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Abstract. The design of robotic manipulators begins with the dimensioning of the various links to meet performance
specifications. However, a methodology for the determination of the manipulator architecture, i.e., the fundamental
geometry of the links, regardless of the shape of these, is still lacking. Attempts have been made to apply the classical
paradigms of linkage synthesis for motion generation, as in Burmester Theory. The problem with this approach is
that it relies on a specific task, described in the form of a discrete set of end-effector poses, which kills the very
purpose of using robots, namely, their adaptability to a family of tasks. Another approach relies on the minimization
of the condition number of the Jacobian matrix over the architectural parameters and the pose variables of the
manipulator. This approach is not trouble-free either, for the matrices involved can have entries of different units, the
matrix singular values thus being of disparate dimensions, which prevents the evaluation of the condition number.
As a means to solve the dimensional-inhomogeneity problem, the concept of characteristic length has been put forth.
However, this concept has been slow in finding acceptance within the robotics community, probably because it lacks
a direct geometric interpretation. In this paper the concept is revisited and given a simple geometric interpretation.
The application of the concept to the design and kinetostatic performance evaluation of serial robots is illustrated
with examples.

1. Introduction

In spite of the enormous progress made in the area of robot kinematics since the eighties, a broadly
acceptable methodology for the determination of the parameters defining the fundamental geometry
of both serial and parallel robots is still lacking. Nevertheless, this stage, that we can call link-
dimensioning, is key in robot design, for the fundamental link dimensions at stake determine all
other robot dimensions. Here, we refer to the fundamental geometry of a serial robot as the geometry
arising from the relative pose between the axes of the two revolutes—prismatic joints can also be
accommodated, but these will be left out of the scope of this paper for conciseness—attached
to each link, except for the base and the end-effector. This geometry thus consists of two lines
in space at a constant relative pose, defining any of the intermediate robot links. The common
normal to the axes can be regarded as a third line intersecting the first two. The distance between
the two lines and the oriented angle between the two lines are the fundamental link dimensions,
which determine the fundamental geometry of the link. Notice that the angle is oriented in the
sense that a change of sign of this angle leads to a link with the same fundamental geometry,
except for its orientation: one is the mirror image of the other. When all links are coupled to form
an open kinematic chain, which constitutes the skeleton of the robot, the relative location of the
intersection points of the common normals with the revolute axes defines one more fundamental link
dimension. All fundamental link dimensions constitute the architecture parameters of the robot. A
robot architecture does not change as the robot moves. What changes is the relative orientation of
the neighboring normals, their distance remaining constant. This orientation is given by an angle
that, along with the fundamental dimensions of all the links, constitute the Denavit-Hartenberg
parameters of the robot.

Attempts to optimize the fundamental link dimensions of serial manipulators can be traced
back to the work of Vinogradov et al. (1971), who introduced the concept of service angle as a
figure of merit in robot geometry. The concept was further studied in (Yang and Lai, 1985), while
Yoshikawa (1985) introduce manipulability as a means to measure the capability of a robot to exert
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a twist, i.e., a velocity of the operation point (OP) and an angular velocity of the end-effector
(EE). Vijaykumar et al. (1986) proposed guidelines to determine the above dimensions using an
optimization approach.

The use of the Jacobian condition number to design a two-link mechanical finger was proposed
in (Salisbury and Craig, 1982). The same concept was used to choose an optimum robot posture
as an initial guess in computing the robot inverse kinematics (Angeles and Rojas, 1987). Germane
to the Jacobian condition number, the concept of conditioning index was put forth in the same
context (Angeles and López-Cajún, 1992) as a figure of merit in robot design. This concept was
then extended to the design of redundant robots (Angeles, 1995). In the foregoing reference, the
characteristic length was introduced as a means to cope with the lack of dimensional homogeneity
in the entries of the Jacobian matrix.

