DMA 0 to data
// to be transmitted
}
else
{
DMAOSTA = _ builtin dmaoffset (BufferB); // Point DMA 0 to data

// to be transmitted

DMAOCONbits.CHEN = 1; // Enable DMAO Channel
DMAOREQbits.FORCE = 1; // Manual mode: Kick-start the 1lst transfer

BufferCount = 1;

IFSObits.DMALIF 0; // Clear the DMAl Interrupt Flag

© 2006 Microchip Technology Inc. DS70182A-page 22-37

dsPIC33F Family Reference Manual

22.6.8 Continuous Mode

Continuous mode is used by the application program when repetitive data transfer is required
throughout the life of the program.

This mode is selected by programming the Operating Mode Select bits (MODE<1:0>) to ‘x0’ in
the DMA Channel Control (DMAXCON) register. In this mode, when the entire data block is
moved (block length as defined by DMAXCNT), the data block end is detected and the channel
remains enabled. During the last data transfer, DMA DPSRAM address resets back to (primary)
DPSRAM Start Address Offset A (DMAXSTA) register. Figure 22-16 illustrates Continuous mode.

Figure 22-16: Repetitive Data Block Transfer with Continuous Mode

& DMA BASE
& DMA BASE+DMAXSTA Transfer #1
Q Transfer #2 .
% Transfer #3 Z
=
1 1 D
11 o
[} O
COUNT=0 C vt
Transfer #n <4— Count = DMAXCNT+1
CPU
Block Transfer
Complete
IRQ

If the HALF bit is set in the DMA Channel Control (DMAxXCON) register, the DMAXIF is set (and
DMA interrupt is generated, if enabled) when half of the data block transfer is complete. The
channel remains enabled. When the full block transfer is complete, no interrupt flag is set and
the channel remains enabled. See Section 22.6.3 “Full or Half Block Transfer Interrupts” for
information on how to set up the DMA channel to interrupt on both half and full block transfer.

22.6.9 Ping-Pong Mode

Ping-Pong mode allows the CPU to process one buffer while a second buffer operates with the
DMA channel. The net result is that the CPU has the entire DMA block transfer time in which to
process the buffer currently not being used by the DMA channel. Of course, this transfer mode
doubles the amount of DPSRAM needed for a given size of buffer.

In all DMA operating modes, when the DMA channel is enabled, the (primary) DMA Channel x
DPSRAM Start Address Offset A (DMAXSTA) register is selected by default to generate the initial
DPSRAM effective address. As each block transfer completes and the DMA channel is
reinitialized, the buffer start address is sourced from the same DMAXSTA register.

In Ping-Pong mode, the buffer start address is derived from two registers:
e Primary: DMA Channel x DPSRAM Start Address Offset A (DMAXSTA) register
« Secondary: DMA Channel x DPSRAM Start Address Offset B (DMAXSTB) register

The DMA uses a secondary buffer for alternate block transfers. As each block transfer completes
and the DMA channel is reinitialized, the buffer start address is derived from the alternate
register.

Ping-Pong mode is selected by programming Operating Mode Select bits (MODE<1:0>) to ‘1x’
in the DMA Channel Control (DMAxXCON) register.

DS70182A-page 22-38

© 2006 Microchip Technology Inc.

Section 22. Direct Memory Access (DMA)

If Continuous mode is selected while the DMA is operating in Ping-Pong mode, the DMA
responds by reinitializing to point to the secondary buffer after transferring the primary buffer, and
then transfers the secondary buffer. Subsequent block transfers alternate between primary and
secondary buffers. Interrupts are generated (if enabled by the application program) after each
buffer is transferred. Figure 22-17 illustrates Ping-Pong mode with Continuous operation.
Example 22-9 illustrates the code used for Ping-Pong operation using the DCI module as an
example.

Figure 22-17: Repetitive Data Transfer in Ping-Pong Mode

/\/
& DMA BASE
& DMA BASE+DMAXSTA Transfer #1
C Transfer #2
+
g Transfer #3 & Buffer A (Primary)
1 1 g
1 o
[O
1 1
C Transfer #n ~@—P> COUNT =DMAXCNT+1
& DMA BASE+DMAXSTB Transfer #1 Cpg Olilo::;(: rIaRnsfer
Transfer #2 P Q
+
Transfer #3 & Buffer B (Secondary)
¥ g
[O
C Transfer #n ~@—P COUNT =DMAXCNT+1
/\/
CPU Block Transfer
Complete IRQ

© 2006 Microchip Technology Inc. DS70182A-page 22-39

dsPIC33F Family Reference Manual

Example 22-9: Code for DCI and DMA with Continuous Ping-Pong Operation
Set up DCI for Rx and Tx:

#define FCY 40000000
#define FS 48000

#define FCSCK 64*FS

#define BCGVAL (FCY/(2*FS))-1

DCICONlbits.CSCKD 0; // Serial Bit Clock (CSCK pin) is output
DCICON1lbits.CSCKE = 0; // Data sampled on falling edge of CSCK
DCICON1bits.COFSD = 0; // Frame Sync Signal is output

DCICONlbits.UNFM = 0; // Transmit '0O's on a transmit underflow
DCICON1bits.CSDOM = 0; // CSDO pin drives '0's during disabled TX time slots
DCICON1bits.DJST = 0; // TX/RX starts 1 serial clock cycle after frame sync pulse
DCICON1lbits.COFSM = 1; // Frame Sync Signal set up for I2S mode

DCICON2bits.BLEN = 0; // One data word will be buffered between interrupts
DCICON2bits.COFSG = 1; // Data frame has 2 words: LEFT & RIGHT samples
DCICON2bits.WS = 15; // Data word size is 16 bits

DCICON3 = BCG VAL;// Set up CSCK Bit Clock Frequency
TSCONbits.TSEO = 1; // Transmit on Time Slot 0
TSCONbits.TSEl = 1; // Transmit on Time Slot 1

1

1

RSCONbits.RSEO = 1; // Receive on Time Slot 0
RSCONbits.RSE1l = 1; // Receive on Time Slot 1

