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Abstract—  Humanoid robotics attracted the attention of 
many researchers in the past 35 years. The motivation of 
research is the suitability of the biped structure for tasks in 
the human environment. The control of a biped humanoid is 
a challenging task due to the hard-to-stabilize dynamics. 

Walking reference trajectory generation is a key 
problem. A criterion used for the reference generation is 
that the reference trajectory should be suitable to be 
followed by the robot with its natural dynamics with 
minimal control intervention. Reference generation 
techniques with the so-called Linear Inverted Pendulum 
Model (LIPM) are based on this idea. The Zero Moment 
Point (ZMP) Criterion is widely employed in the stability 
analysis of biped robot walk. Improved versions of the 
LIPM based reference generation obtained by applying the 
ZMP Criterion are reported too. In these methods, the ZMP 
during a stepping motion is kept fixed in the middle of the 
supporting foot sole. This kind of reference generation lacks 
naturalness, in that, the ZMP in the human walk does not 
stay fixed, but it moves forward, under the supporting foot.  

This paper proposes a reference generation algorithm 
based on the LIPM and moving support foot ZMP 
references. The application of Fourier series approximation 
simplifies the solution and it generates a smooth ZMP 
reference. Trajectory and force control methods for
locomotion are devised and applied too. The developed 
techniques are tested through simulation with a 12 DOF 
biped robot model. The results obtained are promising for 
implementations. 

I. INTRODUCTION

Humanoid robotics attracted the attention of many 
researchers in the past 35 years. It is currently one of the 
most exciting topics in the field of robotics and there are 
many projects on this topic [1-6]. The motivation of 
research is the suitability of the biped structure for tasks 
in the human environment and the goal of the studies in 
this area is to reach the human walking dexterity, 
efficiency, stability, effectiveness and flexibility.  

The control of a biped humanoid is a challenging task 
due to the many degrees of freedom involved and the
non-linear and hard to stabilize dynamics [7-8]. 

Walking reference trajectory generation is a key 
problem. Methods ranging from trial and error to the use 
of optimization techniques with energy or control effort 
minimization constraints are applied as solutions. 

A very intuitive criterion used for the reference 
generation is that the reference trajectory should be 
suitable to be followed by the robot with its natural 
dynamics, without the use of extensive control 

intervention. Reference generation techniques with the 
so-called Linear Inverted Pendulum Model are based on 
this idea [9-10]. Simply stated, the walking cycle is then 
achieved by letting the robot start falling into the walking 
direction and to switch supporting legs to avoid the 
complete falling of the robot.  

Yet another intuitive demand for the biped robot 
reference generation is that the reference trajectory 
should be a stable one, in the sense that it should not lead 
to unrecoverable falling motion. The Zero Moment Point 
Criterion [7] introduced to the robotics literature in early 
1970s is widely employed in the stability analysis of 
biped robot walk. Improved versions of the Linear 
Inverted Pendulum Model based reference generation,
obtained by applying the Zero Moment Point Criterion in 
the design process, are reported too [11]. In this approach 
the Zero Moment Point during a stepping motion is kept 
fixed in the middle of the supporting foot sole for the 
stability, while the robot center of mass is following the 
Linear Inverted Pendulum path.  

Although reference generation with the Linear 
Inverted Pendulum Model and fixed Zero Moment Point
reference positions is the technique employed for the 
most successful biped robots today, this kind of reference 
generation lacks naturalness at one point. Investigations 
revealed that the Zero Moment Point in the human walk 
does not stay fixed under the supporting foot. Rather, it 
moves forward from the heel to the toe direction [12-14].  

In [14] Zhu et. al propose this idea of using variable 
ZMP to generate a dynamically stable gait in terms of 
linear inverted pendulum approach. They consider it to 
follow first order functions from the heel to toe of the 
foot in single support phase. 

This paper takes a similar approach and proposes a 
reference generation technique based on the Linear 
Inverted Pendulum Model and moving support foot Zero 
Moment Point references. The application of Fourier
series approximation to the solutions of the Linear
Inverted Pendulum dynamics equations simplifies the
solution as in [15], and it generates a smooth Zero
Moment Point reference for the double support phase. 
Foot reference trajectory generation methods for smooth 
swing foot trajectories, trajectory control methods for the 
center of mass of the robot and force control techniques 
for the landing foot are employed in this paper too.  

The reference generation and control techniques are
simulated and animated in a 3-D full dynamics simulation 
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environment with a 12 DOF biped robot model. The 
results obtained are promising for implementations.  