The two indices that have been found most suitable for robot design are manipulability (Yoshika-
wa, 1985) and the condition number (Angeles and Rojas, 1987). Both rely on the singular values of
the Jacobian matrix, the former being computed as the product of these, the latter as the ratio of
the largest to the smallest one. Manipulability has been found to be too limited in robot design, as
it cannot tell a large from a small end-effector, i.e., it is independent of the end-effector operation
point, which is the point at which the task is specified (Angeles, 2002). The condition number, in
turn, entails the problem of being undefined when the singular values bear distinct dimensions. The
introduction of the characteristic length, as a means to allow for a normalization of the Jacobian
matrix, i.e., of rendering all its entries dimensionless, solves the problem of lack of dimensional
homogeneity. This length is defined in (Tandirci et al., 1992) as that by which the entries of the
Jacobian matrix are divided to render it dimensionless and of a minimum condition number at a
posture that is found by means of an optimization procedure. This definition of the characteristic
length is thus too cumbersome to lend itself to a straightforward geometric interpretation. In this
paper we revisit the concept and produce an alternative definition, that does not alter its original
significance, but that sheds light on such interpretation.

2. The Concept of Homogeneous Space

Let us define a homogeneous space as a Euclidean space whose points bear dimensionless coordi-
nates, the position vector of a point P of this space thus being dimensionless, and represented by
ρ. We will call this point homogeneous, to distinguish it from its usual counterpart, whose position
vector bears units of length. Note that we will not use Cartesian coordinates of points in this
paper, for which reason there should not be confusion between the—dimensionless—coordinates
of a homogeneous point and the homogeneous coordinates (Angeles, 2002) of a point in the usual
sense. Henceforth, we will refer to the three-dimensional Euclidean space as the usual space for
brevity.

A homogeneous line H is defined as usual, except that its points are all homogeneous, and
hence, dimensionless. Line H is thus fully determined by its direction, given by a unit—and hence,
dimensionless—vector e and a homogeneous point PH of dimensionless position vector ρ contained
in H, as depicted in Fig. 1, where O denotes the origin of the homogeneous space.

LineH can thus be specified by means of vector e and its dimensionless moment vector n ≡ ρ×e;
both e and n will be grouped in the six-dimensional array of homogeneous Plücker coordinates πH ,
all of whose entries are dimensionless, namely,

πH ≡
[
e
n

]
, ‖e‖ = 1, e · n = 0 (1)
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Figure 1. A homogeneous line in homogeneous space

2.1. The Homogeneous Jacobian Matrix of a Serial Manipulator

Consider a set of n homogeneous lines Hi, for i = 1, 2, . . . , n, each line being defined by its unit
vector ei and its moment ni. If we regard these lines as the n revolute axes of a homogeneous
manipulator, then the 6× n homogeneous Jacobian matrix of the manipulator is

H ≡
[

e1 e2 · · · en

e1 × ρ1 e2 × ρ2 · · · en × ρn

]
(2)

in which −ρi, for i = 1, 2, . . . , n, is defined from a point O
′
i on Hi to the operation point P of the EE

of the homogeneous manipulator, as depicted in Fig. 2. In this figure, notice that any point on Hi

can be used; however, in order to uniquely define this point in the ensuing optimization procedure,
we choose it as that point of Hi closest to P , vector ρi thus being normal to ei.

Figure 2. The point O
′
i on Hi, defined as the point of this line lying closest to the operation point P

In order to compute the homogeneous Jacobian H, we need both a manipulator architecture
and a manipulator posture. The former is given by the set of Denavit-Hartenberg (DH) parameters
(Denavit and Hartenberg, 1964) that define the fundamental geometry of all the links, i.e., the
relative pose between the two revolute axes of a link, and hence, do not change as the manipulator
moves: { ai, bi, αi }n