Set up DMA Channel 0 for Transmit in Continuous Ping-Pong mode:

unsigned int TxBufferA[l6] _ attribute_ ((space(dma)));

unsigned int TxBufferB[16] _ attribute_ ((space(dma)));

DMAOCON = 0x2002; // Ping-Pong, Continous, Post-Increment, RAM-to-Peripheral
DMAOCNT = 15; // 15 DMA requests

DMAOREQ = 0x003C; // Select DCI as DMA Request source

DMAOPAD = (volatile unsigned int) &TXBUFO;

DMAOSTA = _ builtin dmaoffset (TxBuffera) ;

DMAOSTB = _ builtin dmaoffset (TxBufferB) ;

IFSObits.DMAOIF = 0; // Clear DMA Interrupt Flag
IECObits.DMAOIE = 1; // Enable DMA interrupt
DMAOCONbits.CHEN = 1; // Enable DMA Channel

Set up DMA Channel 1 for Receive in Continuous Ping-Pong mode:

unsigned int RxBufferA[16] _ attribute_ ((space(dma)));

unsigned int RxBufferB[16] _ attribute_ ((space(dma)));

DMA1CON = 0x0002; // Continuous, Ping-Pong, Post-Inc., Periph-RAM
DMAL1CNT = 15; // 16 DMA requests

DMA1REQ = 0x003C; // Select DCI as DMA Request source

DMA1PAD = (volatile unsigned int) &RXBUFO;

DMA1STA = _ builtin dmaoffset (RxBuffera) ;

DMA1STB = _ builtin dmaoffset (RxBufferB) ;

IFSObits.DMALIF = 0;// Clear DMA interrupt
IECObits.DMAL1IE = 1;// Enable DMA interrupt
DMA1CONbits.CHEN = 1;// Enable DMA Channel

DS70182A-page 22-40 © 2006 Microchip Technology Inc.

Section 22. Direct Memory Access (DMA)

Example 22-9: Code for DCI and DMA with Continuous Ping-Pong Operation
(Continued)

Set up DMA Interrupt Handlers:

void __ attribute_ ((__interrupt_)) _DMAOInterrupt (void)

{

static unsigned int TxBufferCount = 0;// Keep record of which buffer
// has Rx Data

if (BufferCount == 0)

{

/* Notify application that TxBufferA has been transmitted */

}

else

{

/* Notify application that TxBufferB has been transmitted */

}

BufferCount = 1;
IFSObits.DMAOIF = 0; // Clear the DMAO Interrupt Flag;

void __ attribute_ ((__interrupt)) _DMAlInterrupt (void)

{

static unsigned int RxBufferCount = 0;// Keep record of which buffer
// has Rx Data

if (BufferCount == 0)

{

/* Notify application that RxBufferA has been received */

}

else

{

/* Notify application that RxBufferB has been received */ }

BufferCount = 1;
IFSObits.DMAL1IF = 0; // Clear the DMAl Interrupt Flag

Enable DCI:

/* Force First two words to fill-in Tx buffer/shift register */
DMAOREQbits.FORCE = 1;
while (DMAOREQbits.FORCE == 1);

DMAOREQbits.FORCE = 1;
while (DMAOREQbits.FORCE == 1);

DCICON1lbits.DCIEN = 1; // Enable DCI

If One-Shot mode is selected while the DMA is operating in Ping-Pong mode, the DMA responds
by reinitializing to point to the secondary buffer after transferring primary buffer and then transfers
the secondary buffer. Subsequent block transfers will not occur, however, because the DMA
channel disables itself. Figure 22-18 illustrates One-Shot data transfer in Ping-Pong mode.

© 2006 Microchip Technology Inc. DS70182A-page 22-41

dsPIC33F Family Reference Manual

Figure 22-18: Single Block Data Transfer in Ping-Pong Mode

/\/
& DMA BASE
& DMA BASE+DMAXSTA Transfer #1
C Transfer #2 .
g Transfer #3 & Buffer A (Primary)
¥ g
[} O
1 1
Transfer #n <~4—P COUNT = DMAXCNT+1
COUNT=0
& DMA BASEsDMAXSTB Transfer #1 CPU Block Transfer
T C Complete IRQ
Transfer #2 .
EE Transfer #3 & Buffer B (Secondary)
1 1 E
1 o
[} O
1 1
C Transfer #n ~@¢—Pp COUNT =DMAxXCNT+1

— —_ _— CPU Block Transfer Complete IRQ
Disable DMA Channel

22.6.10 Manual Transfer Mode

For peripherals that are sending data to the DPSRAM using the DMA controller, the DMA data
transfer starts automatically after the DMA channel and peripheral are initialized. When the
peripheral is ready to move data to the DPSRAM, it issues a DMA request. If data also needs to
be sent to the peripheral at this time, the same DMA request can be used to activate another
channel to read data from DPSRAM and write it to the peripheral.

On the other hand, if the application only needs to send data to a peripheral (from a DPSRAM
buffer) an initial (manual) data load into the peripheral may be required to start the process (see
Section 22.7 “ Starting DMA Transfer”). This process could be initiated with conventional soft-
ware. However, a more convenient approach is to simply mimic the channel DMA request by set-
ting a bit within the selected DMA channel. The DMA channel processes the forced request as it
would any other request and transfers the first data element to start the sequence. When the
peripheral is ready for the next piece of data, it sends a normal DMA request and the DMA sends
the next data element. This process is illustrated in Figure 22-19.

A manual DMA request can be created by setting the FORCE bit in the DMA Channel x IRQ
Select (DMAXREQ) register. Once set, the FORCE bit can not be cleared by the user application.
It must be cleared by hardware when the forced DMA transfer is complete. Depending on when
the FORCE bit is set, these special conditions apply:

 Setting the FORCE bit while DMA transfer is in progress has no effect and is ignored.

« Setting the FORCE bit while the channel x is being configured (i.e., setting the FORCE bit
during the same write that configures DMA channel) can result in unpredictable behavior
and should be avoided.