The biped model used as the test bed for the 
developed techniques is introduced in Section II. The 
reference generation with natural moving ZMP 
trajectories and the control of locomotion are discussed in 
Sections III and IV, respectively. Section V presents the 
simulation results and their analysis. The conclusion is 
drawn lastly. 

II. THE BIPED ROBOT MODEL

The biped model used in this paper consists of two 6-
DOF legs and a trunk connecting them (Fig. 1). Three 
joint axes are positioned at the hip. Two joints are at the 
ankle and one at the knee. Link sizes and the masses of the 
biped are given in Table I. 

TABLE I  
MASSES AND DIMENSIONS OF THE ROBOT LINKS 

A. Link Dimensions (LxWxH) [m] Mass [kg] 

Trunk 0.2 x 0.4 x 0.5 50 
Thigh 0.27 x 0.1 x 0.1 12 
Calf 0.22 x 0.05 x 0.1 0.5 
Foot 0.25 x 0.12 x 0.1 5.5 

Figure 1. Biped robot coordinate frames. 

Figure 2. Inverted Pendulum. 

III. REFERENCE GENERATION WITH NATURAL ZMP
TRAJECTORIES

LIPM mode approach is based on such ordinary 
differential equations that the solutions are both hard to 
be solved and they are composed of numerically 
unbounded cosh(.) functions. In addition they are 
sensitive to the height variation of the pendulum and they 
are difficult to be used robustly. Furthermore, since only 
the acceleration of the body is considered in LIPM 
approach the foot stepping positions may vary as a result. 
However, the stepping positions in real implementations 
are generally determined by exogenous environmental 
needs. For instance a robot should determine its foot 
stepping positions in order to avoid obstacles in real 
experiments. As a result the robot should have such a gait 
that follows the pre-determined stepping positions and 
preserve the overall stability. As a solution to such 
problems Choi, Y. et. al [15] introduce an alternative 
robust CoM trajectory planning method by using the 
approximate solution composed of bounded functions. 
Having pre-determined ZMP reference trajectories Choi, 
Y. et. al find the exact solutions of LIPM equations that 
are derived according to ZMP criterion. Finally they 
derive the approximated closed form equations that give 
the time trajectory of the CoM.  

However in their studies Choi, Y. et. al use fixed 
ZMP trajectories. This actually leads the robot walking 
both to be rigid and unnatural. Furthermore, in their 
approximated solutions they do not consider double 
support phases which, eventually, may bring problems in 
real implementations. In this section an approximation to 
the solution of the dynamics of LIPM by considering 
natural ZMP references with double support phase is 
introduced.  

A.   Linear Inverted Pendulum Model 

The main idea of the LIPM approach [9] is to extract 
a dominant feature of biped dynamics, which is high-
order and non-linear, and to use this dominant factor to 
explain the governing dynamics of the system. In this 
model the robots mass is assumed to be lumped at the 
center of mass of the robot and the legs of the robot are 
assumed to be massless. Further, for simplicity, the height 
of the pendulum is assumed to be constant in this model. 
This lets the dynamics of the model to be linear. Such an 
inverted pendulum with a massless rod can be seen in 

Fig. 2 where [ ]Tzyx cccC ,,= . 

The ZMP equations for yx −  plane are as follows. 
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Let the ZMP of coordinates of this pendulum to be 

[ ]Tzyx pppP ,,= , the mass of the pendulum to be m . 

The gravity vector is [ ]Tzyx gggg ,,=  and gg z −= . 

Using (1) and (2) the dynamics equations of the inverted 
pendulum can be derived as follows.  
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However (3) and (4) are non-linear. To attain linear 
equations the z-coordinate of the inverted pendulum is 
assumed to be constant. Let cz zc = . Thus the (3) and (4) 

turn into linear equations as follows. 
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where 
c

n z
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2ω . Henceforth, (5) and (6) are going to be 

referred as ZMP equations. Note that given the CoM 

coordinates of the pendulum [ ]Tzyx cccC ,,=  at any time it 

is straightforward to calculate the ZMP coordinates of the 
pendulum by (5) and (6). On the other hand walking 
trajectory generation is the inverse problem, in that, given 
a ZMP trajectory a COM trajectory should be found [11]. 
Thus, this trajectory of COM could be used as a reference 
for the COM of the actual biped walking robot. Further 
the legs should be in such coordination that this COM is 
tracked accurately. Since the goal is to achieve a 
dynamically stable gait the ZMP trajectory should always 
lie inside the supporting polygon. And this actually 
determines the location of the footprints of the biped 
robot. Finally by knowing the footprints and the COM 
trajectory by inverse kinematics relations a possible gait 
could be achieved. 