1 . In this notation, ai is the homogeneous distance between Hi and Hi+1, and
hence, is a nonnegative, dimensionless real number. In order to define bi, we rely on the definition
of the DH frames (Denavit and Hartenberg, 1964) Fi, for i = 1, 2, . . . , n, that comprise an origin Oi

and coordinate axes Xi, Yi, Zi. Since the origins Oi of the DH frames are unambiguously defined by
the DH notation, their counterparts Oi in homogeneous space need not coincide with points O

′
i of

Fig. 2. As a matter of fact, point Oi is fixed on Hi, while point O
′
i changes its position on this line as

the robot changes its posture. Furthermore, we define the homogeneous DH frames F i with origin
at Oi and axes Xi, Y i, and Zi in homogeneous space. Now, bi can be defined as the Zi-coordinate of
the intersection of Zi with Xi+1, and hence, is a dimensionless real number that can be positive or
negative. Finally, angle αi, sometimes referred to as the twist angle between successive axes, is that
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Figure 3. The two singular values of the two-revolute manipulator with a2/a1 =
√

2/2 vs. θ2

between Zi and Zi+1, and measured positive in the direction of Xi+1. Apparently, the twist angle
is the same in homogeneous as in the usual space, and hence, we need not distinguish one from the
other. Since ai and bi are defined in homogeneous space, they are both dimensionless quantities,
and hence, define with the set of twist angles what we can call a homogeneous manipulator.

The posture of the manipulator, in turn, is defined by the set of joint variables { θi }n
1 , with θi

measured between axes Xi and Xi+1, and defined as positive in the direction of Zi. Apparently,
the joint variables in homogeneous space are identical to those in the usual space, and hence, we
need not distinguish one set from the other.

We have thus completely defined the homogeneous Jacobian H, all whose entries are dimen-
sionless quantities. In this vein, then, the six singular values of 6× n H are all dimensionless, and
hence, can be ordered from smallest to largest: σ1 ≤ σ2 ≤ · · · ≤ σ6, where we have assumed n ≥ 6.
The 2-norm condition number (Golub and Van Loan, 1989) κ2(H) of the homogeneous Jacobian
H is, then,

κ2(H) =
σ6

σ1
(3)

The above definition of condition number is simple to state. However, it is rather cumbersome
to work with. Indeed, the minimum—as well as the maximum—singular value of a matrix is not
an analytic function of the matrix everywhere, i.e., for any real value of its scalar arguments. Here,
we recall that a function is analytic at a point if the function admits a series expansion at that
point. This requires that the function, first and foremost, have all its derivatives with respect to
the argument continuous. To illustrate this point, let us consider the case of a two-revolute planar
manipulator, with link-lengths a1 and a2. The Jacobian matrix of this manipulator is known to be
(Angeles, 2002)

J = a1

[−s1 − rs12 −rs12

c1 + rc12 rc12

]

where r ≡ a2/a1, and, for i = 1, 2, si = sin θi and ci = cos θi. We also define s12 ≡ sin(θ1 + θ2) and
c12 ≡ cos(θ1 + θ2). Here, θi, for i = 1, 2, are defined according with the DH notation.

For the special case in which r =
√

2/2, this manipulator is known to have a Jacobian with a
condition number of unity (Salisbury and Craig, 1982) when θ2 = 3π/4. The singular values of the
above Jacobian, normalized upon dividing them by a1, vs. θ2, are displayed in Fig. 3. In this figure,
it is apparent that the two singular values trade places as the largest and the smallest at θ2 = 3π/4.