< An attempt to set the FORCE bit while a peripheral interrupt request is pending (for this
channel) is discarded in favor of the interrupt-based request. However, an error condition is
generated by setting both the DMA RAM Write Collision Flag bit (XWCOLXx) and the Periph-
eral Write Collision Flag bit (PWCOLX) in the DMA Controller Status 0 (DMACSO0) register.
See Section 22.10 “Data Write Collisions” for more details.

DS70182A-page 22-42

© 2006 Microchip Technology Inc.

Section 22. Direct Memory Access (DMA)

Figure 22-19: Data Transfer Initiated in Manual Mode

0 First Transfer Forced

CPU Write to
FORCE Bit > —
¢ & DMA BASE
Peripheral DMA Tr
- anSfer 1
1 -~ Channel 6
Data 0 & DMA BASE + DMA3STA
Data 1 & DMA BASE + DMA3STA + 1
Data 2 & DMA BASE + DMA3STA + 2
o~

e Subsequent Transfers Requested by Peripheral

DMA Request T —
& DMA_BASE
Peripheral A DMA ‘7,%
1 - Channel 6 N Ste,
r%; << Data 0 & DMA BASE + DMA3STA
W Data 1 & DMA BASE + DMA3STA + 1
Data 2 & DMA BASE + DMA3STA + 2

22.6.11 Null Data Write Mode

Null Data Write mode is the most useful in applications in which sequential reception of data is
required without any data transmission like SPI.

The SPIis essentially a simple shift register, clocking a bit of data in and out for each clock period.
However, an unusual situation arises when the SPI is configured in Master mode (i.e., when the
SPl is to be the source of the clock) but only received data is of interest. In this case, something
must be written to the SPI data register in order to start the SPI data clock and receive the exter-
nal data.

It would be possible to allocate two DMA channels, one for data reception and the other to simply
feed null, or zero, data into the SPI. However, a more efficient solution is to use a DMA Null Data
Write mode that automatically writes a null value to the SPI data register after each data element
has been received and transferred by the DMA channel configured for peripheral data reads.

If the Null Data Peripheral Write Mode Select bit (NULLW) is set in the DMA Channel x Control
(DMAXCON) register, and the DMA channel is configured to read from the peripheral, then the
DMA channel also executes a null (all zeros) write to the peripheral address in the same cycle
as the peripheral data read. This write occurs across the peripheral bus concurrently with the
(data) write to the DPSRAM (across the DPSRAM bus). Figure 22-20 illustrates this mode.

During normal operation in this mode, the Null Data Write can only occur in response to a periph-
eral DMA request (i.e., after data has been received and is available for transfer). An initial CPU
write to the peripheral is required to start reception of the first word, after which the DMA takes
care of all subsequent peripheral (null) data writes. That is, the CPU null write starts the SPI
(master) sending/receiving data which in turn eventually generates a DMA request to move the
newly received data.

Alternatively, a forced DMA transfer could be used to ‘kick start’ the process. However, this will
also include a redundant peripheral read (data not valid) and an associated DPSRAM pointer
adjustment which must be taken into account.

© 2006 Microchip Technology Inc. DS70182A-page 22-43

dsPIC33F Family Reference Manual

Figure 22-20: Data Transfer With Null Data Write Mode

Null Data Writes

generated by DMA A~
’ & DMA_BASE
TX - - DMA Yang,
SPI 7> Jer
Channel 1 - Yapo ~ e
Rx—] - T ey 2\ Data 0 & DMA BASE + DMA3STA
%: Data 1 & DMA BASE + DMA3STA + 1
Data 2 & DMA BASE + DMA3STA + 2
Data Transfer
 ~—_

Example 22-10: SPI and DMA With Null Data Write Mode

Set up SPI for Master mode:

SPI1CON1lbits.MODE16 = 1; //Communication is word-wide (16 bits)
SPI1CONlbits.MSTEN = 1; //Master Mode Enabled
SPI1STATbits.SPIEN = 1; //Enable SPI Module

Set up DMA Channel 1 for Null Data Write mode:

unsigned int BufferA[16] _ attribute ((space(dma))) ;

unsigned int BufferB[16] _ attribute ((space(dma))) ;

DMA1CON = 0x0802; // Null Write, Continuous, Ping-Pong,
// Post-Increment, Periph-to-RAM

DMA1CNT = 15; // Transfer 16 words at a time

DMA1REQ = 0x000A; // Select SPI1 as DMA request source

DMA1STA = _ builtin_ dmaoffset (Buffera);

DMA1STB = _ builtin dmaoffset (BufferB) ;

DMA1PAD = (volatile unsigned int) &SPI1BUF;

IFSObits.DMAL1IF = 0O;

IECObits.DMAIIE = 1; // Enable DMA interrupt
DMA1CONbits.CHEN = 1; // Enable DMA Channel
DMA1REQbits.FORCE = 1; // Force First word after Enabling SPI

Set up DMA Interrupt Handler:

void _ attribute_ ((__interrupt_)) _DMAlInterrupt (void)

{

static unsigned int BufferCount = 0; // Keep record of which buffer
// contains Rx Data

if (BufferCount == 0)

ProcessRxData (Bufferd) ; // Process received SPI data in
// DMA RAM Primary buffer

else

ProcessRxData (BufferB) ; // Process received SPI data in
// DMA RAM Secondary buffer

BufferCount %= 1;

IFSObits.DMA1IF = 0; // Clear the DMAl Interrupt Flag

DS70182A-page 22-44

© 2006 Microchip Technology Inc.

Section 22. Direct Memory Access (DMA)

22.7 STARTING DMA TRANSFER

Before DMA transfers can begin, the DMA channel must be enabled by setting the CHEN bit to
‘1’ in the DMAXCON register. When the DMA channel is active, it can be reinitialized by disabling
this channel (CHEN = 0), followed by re-enabling it (CHEN = 1). This process resets the DMA
transfer count to zero and sets the active DMA buffer to the primary buffer.