B.    Natural ZMP Trajectories 

The ZMP for a walking robot can either be measured 
by means of force sensors or it can be computed. The 
ZMP of the robot should be always in the supporting 
polygon for it to be in a stable condition. This implies 
that the robot is continuously recovering from unbalanced 
conditions to a stable posture. Stable ZMP references can 
be employed to design stable walking patterns.  

Figure 3. A Natural ZMP Trajectory. 

Usually in many reported studies [11,15,16], the ZMP 
reference in the single foot support phase is in the form of 
a point under the sole of the supporting foot. However, 
experiments with walking humans show that the ZMP 
does not stay at a fixed point in the single support phase, 
[12-14]. It rather passes the sole of the supporting foot, 
from the heel to the toe. 

A natural ZMP trajectory during the human walk 
cycle is illustrated in Fig. 3. We believe that using natural 
ZMP reference trajectories for gait generation will result 
in a more natural and energy efficient CoM trajectory. In 
fact, already reported results also show that -since the 
resulting CoM trajectory oscillations are smoother- using 
variable ZMP trajectories result in more energy efficient 
trajectories [14]. 

C.   Exact Solution of LIPM for Fixed ZMP 

Recall the ZMP equations (5) and (6). Rearranging 
these equations, 

xnxnx pcc 22 ωω −=&& (7) 

ynyny pcc 22 ωω −=&& (8) 

From the equations (7) and (8) applying Laplace 
transform, 
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In (9-10) the following fixed ZMP trajectories are going 
to be used for the exact solution calculation. In Fig. 4 the 
x-axis (for saggital plane) reference for ZMP trajectory, 
in Fig. 5 the y-axis (for frontal plane) reference for ZMP 
trajectory, and in Fig. 6 the resulting ZMP trajectory in 
the yx −  plane can be seen. Note that Fig. 5 also 

indicates the foot placement positions in the yx −  plane.  

Figure 4. ref

xp , x-axis ZMP reference trajectory. 

Figure 5. ref

yp , y-axis ZMP reference Trajectory. 
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Figure 6. ref
x

ref
y pp − on yx −  plane ZMP ref. / Step Positions 

Figure 7. )(tpx′  Introduced odd Function. 

The ZMP reference trajectories in figures 4 and 5 can be 
expressed as follows. 
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Applying Laplace transform on these equations and 
substituting them in (9) and (10) with zero initial 
conditions, the following equations can be derived. 
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(13) and (14) can be rearranged to derive the following 
functions. 
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Finally, we can obtain the exact reference trajectories of 
the CoM by applying inverse Laplace transformations to 
equations (15) and (16). 
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Although (17) and (18) are the exact solutions for the 
ordinary differential equations (5) and (6), in practice 
they are difficult to be used robustly for a real biped 
walking robot since they are composed of numerically 
unbounded cosh(.) functions. Furthermore, they are 

unstable and very sensitive to the variation of nω . 

Therefore, an approximated solution composed of 
bounded sin(.) functions is suggested in [15] to serve as a 
robust CoM trajectory. This solution is outlined in the 
subsection below. 

D.   Planning an Approximate Solution 

First an odd function with period 0T  is introduced from 

the x-directional reference ZMP ref
xp  of equation (5.11) 

as follows. 
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Then assuming that the x-directional reference trajectory 
of CoM has the following form by using Fourier series, 
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Then applying the (20) to the ZMP differential equation 
(5) the following relation can be found. 
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Here in the equation (21) the form of the odd function 
)(tpx′  can be seen in Fig. 7. Since )(tpx′  is an odd 

function with period 0T , the coefficients 0=na  and nb

can be found by solving the following equation. 
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Finally nb  is found as 
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As a result, the x-directional reference trajectory of CoM 
can be obtained by substituting equation (24) to equation 
(20) as follows. 
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On the other hand, since the y-directional reference ZMP 

)(tpref
y  of the equation (12) is an odd function with 
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period 0T the y-directional reference can be found in a 

similar manner as follows. 
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The resulting CoM trajectories for x and y axes can be 
seen in Fig. 8. and from Fig. 9. 