The condition number of the same manipulator, defined as in eq.(3), is bounded from below
by unity and unbounded from above. Hence, it is not a good idea to even attempt to plot this
quantity. However, its inverse is bounded from below by 0 and from above by unity, as plotted in
Fig. 4, which clearly shows a cusp at θ2 = 3π/4. This feature makes the 2-norm condition number
extremely cumbersome to work with. As an alternative, we use a definition of the condition number
based on the Frobenius norm (Golub and Van Loan, 1989) instead. The Jacobian matrix H is of
6× n, and hence, rectangular in the case of redundant manipulators, with n > 6. For nonredunant
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Figure 4. Inverse of condition number κ2(J) vs. θ2

manipulators, H is of 6× 6, and hence, square. The condition number κF (H) of a square H, based
on the Frobenius norm, is defined as

κF (H) ≡ ‖H‖F ‖H−1‖F (4a)

where1

‖H‖F ≡
√

1
6
tr(HHT ) ≡

√
1
6
tr(HTH) (4b)

in which we have used a weighted norm, as explained in the Appendix, and applied a property of the
trace of a product of matrices: The trace of the product is invariant under cyclical permutations of
the order of the matrix factors. Additionally, the Frobenius norm of H−1 follows directly from the
above expressions. A problem can be detected here when H is rectangular, for rectangular matrices
do not have inverses. Nevertheless, rectangular matrices do have generalized inverses. In the case
at hand, the right generalized inverse H† of 6 × n H, with n > 6, is defined as (Golub and Van
Loan, 1989)

H† = HT (HHT )−1 (5)

The condition number κF (H) sought, then, reduces to

κF (H) =
√

1
36

tr(HTH)tr[(HTH)−1] ≡ 1
6

√
tr(HTH)tr[(HTH)−1] (6)

The foregoing expression could have also been obtained without resorting to the generalized
inverse. Indeed, if we notice that the singular values of HHT are identical to its eigenvalues and
equal to the squares of the singular values of H, then we can write

κF (H) =
√

1
36

tr(HHT )tr[(HHT )−1] (7)

which is an expression valid for any 6× n matrix, with n ≥ 6.
If we retake our example two-link robot, and compute the condition number of its Jacobian

matrix J based on the Frobenius norm, then we will need J−1, which is

J−1 =
1

a1rs2

[
rc2 rs2

−(1 + rc2) −rs2

]

1 Nonredundant manipulators with two to five axes require a coefficient of the trace in the definition of the
Frobenius norm of 1/2 to 1/5, correspondingly.
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Figure 5. Inverse of condition number κF (J) vs. θ2

and κF (J) is computed as κ = ‖J‖F ‖J−1‖F , where

‖J‖F =
√

1
2
tr(JTJ) =

a1

√
1 + 2r2 + 2rc2√

2
(8a)

Therefore,

‖J−1‖F =
√

1
2
tr(J−TJ−1) =

√
1 + 2r2 + 2rc2√

2 a1rs2

(8b)

Hence,

κF (J) =
1 + 2r2 + 2rc2

2rs2
(9)

A plot of the inverse of the foregoing condition number vs. θ2 is displayed in Fig. 5.
It is apparent from Fig. 5 that the condition number based on the matrix Frobenius norm

is smooth everywhere. This feature makes the condition number thus evaluated quite attractive
in applications. For example, this definition allows the use of gradient methods to minimize the
condition number over architecture parameters and posture variables. For conciseness, however, we
leave aside the numerics behind optimization methods in this paper. From eq.(7), the computation
of κF requires only the inversion of a positive-definite 6×6 matrix. On the contrary, the computation
of κ2, as made apparent by eq.(3), requires an iterative procedure to calculate the eigenvalues of
HHT . Since the numerical optimization methods required by the problem at hand fall in the realm
of nonlinear programming, which are invariable iterative, the use of iterative techniques at each
iteration of the optimization procedure itself is strongly recommended against; their use would
bring about nested itertative procedures.

