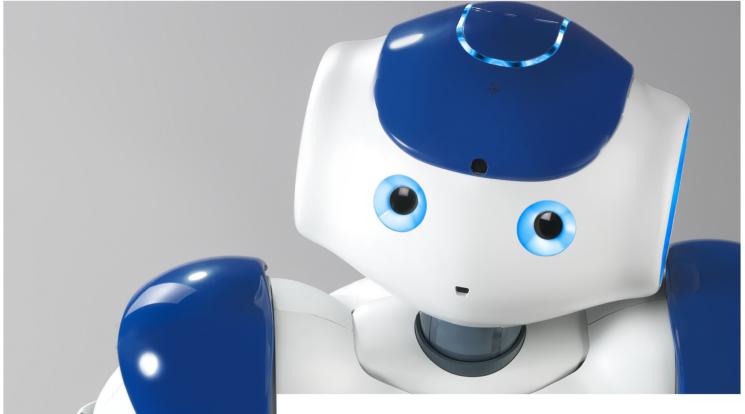


NAO[®], THE IDEAL PARTNER FOR RESEARCH AND EDUCATION IN THE FIELD OF ROBOTICS


Fully programmable Multiple sensors Onboard computer Remote control Friendly design and lightweight

Nao Academics Edition key features

- 25 Degrees of Freedom
- Two prehensile hands
- x86 AMD Geode 500 Mhz CPU
- 256 MB SDRAM / 2 GB Flash mem
- Wi-Fi 802.11b and ethernet port
- 2x 30 FPS CMOS videocam res. 640x480
- Vision processing capacities
- Two loudspeakers and English vocal synthesis
- Supports multiple programming environments

Comes with software and complete documentation

After 3 years of research, Aldebaran Robotics[™] has developed Nao® a 58 cm (23") tall biped robot. It's a unique combination of hardware and software in a great design.

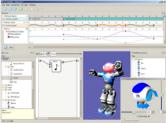
Nao stands tall in all points amongst its robotic brethren. The hardware has been built from the ground up with the latest technologies providing great fluidity in its movements and offering a wide range of sensors. Platform agnostic, it can be programmed and controlled using Linux, Windows or Mac OS and comes with complete software and documentation.

All-in-one humanoid robot

MOVEMENT

Nao comes with 25 degrees of freedom for great mobility. The inertial sensor provides great stability while moving and enables positioning within space. Sonars and FSRs allow Nao to detect its environment and to navigate seamlessly.

His state-of-the-art onboard actuators give Nao extreme precision in its movements.


INTERACTION

Nao features embedded software modules allowing text to speech, sound localization, visual pattern and coloured shape detection, obstacle detection (based on the two channel sonar system) and visual effects or communication through the many LEDs.

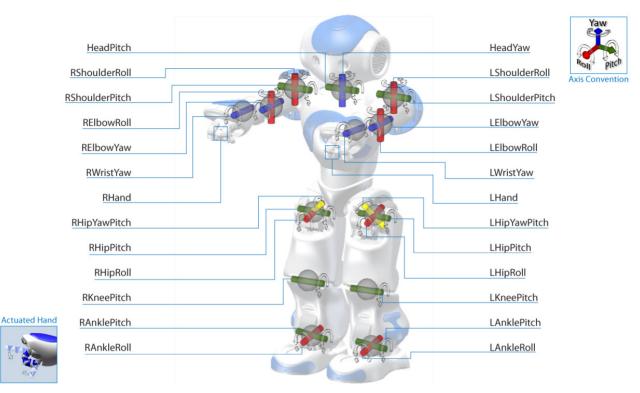
PROGRAMMING

Nao contains an open framework which allows distributed software modules to interact together seamlessly. Depending on the user's expertise, Nao can be controlled via Choregraphe®, our user friendly behavior editor, by programming C++ modules, or by interacting with a rich API from scripting languages.

In addition to the high level API which allows users to make Nao walk and balance, advanced users can take advantage of low level access to sensors and actuators and can, if they wish, replace our code with custom adaptations.

In order to allow users to validate motion sequences, simulators are available for Microsoft Robotics Studio and Webots.

BODY AND MULTIMEDIA


Nao can be personalized with different colors (red, blue or customized colors...). His integrated multimedia components (Hi-Fi speakers system, microphones system, 2 digital cameras) allow many different capabilities like speech, playing music, localizing sound sources or face detection programs.

Programming Languages URBI Script, C, C++, Python Programming Software Aldebaran Choregraphe (included) Microsoft Robotics Studio (not included) Cyberbotics Webots (not included) Gostai Urbi Studio (not included) Operating Systems Linux, Windows XP, Mac OS X

Kinematics

The scheme above presents all the robot's axes. Together, these axes allow 25 degrees of freedom, which when coupled with the inertial sensor, the force sensitive resistors, the Hall effect sensors, the infrared receiver and the sonar sensors, allows Nao® a high level of stability and fluidity in its movements.