When the DMA channel and peripheral are properly initialized, the DMA transfer starts as soon
as the peripheral is ready to move data and issues a DMA request. However, some peripherals
may not issue a DMA request (and therefore will not start the DMA transfer) until certain condi-
tions exist. In these cases, a combination of different DMA modes and procedures may need to
be applied to initiate the DMA transfer:

22.7.1 Starting DMA with the Serial Peripheral Interface (SPI)

Starting the DMA transfer to/from the SPI peripheral depends upon SPI data direction and Slave
or Master mode:

« Tx only in Master mode — In this configuration, no DMA request is issued until the first
block of SPI data is sent. To initiate DMA transfers, the user application must first send data
using the DMA Manual Transfer mode, or it must first write data into the SPI buffer
(SPIXBUF) independently of the DMA.

* Rx only in Master mode — In this configuration, no DMA request is issued until the first
block of SPI data is received. However, in Master mode, no data is received until SPI trans-
mits first. To initiate DMA transfers, the user application must use DMA Null Data Write
mode, and start DMA Manual Transfer mode.

¢ Rx and Tx in Master mode — In this configuration, no DMA request is issued until the first
block of SPI data is received. However, in Master mode, no data is received until the SPI
transmits it. To initiate DMA transfers, the user application must first send data using the
DMA Manual Transfer mode, or it must first write data into the SPI buffer (SPIXBUF)
independently of the DMA.

e Tx only in Slave mode — In this configuration, no DMA request is issued until the first block
of SPI data is received. To initiate DMA transfers, the user application must first send data
using the DMA Manual Transfer mode, or it must first write data into the SPI buffer
(SPIXBUF) independently of the DMA.

* Rx only in Slave mode — This configuration generates a DMA request as soon as the first
SPI data has arrived, so no special steps need to be taken by the user to initiate DMA
transfer.

* Rx and Tx in Slave mode — In this configuration, no DMA request is issued until the first
SPI data block is received. To initiate DMA transfers, the user application must first send
data utilizing the DMA Manual Transfer mode, or it must first write data into the SPI buffer
(SPIXBUF) independently of the DMA.

22.7.2 Starting DMA with the Data Converter Interface (DCI)

Unlike other serial peripherals, the DCI starts transmitting as soon as it is enabled (assuming it
is the Master). It constantly feeds synchronous frames of data to the external codec to which it is
connected. Before enabling the DCI you must:

» Configure the DCI as described in Section 22.5.2 “Peripheral Configuration Set Up”

» |If connected to a stereo codec, use DMA Manual Transfer mode to initiate the first two data
transfers.

- Set the FORCE bit in the DMAXREQ register to transfer the DCI left channel sample,
- Set the FORCE bit for the second time to transfer the DCI right channel sample.

After these steps are completed, enable the DCI peripheral (see Example 22-9).

© 2006 Microchip Technology Inc. DS70182A-page 22-45

dsPIC33F Family Reference Manual

22.7.3 Starting DMA with the UART

The UART receiver issues a DMA request as soon as data is received. No special steps need to
be taken by the user application to initiate DMA transfer. The UART transmitter issues a DMA
request as soon as the UART and transmitter are enabled. This means that the DMA channel
and buffers must be initialized and enabled before the UART and transmitter.

Ensure that the UART is configured as described in Section 22.5.2 “Peripheral Configuration
Set Up” (Table 22-2).

Alternatively, the UART and UART transmitter can be enabled before the DMA channel is
enabled. In this case, the UART transmitter DMA request will be lost, and the user application
must issue a DMA request to start DMA transfers by setting the FORCE bit in the DMAXREQ
register.

DS70182A-page 22-46

© 2006 Microchip Technology Inc.

Section 22. Direct Memory Access (DMA)

22.8 DMA CHANNEL ARBITRATION AND OVERRUNS

Each DMA channel has a fixed priority. Channel 0 is the highest, and Channel 7 is the lowest.
When a DMA transfer is requested by the source, the request is latched by the associated DMA
channel. The DMA controller acts as an arbitrator. If no other transfer is underway or pending,
the controller grants bus resources to the requesting DMA channel. The DMA controller ensures
that the no other DMA channel is granted any resource until the current DMA channel completes
its operation.

If multiple DMA requests arrive or are pending, the priority logic within the DMA controller grants
resources to the highest priority DMA channel for completing its operation. All other DMA
requests remain pending until the selected DMA transfer is complete. If another DMA request
arrives while the current DMA transfer is underway, it is also prioritized with any pending DMA
requests, ensuring that the highest priority request is always serviced after the current DMA
transfer has completed.

Because the DMA channels are prioritized, it is possible that a DMA request will not be immedi-
ately serviced and will become pending. The request will remain pending until all higher priority
channels have been serviced. If another interrupt arrives before the DMA controller has cleared
the original DMA request, and the interrupt is the same type as the pending interrupt, a data
overrun will occur.

A data overrun is defined as the condition where new data has arrived in a peripheral data buffer
before the DMA could move the prior data. Some DMA-ready peripherals can detect data over-
runs and issue a CPU interrupt (if the corresponding peripheral error interrupt is enabled), as
shown in Table 22-5.

Table 22-5: Overrun Handling by DMA-Ready Peripherals

DMA-Ready Peripheral Data Overrun Handling

Serial Peripheral Interface (SPI) Data waiting to be moved by the DMA channel is not
overwritten by additional incoming data. Subsequent
incoming data is lost and the SPI Receive Overflow
(SPIROV) bit is set in the SPI Status (SPIXSTAT) regis-
ter. Also the SPIx fault interrupt is generated if the SPI
Error Interrupt Enable (SPIXEIE) bit is set in the Inter-
rupt Enable Control (IECx) register in the interrupt
controller.

UART Data waiting to be moved by the DMA channel is not
overwritten by additional incoming data. Subsequent
incoming data is lost and the Overflow Error (OERR) bit
is set in the UART Status (UxSTA) register. Also, the
UARTX Error interrupt is generated if the UART Error
Interrupt Enable (UXEIE) bit is set in the Interrupt
Enable Control (IECx) register in the interrupt controller.