3. Formulation of the Optimization Problem

In this section we formulate the problem of optimum dimensioning of a n-axis serial manipulator
over its architecture parameters { ai, bi, αi }n

1 and posture variables { θi }n
1 . This problem was solved

in (Ranjbaran et al., 1995) for n = 7 by means of minimizing the distance of the manipulator
Jacobian to its isotropic counterpart. The approach we take in this paper is direct in that we
minimize the condition number itself. Before we embark on the formulation of the optimization
problem at hand, it is noteworthy that not all architecture parameters and not all posture variables
influence the condition number. Indeed, a change of b1, or of b1 for that matter, with all other
architecture parameters unchanged and all joint variables—posture variables—locked, amounts to
a pure translation of the manipulator, as if it were a rigid body, along the first revolute axis.

robotdes0312.tex; 9/01/2004; 14:13; p.6



7

Likewise, a rotation of the manipulator, of fixed architecture, while locking all joints but the first
one, amounts to a rotation of the whole manipulator about the first axis, as if it were a rigid body.
Furthermore, the nth column of a manipulator Jacobian representing the Plücker coordinates of
the nth manipulator axis, this column is not influenced by αn, which is the angle between Zn and
Zn+1; the latter is an axis attached to the end-effector and defined in terms of the task at hand.
Obviously, αn does not influence the condition number of the manipulator, which does not depend
on the task.

Now, since the condition number of a manipulator is an intrinsic property of the manipulator,
and we have adopted a frame-invariant definition of the condition number—the adopted definition
is based on the Frobenius norm, which is frame-invariant—neither rigid-body displacements of the
manipulator nor the task influence it. We can now state the result below:

THEOREM 1. The first joint variable of a serial, n-revolute homogeneous manipulator does not
influence the condition number of its homogeneous Jacobian; neither do the architecture parameters
b1 and α7.

Notice that the above result cannot be extended to the inhomogeneous Jacobian because no
condition number can be associated with it.

Now, if we consider that a n-revolute manipulator has three architecture parameters and one
posture variable per joint, its homogeneous Jacobian has a total of 4n design variables over which
the designer can minimize its condition number. Out of these variables, three do not influence
the condition number, and hence, we are left with 4n − 3 design variables, which we group in the
(4n− 3)-dimensional vector x, defined as

x ≡ [ a1 α1 a2 b2 α2 θ2 · · · an bn θn ]T (10)

However, not all the 4n − 3 components of x are independent. They are subject to a few
constraints, whether directly or indirectly, namely,

‖ei‖ = 1, i = 2, . . . , n (11a)
ei · ρi = 0, i = 1, 2, . . . , n (11b)

ai ≥ 0, i = 1, 2, . . . , n (11c)

In constraint (11a) we have excluded e1 because this unit vector is not influenced by any of the
design variables. We thus end up with a total of 2n− 1 equality and n inequality constraints. The
former are relatively simple to handle in optimum-design problems; the latter, on the contrary,
pose some computational difficulties. Although there is a body of knowledge—see, e.g., (Rao, 1996)
and the extensive bibliography therein—to deal with inequality constraints, this type of constraints
nevertheless can hamper the convergence of any optimization method. Hence, inequality constraints
are to be avoided whenever possible. By taking an idea originally proposed by Freudenstein in
the context of linkage synthesis (Freudenstein, 1954), and recalling the definition of vector ai,
directed from the origin Oi to the origin Oi+1 of the DH frames, we can readily dispense with the
above inequality constraints. Indeed, the components of ai, the homogeneous counterpart of ai, in
F i-coordinates are (Angeles, 2002)

ai =




ai cos θi

ai sin θi

bi




The presence of a solution with ai < 0 can be interpreted as indicating a positive ai, but with the
corresponding θi augmented by π. Indeed, upon adding π to an angle, its sine and cosine functions
reverse their signs, and hence,

ai =



−ai cos(θi + π)
−ai sin(θi + π)

bi
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Table I. Optimum parameters of the homogeneous
manipulator

Link i āi b̄i αi (deg) θi (deg)

1 0 - -62.9926 -

2 0.0236 0.0003 -10.2688 35.8567

3 0 0.1732 106.5612 61.7481

4 2.1623 -0.0003 73.7583 116.7073

5 0.0012 -1.8473 55.0046 -24.4698

6 0.0716 3.1639 62.5379 -2.3442

7 1.1590 -1.4464 - 225.5397

Minimum condition number (κF ) = 1.0000

whence the inequality constraints (11c) can be obviated. In summary, then, we have defined the
optimum design problem:

κF (H) → min
x

(12a)

subject to

‖ei‖ = 1, i = 2, . . . , n (12b)
ei · ρi = 0, i = 1, 2, . . . , n (12c)

Obviously, if the design task at hand requires specific constraints on link lengths or on twist angles,
then these can be incorporated into the foregoing problem to take these constraints into account.
In doing so, inequality constraints may still occur.