Motion range

PART	JOINT NAME	MOTION	RANGE (degrees)
Head	HeadYaw	Head joint twist (Z)	-120 to 120
	HeadPitch	Head joint front & back (Y)	-39 / 30
	LShoulderPitch	Left shoulder joint front & back (Y)	-120 to 120
	LShoulderRoll	Left shoulder joint right & left (Z)	0 to 95
Left arm	LElbowRoll	Left shoulder joint twist (X)	-90/0
Leitarm	LElbowYaw	Left elbow joint (Z)	-120 / 120
	LWristYaw	Left wrist joint twist (X)	-105 to 105
	LHand	Left hand	open & close
	LHipYawPitch	Left hip joint twist (Z45°)	-44 / 68
	LHipPitch	Left hip joint front and back (Y)	-104.5 / 28.5
L officia a	LHipRoll	Left hip joint right & left (X)	-25 to 45
Left leg	LKneePitch	Left knee joint (Y)	-5 / 125
	LAnklePitch	Left ankle joint front & back (Y)	-70.5 / 54
	LAnkleRoll	Left ankle joint right & left (X)	-45 to 25
	RHipYawPitch	Right hip joint twist (Z45°)	-68 / 44
	RHipPitch	Right hip joint front and back (Y)	-104.5 / 28.5
Disktien	RHipRoll	Right hip joint right & left (X)	-45 to 25
Right leg	RKneePitch	Right knee joint (Y)	-5 / 125
	RAnklePitch	Right ankle joint front & back (Y)	-70.5 / 54
	RAnkleRoll	Right ankle right & left (X)	-25 to 45
Right arm	RShoulderPitch	Right shoulder joint front & back (Y)	-120 to 120
	RShoulderRoll	Right shoulder joint right & left (Z)	-95 to 0
	RElbowRoll	Right shoulder joint twist (X)	0 / 90
	RElbowYaw	Right elbow joint (Z)	-120 / 120
	RWrist Yaw	Right wrist joint twist (X)	-105 to 105
	RHand	Right hand	open & close

General characteristics

Body caracteristics				
Height	~ 58 cm			
Weight	~ 4.3 Kg			
Body type	Technical plastic			
Energy				
Charger	AC 90-230 volts/DC 24 volts			
Battery capacity	~ 90 min. autonomy			
Degrees of freedom				
Head	2 DOF			
Arm	5 DOF in each arm			
Pelvis	1 DOF			
Leg	5 DOF in each leg			
Hand	1 DOF in each hand			
Multimedia				
Speakers	2 Loudspeakers			
Microphones	4 Microphones			
Vision	2 CMOS digital cameras			
Network access				
Connections type	Wi-Fi (IEE 802.11g)			
connections type	Ethernet connection			

Actuators			
	Hall effect sensors		
Aldebaran Robotics™ original design based on:	dsPICS microcontrollers		
originat acoign baoca on.	Coreless MAXON DC motors		
Sensors			
	32 x Hall effect sensors		
	1 x gyrometer 2 axis		
	1 x accelerometer 3 axis		
Different type	2 x bumpers		
	2 channel sonar		
	2 x I/R		
	Tactile sensor		
LED			
Tactile sensor	12 LED 16 Blue levels		
Eyes	2 x 8 LED RGB Fullcolour		
Ears	2 x 10 LED 16 Blue levels		
Torso	1 LED RGB Fullcolour		
Feet	2 x 1 LED RGB Fullcolour		
Motherboard			
x86 AMD GEODE 500MHz CPU	256 MB SDRAM / 2 GB flash memory		
Embedded Software			
OS	Embedded Linux (32 bit x86 ELF) using custom OpenEmbedded based distribution		
Programming languages	C, C++, Urbi script, Python		

Motor specifications

Nao® is equipped with two different motor types with the following characteristics:

Motor Type 1	
No Load Speed	8000 RPM
Stall Torque	59.5 mNm
Nominal Speed	6330 RPM
Nominal Torque	12.3 mNm
Reduction ratio type 1	201,3
No Load Speed	238.45 °/s (4.76°/20ms)
Stall Torque	11.97 Nm (without the ratio efficiency)
Nominal Speed	188.67 °/s (3.77°/20ms)
Nominal Torque	2.47 Nm (without the ratio efficiency)
Reduction ratio type 2	130,85
No Load Speed	366.83 °/s (7.33°/20ms)
Stall Torque	7.78 Nm (without the ratio efficiency)
Nominal Speed	290.25 °/s (5.80°/20ms)
Nominal Torque	1.61 Nm (without the ratio efficiency)

Motor Type 2	
No Load Speed	11900 RPM
Stall Torque	15.1 mNm
Nominal Speed	8810 RPM
Nominal Torque	3.84 mNm
Reduction ratio type 1	150,27
No Load Speed	473.72 °/s (9.47°/20ms)
Stall Torque	2.27 Nm (without the ratio efficiency)
Nominal Speed	351.77 °/s (7.03°/20ms)
Nominal Torque	0.57 Nm (without the ratio efficiency)
Reduction ratio type 2	173,22
No Load Speed	412.19 °/s (8.24°/20ms)
Stall Torque	2.61 Nm (without the ratio efficiency)
Nominal Speed	305.16 °/s (6.10°/20ms)
Nominal Torque	0.66 Nm (without the ratio efficiency)

All specifications are not contractual and are subject to change.

www.aldebaran-robotics.com academics@aldebaran-robotics.com Tel: +33 1 77 371 752 Fax: +33 1 77 352 268

Aldebaran Robotics, the Aldebaran Robotics logo, and Nao are trademarks of Aldebaran Robotics company. Other trademarks and trade names used in this document refer either to the entities claiming the marks and names, or to their products. Aldebaran Robotics disclaims proprietary interest in the marks and names of others. Chorégraphe® & Nao® are registered trademarks of Aldebaran Robotics. The design of Nao® is the property of Aldebaran Robotics. All the photos featured in this document are non contractual and are the property of Aldebaran Robotics.

ALDEBARAN Robotics - SA au capital de 1 968 099 € ; Siège social : 168bis-170 rue Raymond Losserand - 75014 Paris RCS Paris 483 185 807 - TVA intracommunautaire FR06483185807