Data Converter Interface (DCI) Data waiting to be moved by the DMA channel is over-
written by additional incoming data and the Receive
Overflow (ROV) bit is set in the DCI Status (DCISTAT)
register. Also the DCI fault interrupt is generated if the
DCI Error Interrupt Enable (DCIEIE) bit is set in the
Interrupt Enable Control (IECO) register in the interrupt

controller.
10-bit/12-bit Analog-to-Digital Data waiting to be moved by the DMA channel is over-
Converter (ADC) written by additional incoming data. The overrun
condition is not detected by the ADC.
Other DMA-Ready Peripherals No data overrun can occur.

© 2006 Microchip Technology Inc. DS70182A-page 22-47

dsPIC33F Family Reference Manual

Data overruns are only detectable in hardware when the DMA is moving data from a peripheral
to DPSRAM. DMA data transfers from DPSRAM to a peripheral (based on, for example, a buffer
empty interrupt) will always execute. Any consequential DPSRAM data overruns must be
detected using software. The duplicate DMA request is ignored and the pending request remains
pending. As usual, the DMA channel clears the DMA request when the transfer is eventually
completed. If the CPU does not intervene in the meantime, the data transferred will be the latest
(overrun) data, and the prior data will be lost.

The user application can handle an overrun error in different ways, depending on the nature of
the data source. Data recovery and resynchronization of the DMAC with its data source/sink is a
task that is highly application dependent. For streaming data, such as that from a CODEC (via
the DCI peripheral), the application can ignore the lost data. After fixing the source of the problem
(if possible), the DMA interrupt handler should attempt to resynchronize the DMAC and DCI so
that data is again buffered correctly. The user application should react fast enough to prevent any
further overruns occurring.

By the time the peripheral overrun interrupt is entered, the pending DMA request will have
already moved the overrun data value to the address where the lost data should have gone. That
data can be moved to its correct address, and a null data value inserted into the missing data
slot. The DPSRAM address of the channel can then be adjusted accordingly. Subsequent DMA
requests to the faulted channel then initiate transfers as normal to the corrected DPSRAM
address. For applications where the data cannot be lost, the peripheral overrun interrupt will need
to abort the current block transfer, reinitialize the DMA channel and request a data resend before
it is lost.

DS70182A-page 22-48

© 2006 Microchip Technology Inc.

Section 22. Direct Memory Access (DMA)

22.9 DEBUGGING SUPPORT

To improve user visibility into DMA operation during debugging, the DMA controller includes sev-
eral status registers that can provide information on which DMA channel executed last
(LSTCH<3:0> bits in the DMACSL1 register), which DPSRAM address offset it was accessing
(DSADR<15:0> bits in the DSADR register) and from which buffer (PPSTx bits in the DMACS1
register).

© 2006 Microchip Technology Inc. DS70182A-page 22-49

dsPIC33F Family Reference Manual

22.10 DATA WRITE COLLISIONS

The CPU and DMA channel may simultaneously read or read/write to any DPSRAM or
DMA-ready peripheral data register. The only constraint is that the CPU and DMA channel should
not simultaneously write to the same address. Under normal circumstances, this situation should
never arise. However, if for some reason it does, then it will be detected and flagged, and a DMA
Fault trap will be initiated. The CPU write will also be allowed to take priority, though that is mainly
to provide predictable behavior and is otherwise of little practical consequence.

It is also permissible for the DMA channel to write to a location during the same bus cycle that
the CPU is reading it, and vice versa. However, it should be noted that the resultant reads are of
the old data, not the data written during that bus cycle. Also note that this situation is considered
normal operation and does not result in any special action being taken.

In the event of a simultaneous write to the same DPSRAM address by the CPU and DMA chan-
nel, the XWCOLXx bit is set in the DMA Controller Status 0 (DMACSO) register. In the event of a
simultaneous write to the same peripheral address by the CPU and DMA channel, the PWCOLXx
bit is set in the DMA Controller Status 0 (DMACSO) register. All collision status flags are logically
ORed together to generate a common DMAC Fault trap. The XWCOLx and PWCOLXx flags are
automatically cleared when the user application clears the DMAC Error Status bit (DMACERR)
in the Interrupt Controller INTCONL1) register.

Subsequent DMA requests to a channel that has a write collision error are ignored while the
XWCOLXx or PWCOLX remain set.

Under write collision conditions, either XWCOLx or PWCOLX could be set due to write collision,
but not both. Setting both flags is used as a unique means to flag a rare manual trigger event
error without adding more Status bits (see Section 22.6.10 “Manual Transfer Mode”).

Example 22-11 illustrates DMA controller trap handling with DMA Channel 0 transferring data
from the DPSRAM to the peripheral (UART), and DMA Channel 1 transferring data from the
peripheral (ADC) to the DPSRAM.

Example 22-11: DMA Controller Trap Handling:

void _ attribute_ ((__interrupt_)) _DMACError (void)

{

static unsigned int ErrorLocation;

// Peripheral Write Collision Error Location
if (DMACS0 & 0x0100)

{
}

ErrorLocation = DMAOSTA;

// DMA RAM Write Collision Error Location
if (DMACS0O & 0x0002)

{
}

DMACS0 = 0; //Clear Write Collision Flag
INTCONlbits.DMACERR = 0; //Clear Trap Flag

ErrorLocation = DMA1STA;

DS70182A-page 22-50

© 2006 Microchip Technology Inc.

Section 22. Direct Memory Access (DMA)

22.11 OPERATION IN POWER-SAVING MODES
22.11.1 Sleep Mode

The DMA is disabled during the Sleep power-saving mode. Prior to entering Sleep mode, it is
recommended (though not essential) that all DMA channels either be allowed to complete the
block transfer that is currently underway, or be disabled.