3.1. Example

We include below one example to illustrate the foregoing concepts.

Example 1: The Design of a Seven-Axis Isotropic Manipulator
In order to solve problem (12a–c) for the case at hand, we resort to the Nelder-Mead simplex
method based on function evaluations alone, as implemented in Matlab’s Optimization Toolbox
(Venkataraman, 2002). As an initial guess, we use the results obtained with the previous approach
(Ranjbaran et al., 1995). The results reported by Matlab are recorded in Table I, where all design
variables are dimensionless, for they pertain to the homogeneous manipulator. In order to obtain the
dimensions of the actual manipulator, we multiply ai and bi by the, as yet unknown, characteristic
length L of the manipulator. The calculation of L is straightforward, as described below.

We first compute the maximum reach R of the homogeneous manipulator, which is done by
maximizing the distance of the operation point P of the homogeneous manipulator, of position
vector ρ, from the first revolute axis. Apparently, the first joint variable has no influence on this
reach, and hence, can be locked at an arbitrary value of, say 0. The ensuing problem consists then
in maximizing the said distance over the remaining six joint variables:

d
2 ≡ ‖ρ1 − (ρT

1 e1)e1‖2 ≡ ‖e1 × ρ1‖2 → max
θ

(13)

subject to no constraints, with the vector of design variables θ defined as

θ = [ θ2 θ3 θ4 θ5 θ6 θ7 ]T (14)
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Table II. Joint angles for maxi-
mum reach

Link i θi (deg)

1 -

2 319.1493

3 96.6124

4 54.5413

5 64.9203

6 266.3456

7 53.3635

Maximum reach (R̄) = 5.9726

Table III. Optimum ai and
bi parameters of the actual
manipulator with a maxi-
mum reach of 877 mm

Link i ai mm bi mm

1 0 0

2 3.5 0.0

3 0 25.4

4 317.4 0.0

5 0.2 -271.2

6 10.5 464.4

7 1.1590 -212.3

The maximum reach is, thus, R = maxθ{d}. For the isotropic homogeneous manipulator, joint-
angles for the maximum reach R, as reported by Matlab, are displayed in Table II.

Finally, if the maximum reach, one of the manipulator design specifications, is denoted by R,
then the robot characteristic length L is

L ≡ R

R
(15)

For example, for a maximum reach of 1866 mm, as in the design reported in (Ranjbaran et
al., 1995), L = 312.4 mm, while, using the approach of the foregoing paper, L turns out to be
about 293 mm. The difference, of slightly over 6%, using as reference the value obtained here, is
attributable to the different problem formulations in the two procedures. Moreover, if we want
to attain the maximum reach of the Puma 560, which is 877 mm (Angeles, 2002), then the
characteristic length of the same manipulator becomes L = 146.8 mm. A design with the maximum
reach of the Puma 560 thus has the actual Denavit-Hartenberg parameters ai and bi of Table III.

The manipulator with the HD parameters of Table III is displayed in Figs. 6(a)& (b), at the
isotropic and at the maximum-reach postures, respectively. These figures were produced using RVS
(Darcovich et al., 1999).
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(a) (b)

Figure 6. Displays of optimum manipulator at: (a) isotropic posture; and (b) maximum-reach posture

Apparently, the foregoing optimum manipulator, scale-difference aside, is quite close to that
obtained in (Ranjbaran et al., 1995). This should not come as a surprise, for we used the manipulator
optimized in the above reference as the initial guess for the optimization procedure.