E.   Introduction of Natural ZMP References by Fourier 
Approximation to Obtain CoM Trajectories 

As discussed in the previous sections the ZMP 
trajectory in a human walking cycle is not fixed at a point 
at certain periods but it travels under the supporting 
polygon. In the single support phase the ZMP travels 
from heel to the toe of the foot and in the double support 
phase it travels from the toe of the supporting foot to the 
heel of the swinging foot [12-14]. In this context the x-

directional reference ZMP trajectory ref
xp is introduced as 

follows (Fig. 10). Here b  is the half length of the foot 
sole. It can be observed that in this trajectory ZMP travel 
starts from zero and advances in time under the sole of 
the foot in the initial single support phase and from heel 
to the toe of the foot in the further single support phases. 
By the same procedure followed in the previous sections 
we introduce the following odd function xp′ with period 

0T  from the x-directional reference ZMP ref
xp , Fig. 11. 

Figure 8. xC  Reference for x-axis (Saggital Plane, B=0.5, 0T =1). 

Figure 9. yC  Reference for y-axis (Frontal Plane, A=0.5). 

Figure 10. Natural ZMP Reference Trajectory 
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Applying the same procedure from equation (19) to 
equation (23) we find the new nb  coefficient as follows. 
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Hence the natural CoM trajectory is found as 
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The resulting xC  trajectory can be seen in Fig. 12. Note 

that this trajectory is smoother (shown in dashed line) 

than the conventional xC trajectory (solid line) with fixed 

ZMP. The smoothness of the resulting trajectory implies 
that the acceleration differences are less when compared 

with the conventional xC trajectory with fixed ZMP. This 

also implies that less energy is necessary to track the xC
trajectory with variable ZMP.  

Figure 11. )(tpx′  New introduced odd function. 

Figure 12. xC  Trajectory with Variable ZMP. 

Figure 13. Fourier Approximation w/o Lanczos Sigma Factor 
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Figure 14. Fourier Approximation with Lanczos Sigma Factor 

Figure 15. Natural XC  reference with parameters close to human walk 

Figure 16. Natural YC  reference with parameters close to human 

walk 

F. Introducing Double Support Phase to ZMP References 

In this section the introduction of double support 
phases to previously used reference ZMP trajectories will 
be addressed. Adding double support phase to reference 
ZMP trajectories in both x and y axes by the method 
above, which is to blend lines with different slopes, 
makes it impossible to overcome such a problem. Instead 
to overcome this problem the so-called Lanczos Sigma 
Factor is used for such a task. 

The non-uniform convergence of the Fourier series for 
discontinuous functions is known as Gibbs Phenomenon 
in the literature. There are complex methods to smooth the 
Gibbs Phenomenon. One method is the so-called Lanczos 
Sigma Factor. In this approximation a function is 
multiplied by the coefficients in the Fourier partial sums. 
This function is a complex sine function involving the 
period of the original function. Fourier series by the 
Lanczos Sigma Factor can be rewritten as follows. 
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The resulting effect of the Lanczos Sigma Factor can be 
seen in Fig. 13 and Fig. 14. 

In this example the Double Support Parameter DSP  of 

the Lanczos Sigma Factor ( )(sin
DSP

n
c

π
) is used to attain 

double support phases in the reference ZMP trajectory. 
Notice that in Fig. 14. the duration of the double support 
phase is tuned by setting appropriate values to the DSP   
parameter. Also observe the variations of the CoM 
trajectory corresponding to different double support phase 
durations. Further the found Natural CoM trajectories for 

yx −  axes are as follows. 
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In addition the Natural ZMP trajectories for yx −
axes are obtained by  
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As an example, trajectory for the walking parameters 
close to a human’s is given in Fig. 15, and in Fig. 16. 

(A=.15[m], B=.6[m], b=[.14] and 0T =1 [s]) 