22.11.2 Idle Mode

The DMA is a second bus master within the system and can, therefore, continue to transfer data
when the CPU has entered the Idle power saving mode. Provided the peripheral being serviced
by the DMA channel is configured for operation during Idle mode, data may be transferred to and
from the peripheral and DPSRAM. When the block transfer is complete, the DMA channel issues
an interrupt (if enabled) and wakes up the CPU. The CPU then runs the interrupt service handler.

Each peripheral includes a Stop in Idle control bit. When set, this control bit disables the periph-
eral while the CPU is in Idle Mode. If the DMAC is being used to transfer data in and/or out of the
peripheral, engaging the Stop in Idle feature within the peripheral will, in effect, also disable the
DMA channel associated with the peripheral.

© 2006 Microchip Technology Inc. DS70182A-page 22-51

dsPIC33F Family Reference Manual

22.12 DESIGN TIPS

22.12.1 Interfacing DMA with DCI

When the DCI has multiple audio channels per frame (e.g., left and right channels from a stereo
codec), all samples are sequentially interleaved and transferred by the DMA channel as shown
in Figure 22-21.

Typically, however, the user application prefers the data on a per-channel basis, which means
that the program must provide an additional algorithm to either sort the transferred data, or index
it by jumping unwanted data. Either approach requires additional code and results in more
execution time.

The DCI does not support Peripheral Indirect Addressing. However, it is still possible to assemble
the data by audio channel with a special DCI configuration combined with two DMA channels.
When the Buffer Length control bits (BLEN<1:0>) in the DCI Control 2 (DCICONZ2) register are
set to ‘01’ (instead of ‘00’), and two DMA Channels are used to transfer received data from the
DCI to DPSRAM, the received audio data is sorted by channel. In this case, when the DCI gen-
erates a DMA request it goes to both DMA channels every time two words are buffered (one right
sample and one left sample). When the DMA request occurs, one DMA channel transfers data
from the DCI Rx Buffer 0 (RXBUFO) register, while the other DMA channel transfers data from
the DCI Rx Buffer 1 (RXBUF1) register. In effect, the transferred data is sorted by audio channel,
as shown in Figure 22-22.

For this example to work, DMA Channel 1 initializes the DMA1PAD register to the RXBUF1
address (instead of the RXBUFO address as stated in Section 22.5.1 “DMA Channel to Periph-
eral Association Set Up”).

DS70182A-page 22-52

© 2006 Microchip Technology Inc.

Section 22. Direct Memory Access (DMA)

Figure 22-21: Typical Data Transfer for the DCI

o~

Left Channel
#| Sample0 & DMA BASE

N RightChannel
& Sample 0

v Left Channel
, Samplel
Data e RightChannel

DCI DMA Channel 0 Sample 1
Left Channel

DMA rra,,sfers Sample 2
Request RightChannel

Sample 2

Figure 22-22: Sorting DCI Channel Data With Two DMA Channels

o~
Sample 0 7 _
Sample 1 qg)
Sample 2 <
: G
DMA Channel 0 o
@ =]
v} DMAOPAD = &RXBUFO 2
A &
SREAY DMA Request ~
DCI . -
. v Sample0 ™ _
- (]
RxBUF1 gt = Sample 1 c
. Y s, T | Samp £
U - S, Sample 2 s
T T ge? .)
DMA Channel1 | - 7~ 2 %
S5
DMALPAD = &RxXBUF1 <
e
2
[vd
T~

© 2006 Microchip Technology Inc. DS70182A-page 22-53

dsPIC33F Family Reference Manual

22.13 REGISTER MAPS

Table 22-6 is a map of the registers related to the DMA controller.

DS70182A-page 22-54 © 2006 Microchip Technology Inc.

-ou| ABojouyda] diyd0421N 9002 @

GG-z¢ abed-yz810.Sd

Table 22-6: DMA-Associated Register Map

File Name | Addr | Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 ReAsItIets
DMAOCON | 0380 | CHEN SIZE DIR HALF NULLW — — — — — AMODE<1:0> — — MODE<1:0> 0000
DMAOREQ | 0382 | FORCE — — — — — — — — IRQSEL<6:0> 0000
DMAOSTA | 0384 STA<15:0> 0000
DMAOSTB | 0386 STB<15:0> 0000
DMAOPAD | 0388 PAD<15:0> 0000
DMAOCNT | 038A — — — — — — CNT<9:0> 0000
DMAI1CON [038C | CHEN SIZE DIR HALF NULLW — — — = — AMODE<1:0> — — MODE<1:0> 0000
DMA1REQ | 038E | FORCE — — — — — — — — IRQSEL<6:0> 0000
DMA1STA | 0390 STA<15:0> 0000
DMA1STB | 0392 STB<15:0> 0000
DMA1PAD | 0394 PAD<15:0> 0000
DMAILCNT | 0396 — — — — — — CNT<9:0> 0000
DMA2CON | 0398 | CHEN SIZE DIR HALF NULLW — — — = — AMODE<1:0> — — MODE<1:0> 0000
DMA2REQ | 039A | FORCE — — — — — — — — IRQSEL<6:0> 0000
DMA2STA | 039C STA<15:0> 0000
DMA2STB | 039E STB<15:0> 0000
DMA2PAD | 03A0 PAD<15:0> 0000
DMA2CNT | 03A2 — — — — — — CNT<9:0> 0000
DMAS3CON | 03A4 | CHEN SIZE DIR HALF NULLW — — — = — AMODE<1:0> — — MODE<1:0> 0000
DMAS3REQ | 03A6 | FORCE — — — — — — — — IRQSEL<6:0> 0000
DMAS3STA | 03A8 STA<15:0> 0000
DMA3STB | 03AA STB<15:0> 0000
DMAS3PAD | 03AC PAD<15:0> 0000
DMAS3CNT | 03AE — — — — — — CNT<9:0> 0000
DMA4CON | 03B0 | CHEN SIZE DIR HALF NULLW — — — = — AMODE<1:0> — — MODE<1:0> 0000
DMA4REQ | 03B2 | FORCE — — — — — — — — IRQSEL<6:0> 0000
DMAA4STA | 03B4 STA<15:0> 0000
DMAA4STB | 03B6 STB<15:0> 0000
DMA4PAD | 03B8 PAD<15:0> 0000
DMAA4CNT | 03BA — — — — — — CNT<9:0> 0000
DMAS5CON [03BC| CHEN SIZE DIR HALF NULLW — — — = — AMODE<1:0> — — MODE<1:0> 0000
DMAS5REQ | 03BE | FORCE — — — — — — — — IRQSEL<6:0> 0000
DMASSTA | 03CO STA<15:0> 0000
DMAS5STB | 03C2 STB<15:0> 0000
Legend: — = unimplemented, read as ‘0. Reset values are shown in hexadecimal.