With a second initial guess, the optimization process is now repeated. This initial guess is based
on the parameters of the six-axis DIESTRO robot (Angeles, 2002), designed with an isotropic
architecture, to which a seventh link is added with dimensions that follow the pattern of DIESTRO,
as recorded in Table IV. The results returned by Matlab are displayed in Table V, which are
substantially different from those of Table III. This is an isotropic manipulator whose joint-angles
for the maximum reach(R), as reported by Matlab, are displayed in Table VI.

Figures 7(a) & (b) depict geometric models of this manipulator at both the isotropic and the
maximum-reach postures, respectively.

(a) (b)

Figure 7. Displays of optimum manipulator at: (a) isotropic posture; and (b) maximum-reach posture

4. The Kinetostatic Performance Evaluation of Serial Robots

The problem formulated in Section 3 can be regarded as inverse, in that design specifications are
given, and the robot fundamental geometry is required. Here we solve the direct problem: Given a
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Table IV. Initial guess based on the DIE-
STRO architecture, with a 7th link added

Link i āi b̄i αi (deg) θi (deg)

1 1 1 90 180

2 1 1 -90 -90

3 1 1 90 90

4 1 1 -90 -90

5 1 1 90 90

6 1 1 -90 0

7 1 1 90 90

Table V. Optimum parameters of the homogeneous
manipulator obtained with the initial guess of Ta-
ble IV

Link i āi b̄i αi (deg) θi (deg)

1 1.2695 - 88.3909 -

2 0.8019 0.9903 -96.6278 -105.7176

3 1.2400 1.2726 71.6787 67.0666

4 0.9781 0.3611 -95.4537 -77.1842

5 0.0659 -0.2507 56.3243 82.9464

6 0.9931 1.1546 -127.5050 0.0105

7 1.0711 0.8452 - 106.0311

Minimum condition number (κF ) = 1.0016

Table VI. Joint angles for opti-
mum manipulator of Table V at
the maximum-reach posture

Link i θi (deg)

1 -

2 323.2396

3 333.9036

4 8.6270

5 352.4995

6 0.0014

7 341.3367

Maximum reach (R̄) = 7.1264
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manipulator architecture, find its characteristic length and, hence, its minimum condition number.
The characteristic length of a given robot is important because this dimension determines the size of
the robot; the minimum condition number of the robot Jacobian determines the design robustness
against manufacturing, assembly, and joint-encoder errors. Indeed, the matrix condition number
giving an upper bound for the roundoff-error amplification upon solving a system of linear equations
whose coefficients are the entries of the given matrix, the smaller the minimum condition number,
the less sensitive the robot is to the foregoing errors.

The direct problem is straightforward: Let aM ≡ maxi{ ai }n
1 , bM ≡ maxi{ |bi| }n

2 and M ≡
max{ aM , bM }. Further, let M ≡ M/L, where L is the, as yet, unknown characteristic length.
Moreover, let

ãi ≡ ai

M
, b̃i ≡ bi

M
, i = 1, . . . , n (16a)

be a set of nondimensional Denavit-Hartenberg parameters of the given robot. Hence,

ai = ãiM, bi = b̃iM, i = 1, . . . , n (16b)

Further, ρi, as introduced in eq.(2), can be expressed as

ρi = M ρ̃i, i = 1, . . . , n (17)

where ρ̃i is defined exactly as ρi was defined for the homogeneous Jacobian H, except that with
the nondimensional DH parameters introduced in eq.(16a). Apparently, then, the homogeneous
Jacobian can be now expressed as

H ≡
[

e1 e2 · · · en

e1 ×M ρ̃1 e2 ×M ρ̃2 · · · en ×M ρ̃n

]
(18)

