ISE 422/ME 478/ISE 522 Robotic Systems

Overview of Course

R. Van Til

Industrial \& Systems Engineering Dept.
Oakland University

What kind of robots will be studied?

This kind

Not this kind

Robots Used in this Course

All robots are located in the S. \& R. Sharf
Computer-Integrated Manufacturing Laboratory (room 21 SEB)

Fanuc LR Mate 100

Kuka KR3

Amtec PowerCube

Robots Used in this Course

Fanuc SR Mate 100i

Fanuc ARC Mate 100

Course Outline

- Overview of robotic systems
- Robot programming
- Modeling 3-dimensional position \& orientation
- Denavit-Hartenburg kinematic model
- Forward (or direct) kinematic solution
- Reverse (or inverse) kinematic solution
- Trajectory planning \& Jacobian matrix
- Overview of robot dynamics

Robot Programming

- Native robot programming languages are text based.
- Similar to Basic or C++.
- Examples include:
» Karol (Fanuc Robotics)
" RAPID (ABB Robotics)
- Few programs are written directly in these native languages.

Robot Programming

- Example of a Fanuc robot program.

```
R[3] = 1
LBL[4]
RO[1] = OFF
J P[1] 50% FINE
PR[2] = P[1]
PR[2,3] = PR[2,3] - 200
L PR[2] 20% FINE
WAIT 0.5
RO[1] = ON
WAIT 0.5
L P[1] 20% FINE
J P[3] 100% CNT50
R[3] = R[3] + 1
IF R[3] <= 5, JMP LBL[4]
```


Robot Programming

- Tools used to write robot programs.
- Teach pendant.
» Uses a menu environment to write the robot program.
- We will use this tool in the Sharf CIM Laboratory.
- Off-Line Programming (OLP) tools.
» Uses a simulation environment to produce a robot program off-line that is then down-loaded to the robot.
- Examples include I-GRIP (DELMIA) and ROBOGUIDE (Fanuc).

Robot Programming

Roboguide simulation

Modeling 3-Dimensional Position \& Orientation

- What's the position of the object?

$$
\begin{array}{|c|}
\hline \text { Piece of cake! } \\
(x, y, z)=(a, b, c) \\
\hline
\end{array}
$$

Modeling 3-Dimensional Position \& Orientation

- What's the orientation of the object?

Modeling 3-Dimensional Position \& Orientation

- What's the orientation of the object?

> Note this object has the same position but a different orientation. Orientation information is very important if the robot has to pick-up this part.

Modeling 3-Dimensional Position \& Orientation

- The mathematical techniques used by robotic manipulators to model position and orientation are from linear transformation theory.
- Position
" Modeled using vectors.
- Orientation
" Modeled using matrices.

Denivat-Hartenburg Kinematic Model

- The D-H model presents a standard method for developing a kinematic model of a multilink chain of rigid bodies.
- Each link can either rotate about, or translate along, a joint axis.
» First, a coordinate system is placed on each of the robot's links following the D-H rules.
» Next, a kinematic model is constructed using linear transformation theory techniques.

Kinematic Solutions

- Forward Kinematic Solution (FKS).
- Given the robot's joint variables, the FKS computes the resulting position and orientation of the tool.

Fanuc ARC Mate 100
Select joint angles $\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}, \theta_{6}\right)$, then FKS computes location of the tool.

Kinematic Solutions

- Forward Kinematic Solution (FKS).
- The FKS is straightforward to construct using the D-H rules.
- The FKS consists of a 4×4 matrix that is a function of the robot's joint variables.
" Each joint variable is either an angle or a displacement.
- The FKS is also called the direct kinematic solution.

Kinematic Solutions

- Reverse Kinematic Solution (RKS).
- Given a desired position and orientation for the robot's tool, the RKS computes the resulting joint variables.

```
Fanuc ARCmate 100
Select location for the tool, then RKS computes joint angles \(\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}, \theta_{6}\right)\) needed to get there.
```


Kinematic Solutions

- Reverse Kinematic Solution (RKS).
- It is constructed from the robot's FKS.
- It consists of an algorithm that contains both mathematical equations and logical statements.
- The RKS is also called the inverse kinematic solution.

Trajectory Planning

- The objective in trajectory planning is to make a robot follow (or track) a specified:

position, velocity \& acceleration Called a trajectory

- Trajectory planning is used in two domains:

1. Joint space.
2. Cartesian space.

Trajectory Planning - Joint Space

- How to make each individual joint follow a specified position, velocity and acceleration.
- If the robot has N joints, then the robot controller must make each joint $(\mathrm{i}=1, \ldots, \mathrm{~N})$ follow specified:

$$
\theta_{\mathrm{i}}(\mathrm{t}), \dot{\theta}_{\mathrm{i}}(\mathrm{t}) \& \ddot{\theta}_{\mathrm{i}}(\mathrm{t})-\text { if joint i rotates }
$$

or

$$
\mathrm{d}_{\mathrm{i}}(\mathrm{t}), \dot{\mathrm{d}}_{\mathrm{i}}(\mathrm{t}) \& \ddot{\mathrm{~d}}_{\mathrm{i}}(\mathrm{t}) \text { - if joint i translates }
$$

This is not a difficult problem!

Trajectory Planning - Cartesian Space

- How to make both the position and orientation of the robot's end-effector track a specified trajectory in Cartesian space.
- Requires the controller to coordinate the motion of all N joints on the robot.
- Applications include arc welding, spray painting and applying sealant.

This is a difficult problem!

Trajectory Planning - Cartesian Space

- Methods commonly used in robotics to solve the problem of trajectory planning in Cartesian space include:
- Point-to-point approach.
- Jacobian matrix.

Robotic Dynamics

- Robots are extremely complex dynamic systems.
- ISE 422/ME 478/ISE 522 presents a short overview of robot dynamics.
- SYS 623 presents a detailed analysis of robot dynamics.