IV. OUTLINE OF THE CONTROL ALGORITHM

The swing foot position references are obtained from 
ZMP and CoM references (Fig. 17). The control 
algorithm consists of five lower level position and force 
controller building blocks (Fig. 18). Swing foot 
references, or alternatively, the swing timing determines 
the timing for switching between control structures. 
However, swing reference timing is not the only criterion 
to switch from one control mode to the other. Switching 
from swing to support controller before actually reaching 
the ground level and establishing stable contact with the 
ground can cause a sudden loss of the robot balance. 
Therefore, ground interaction force information is used 
and controller mode switching is not allowed before the 
z-direction component of the contact force exceeds a 
certain threshold value. The force threshold value is a 
design parameter. The support-to-swing switching times 
are according to the swing timing without additional 
feedback from ground interaction forces. The double 
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support controller regards the biped robot as a trunk 
manipulated by two six-DOF arms with their bases 
positioned on the ground level (Fig. 19, left). The CoM 
position reference discussed above and fixed orientation 
reference with respect to the world coordinate frame are 
applied in a position control schemes for both 
manipulators. The position controllers running for the 
two manipulators (legs) are identical. Cartesian position 
and orientation errors are computed from the reference 
and actual position and orientations. These errors are 
reflected to the joint space errors by the use of inverse 
Jacobian relations. Independent joint PID controllers are 
employed for the joint space position control. The 
controllers for the two legs work almost independently. 
However, the Cartesian errors are scaled with different 
gains for the two legs before corresponding joint errors 
are computed. The scaling factor for the right leg is 
proportional to the horizontal distance of the left foot 
coordinate center from the CoM and similarly, the scaling 
factor for the left leg is proportional to the horizontal 
distance of the right foot from the CoM. This rule is 
obtained experimentally and it performed well for the 
coordination of the two legs in the double support phase. 
The robot in swing phases can be seen as a ground based 
manipulator controlling the CoM position and trunk 
orientation and a second manipulator based at the hip 
controlling the swing foot position and orientation. The 
right support and left swing controllers are activated 
simultaneously. The single support controller applies the 
position control scheme described above for the double 
support phase (without using the scaling factors). The 
swing leg controller is a stiffness controller for the foot 
position and orientation. For soft landing purposes, a 
Cartesian stiffness matrix with low stiffness against in 
orientation errors and position errors in the z-direction is 
employed. The horizontal directions are penalized with 
higher stiffness coefficients.  

Figure 17.The swing foot references are obtained from ZMP and CoM 
references. 

Figure 18.The swing foot position references are obtained from ZMP 
and CoM references. 

   
Figure 19. The robot in the double support phase can be regarded as a 
trunk manipulated by two six-DOF manipulators based on the ground 

(left). The robot in swing phases can be seen as a ground based 
manipulator and a second manipulator based at the hip (right). 

V. SIMULATION RESULTS

Simulations studies are carried out with the robot model 
described in Section II, references generated in Section III 
and the coordination and control mechanism discussed in 
Section IV. The simulation scheme is similar to the one in 
[17]. The details of the algorithm and contact modeling 
can be found in [18]. Parameters used for reference 
generation are presented in Table II. Fig. 20 shows the y-
direction CoM and CoM reference. It can be observed that 
the COM reference in this direction is closely tracked 
except in the single support phases. The y-direction ZMP 
and ZMP reference curves displayed in Fig. 21 also a 
deviation from the reference curve in the swing phases. 
This suggests that the simple LIMP model, concentrating 
on the robot trunk, and ignoring the effects of the swing 
foot on the CoM of the whole robot, may encounter 
problems when the leg weight is not very low. The legs 
weigh 15 kg. Although it is much less than the 50 kg trunk 
weight, this weight affects the y-direction COM and ZMP 
curves significantly. Apart from the swing phases, the 
tracking performance is quite acceptable. The x-direction 
COM and ZMP curves together with their references are 
presented in figures 22 and 23, respectively. These curves, 
too, display oscillations and deviations from reference 
curves mainly due to the trunk dominated LIMP model. 
Still, in the average, the reference curves are tracked. 

TABLE II 
Some of the important simulation parameters 

Parameter Value 
x-reference foot-CoM offset -0.11 m 
Step height 0.02 m 
Step period 3 s 
Foot to foot y-direction distance  0.08 m 
Foot to foot y-direction ZMP reference distance 0.1 m 
Ground interaction threshold force 100 N 

Figure 20. CoM and CoM reference y-direction components. 
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Figure 21. ZMP and ZMP reference y-direction components 

Figure 22. CoM and CoM reference x-direction components 

Figure 23. ZMP and ZMP reference y-direction components 

In the average, the ZMP curve moves forward even in 
the single support phases. However, the transient 
behavior does not indicate that the naturalness of the 
human walk is achieved completely. Although there are 
some tracking problems as discussed above, the reference 
generation and control algorithms are generally 
successful, keeping the ZMP in the support polygon and 
enabling the robot move forward with an almost constant 
speed of 7 cm per second. This is achieved without the 
need for the elaborate trial and error steps common to 
many other reference generation approaches. 

VI. CONCLUSION

A trajectory generation, coordination and control 
approach for biped walking robots is presented in this 
paper. Human-like ZMP reference trajectories with 
Fourier series approximation techniques for the solution 
of LIPM dynamics equations are employed in order to 
achieve naturalness in the walk. A control structure 
consisting of different modes and position and force 
control techniques is employed. Simulation studies show 
that the reference generation without considering the 
effects of the swing foot on robot ZMP can lead to 
significant deviations from reference trajectories. The 
walk, however, is stable and this is promising result 
making the algorithm a candidate for implementation. 
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