Hence, to find the characteristic length L, all we need is find the value of M that will render,
along with suitable values of the n − 1 joint variables, the condition number of the homogeneous
Jacobian H a minimum. Let all these optimizing variables be grouped in the new design vector x̃,
namely,

x̃ ≡ [ M θ2 · · · θn ]T (19)

The value of vector x̃ is thus found as the solution to an optimization problem:

κ2
F (H) → min

x̃
(20)

subject to no constraints, except for M > 0, which is readily implementable. Indeed, given the
definition of κF (H) in eq.(7), κ2

F (H) is apparently a quadratic function of M and of its inverse, the
outcome being that κ2

F (H) is an even function of M , i.e.,

κ2
F (M) = κ2

F (−M) (21)

and hence, if −M is a solution to the optimization problem (20), then so is M , and we need not
worry about enforcing the sign constraint on M .

Example 2: Performance Evaluation of an Industrial Robot
In order to illustrate the foregoing procedure, we calculate the characteristic length and the min-
imum condition number of the homogeneous Jacobian of the Fanuc Arc Mate manipulator whose
DH parameters are included in Table VII. Note that these items were computed in (Angeles, 2002)
upon minimization of the condition number based on the 2-norm. The results obtained in that
reference are L = 357.3 mm and κ2 = 2.589. The condition number based on Frobenius norm is
κF = 1.3040 at this posture.
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Table VII. DH Parameters of the Fanuc Arc Mate Ma-
nipulator

Link i ai (mm) bi (mm) αi (deg) θi (deg)

1 200 810 90 θ1

2 600 0 0 θ2

3 130 30 90 θ3

4 0 550 90 θ4

5 0 100 90 θ5

6 0 100 0 θ6

Minimum condition number (κF ) = 1.3040

The optimum vector x̃opt obtained is reported below:

x̃opt = [ 1.7083 22.60 −51.13 −20.07 −88.00 ]T

where the last joint angle θ6 was was not included as it does not effect the condition number for
this particular architecture.

The characteristic length is thus equal to

L =
M

M
=

600
1.7083

= 351.23 mm

with the condition number κF = 1.2717. Note that the condition number based on 2-norm at this
posture is κ2 = 2.7254.

5. Conclusions

The fundamental geometry of a serial robot was defined here, with a methodology proposed as to
how to determine it at the preliminary design stage. In order to cope with the lack of dimensional
homogeneity in the entries of the robot Jacobian, the characteristic length was recalled. In doing
so, a definition of this length was proposed, that keeps the significance of previous definitions, but
that bears a straightforward geometric interpretation. The robot is thus designed in homogeneous
space, and then mapped into the real Euclidean space by means of the characteristic length, which
is determined from the maximum reach, that is usually prescribed when designing a robot.

The design procedure relies on an unconstrained optimization scheme. This procedure was illus-
trated with the design of a seven-axis redundant robot, whose objective function is non-quadratic
and nonconvex, the problem thus admitting many local optima. By starting the optimization
procedure from two distinct initial guesses, two distinct isotropic robots were obtained, each with
DH parameters close to those of the initial guess. Therefore, if certain DH parameters are desired,
then these can be enforced via the initial guess. This problem was termed inverse.

The direct problem was also addressed here. For a robot with n ≥ 6 revolute axes, of a given
architecture, i.e., of given DH parameters, we showed that both the characteristic length and
the minimum condition number can be found via the solution of an unconstrained minimization
problem. The approach proposed here was illustrated with the example of a Fanuc Arc Mate robot.
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Appendix: The Weighted Frobenius Norm

The weighted Frobenius norm of a n× n matrix A is defined as

‖A‖F =
√

AWAT (22)

in which W is a positive-definite weighting matrix, which is introduced with the purpose of nor-
malizing the norm according to the need of a specific context. It is desired, for example, to have
the weighted Frobenius norm of the n× n identity matrix 1 defined as unity, which then requires
that W be defined as

W =
1
n
1 (23)
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