(VINQ) SS222Yy AJOWSN 19311Q "2Z U01193S

95-zz abed-vzg810.Sd

"ou| ABojouyda] diydoioiN 9002 @

Table 22-6: DMA-Associated Register Map (Continued)

File Name | Addr | Bit15 | Bit14 | Bit13 | Bit12 | Bit1l | Bit10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Ré’éts
DMASPAD | 03C4 PAD<15:0> 0000
DMASCNT |03C6| — — — — — — CNT<9:0> 0000
DMABCON | 03C8 | CHEN | SIZE DIR HALF | NULLW — — — — — AMODE<1:0> = — MODE<1:0> 0000
DMAGREQ | 03CA | FORCE — — — — — — — — IRQSEL<6:0> 0000
DMA6STA |03CC STA<15:0> 0000
DMA6STB |03CE STB<15:0> 0000
DMAGPAD | 03D0 PAD<15:0> 0000
DMAG6CNT |03D2| — — — — — — CNT<9:0> 0000
DMA7CON | 03D4 | CHEN | SIZE DIR HALF | NULLW — — — — — AMODE<1:0> = — MODE<1:0> 0000
DMA7REQ | 03D6 | FORCE — — — — — — — — IRQSEL<6:0> 0000
DMA7STA |03D8 STA<15:0> 0000
DMA7STB |03DA STB<15:0> 0000
DMA7PAD |03DC PAD<15:0> 0000
DMA7CNT |03DE| — — — — — — CNT<9:0> 0000
DMACS0 | 03E0 | PWCOL7|PWCOL6 | PWCOL5 | PWCOL4 | PWCOL3 | PWCOL2 | PWCOL1 | PWCOLO| XWCOL7 | XWCOL6 | XWCOL5 | XWCOL4 | XWCOL3 | XWCOL2 | XWCOL1 | XWCOLO | 0000
DMACS1 |O03E2| — — — — LSTCH<3:0> PPST7 | PPST6 | PPST5 | PPST4 | PPST3 | PPST2 | PPST1 | PPSTO | 0000
DSADR 03E4 DSADR<15:0> 0000
INTCON1 | 0080 | NSTDIS = = = = = = = = = DMACERR = = = = — 0000
IFSO 0084 | — DMALIF — — — — — — — — — DMAOIF — — — — 0000
IFS1 0086 | — — — — — — — DMA2IF — — — — — — — — 0000
IFS2 008s | — DMA4IF — — — — — — — — — DMA3IF — — — — 0000
IFS3 008A| — — DMASIF — — — — — — — — — — — — — 0000
IFS4 o08C| — — — — — — — — — — DMA7IF | DMAGIF — — — — 0000
IECO 0094 | — DMALIE — — — — — — — — — DMAOIE — — — — 0000
IEC1 0096 | — — — — — — — DMAZ2IE — — — — — — — — 0000
IEC2 0098 | — DMAA4IE — — — — — — — — — DMASIE — — — — 0000
IEC3 009A| — — DMASIE — — — — — — — — — — — — — 0000
IEC4 009C| — — — — — — — — — — DMA7IE | DMAGIE — — — — 0000
IPC1 00A6| — — — — — — — — — — — — — DMAOIP<2:0> 4444
IPC3 00AA| — — — — — DMAL1IP<2:0> — — — — — — — — 4444
IPC6 00BO| — — — — — — — — — — — — — DMA2IP<2:0> 4444
IPC9 00B6 | — — — — — — — — — — — — — DMA3IP<2:0> 4444
IPC11 00BA| — — — — — DMA4IP<2:0> — — — — — — — — 4444
IPc15s |ooc2| — — — — — — [=1 = — DMASIP<2:0> — — — — | 4444
Leg end: —-= unimplemented, read as ‘0. Reset values are shown in hexadecimal.

lenuey aodualajay Ajlweq 4££D1dsp

*ou| ABojouyda | diys0IoIN 9002 ®

1G-zz abed-yz810.Sa

Table 22-6:

DMA-Associated Register Map (Continued)

File Name | Addr | Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 ReAsltlets
IPC17 00C6 — — — — — — — — = DMA7IP<2:0> — DMAGIP<2:0> 4444
Legend: — = unimplemented, read as ‘0. Reset values are shown in hexadecimal.

(VINQ) SS2922Yy AIOWSA 19311 "ZZ U01193S

dsPIC33F Family Reference Manual

22.14 RELATED APPLICATION NOTES

This section lists application notes that are related to the use of Direct Memory Access. These
application notes may not be written specifically for the dsPIC33F Product Family, but the con-
cepts are pertinent and could be used with modification and possible limitations. The current
application notes related to the DMA Module include:

Title Application Note #

Note: Please visit the Microchip web site (www.microchip.com) for additional
Application Notes and code examples for the dsPIC33F family of devices.

DS70182A-page 22-58

© 2006 Microchip Technology Inc.

Section 22. Direct Memory Access (DMA)

22.15 REVISION HISTORY

Revision A (December 2006)
This is the initial release of this document.

© 2006 Microchip Technology Inc. DS70182A-page 22-59

dsPIC33F Family Reference Manual

NOTES:

DS70182A-page 22-60 © 2006 Microchip Technology Inc.

	Section 22. Direct Memory Access (DMA)
	22.1 Introduction
	Figure 22-1: DMA Controller

	22.2 DMA Registers
	Register 22-1: DMAxCON: DMA Channel x Control Register�
	Register 22-2: DMAxREQ: DMA Channel x IRQ Select Register
	Register 22-3: DMAxSTA: DMA Channel x DPSRAM Start Address Offset Register A�
	Register 22-4: DMAxSTB: DMA Channel x DPSRAM Start Address Offset Register B�
	Register 22-5: DMAxPAD: DMA Channel x Peripheral Address Register
	Register 22-6: DMAxCNT: DMA Channel x Transfer Count Register
	Register 22-7: DSADR: Most Recent DMA DPSRAM Address Register
	Register 22-8: DMACS0: DMA Controller Status Register 0�
	Register 22-9: DMACS1: DMA Controller Status Register 1�

	22.3 DMA Block Diagram
	Figure 22-2: DMA Controller Block Diagram

	22.4 DMA Data Transfer
	Figure 22-3: DMA Data Transfer Example

	22.5 DMA Set Up
	22.5.1 DMA Channel to Peripheral Association Set Up
	Table 22-1: DMA Channel to Peripheral Associations

	22.5.2 Peripheral Configuration Set Up
	Table 22-2: Configuration Considerations for DMA-Ready Peripherals

	22.5.3 Memory Address Initialization
	Figure 22-4: Data Memory Map for dsPIC33 Family Devices with 30 Kbytes RAM
	Figure 22-5: Primary and Secondary Buffer Allocation in DMA Memory
	Figure 22-6: Primary and Secondary DMA Buffer Allocation with MPLAB® IDE

	22.5.4 DMA Transfer Count Set Up
	22.5.5 Operating Mode Set Up

	22.6 DMA Operating Modes
	22.6.1 Word or Byte Data Transfer
	22.6.2 Transfer Direction
	22.6.3 Full or Half Block Transfer Interrupts
	Figure 22-7: Half Block Transfer Mode
	Table 22-3: Interrupt Controller Settings for Enabling/Disabling DMA Interrupts
	Example 22-1: Code to Enable DMA Channel 0 Interrupt
	Table 22-4: Interrupt Controller Settings for Clearing DMA Interrupt Status Flags
	Example 22-2: Code to Clear DMA Channel 0 Interrupt

	22.6.4 Register Indirect With Post-Increment Addressing Mode
	Figure 22-8: Data Transfer With Register Indirect With Post-Increment Addressing
	Example 22-3: Code for Output Compare and DMA with Register Indirect Post-Increment Mode

	22.6.5 Register Indirect Without Post-increment Addressing Mode
	Figure 22-9: Contrast of Data Transfer With and Without Post-Increment Addressing
	Example 22-4: Code for Input Capture and DMA with Register Indirect Without Post-Increment Addres...

	22.6.6 Peripheral Indirect Addressing Mode
	Figure 22-10: Address Offset Generation in Peripheral Indirect Addressing Mode
	22.6.6.1 ADC Support for DMA Address Generation
	Figure 22-11: Data Transfer from ADC with Register Indirect Addressing
	Example 22-5: Code for Data Transfer from ADC with Register Indirect Addressing
	Example 22-5: Code for Data Transfer from ADC with Register Indirect Addressing (Continued)
	Figure 22-12: Data Transfer from ADC with Peripheral Indirect Addressing
	Example 22-6: DMA buffer alignment with MPLAB® C30
	Example 22-7: Code for ADC and DMA with Peripheral Indirect Addressing
	Example 22-6: Code for ADC and DMA with Peripheral Indirect Addressing (Continued)

	22.6.6.2 ECAN Support for DMA Address Generation
	Figure 22-13: Data Transfer from ECAN with Peripheral Indirect Addressing
	Example 22-7: DMA buffer alignment with MPLAB® C30
	Example 22-8: Code for ECAN and DMA with Peripheral Indirect Addressing
	Figure 22-14: Data Transfer from ECAN with Register Indirect Addressing

	22.6.7 One-Shot Mode
	Figure 22-15: Data Block Transfer with One-Shot Mode
	Example 22-9: Code for UART and DMA with One-Shot Mode
	Example 22-8: Code for UART and DMA with One-Shot Mode (Continued)

	22.6.8 Continuous Mode
	Figure 22-16: Repetitive Data Block Transfer with Continuous Mode

	22.6.9 Ping-Pong Mode
	Figure 22-17: Repetitive Data Transfer in Ping-Pong Mode
	Example 22-9: Code for DCI and DMA with Continuous Ping-Pong Operation
	Example 22-9: Code for DCI and DMA with Continuous Ping-Pong Operation (Continued)
	Figure 22-18: Single Block Data Transfer in Ping-Pong Mode

	22.6.10 Manual Transfer Mode
	Figure 22-19: Data Transfer Initiated in Manual Mode

	22.6.11 Null Data Write Mode
	Figure 22-20: Data Transfer With Null Data Write Mode
	Example 22-10: SPI and DMA With Null Data Write Mode

	22.7 Starting DMA Transfer
	22.7.1 Starting DMA with the Serial Peripheral Interface (SPI)
	22.7.2 Starting DMA with the Data Converter Interface (DCI)
	22.7.3 Starting DMA with the UART

	22.8 DMA Channel Arbitration and Overruns
	Table 22-5: Overrun Handling by DMA-Ready Peripherals

	22.9 Debugging Support
	22.10 Data Write Collisions
	Example 22-11: DMA Controller Trap Handling:

	22.11 Operation in Power-Saving Modes
	22.11.1 Sleep Mode
	22.11.2 Idle Mode

	22.12 Design Tips
	22.12.1 Interfacing DMA with DCI
	Figure 22-21: Typical Data Transfer for the DCI
	Figure 22-22: Sorting DCI Channel Data With Two DMA Channels

	22.13 Register Maps
	Table 22-6: DMA-Associated Register Map�

	22.14 Related Application Notes
	22.15 Revision History

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

