
In the past decade we’ve seen an enormous
increase in interest in the science of haptics.

The quest for better understanding and use of haptic
abilities (both human and nonhuman) has manifested
itself in heightened activity in disciplines ranging from
robotics and telerobotics; to computational geometry
and computer graphics; to psychophysics, cognitive sci-
ence, and the neurosciences. 

This issue of IEEE CG&A focuses
on haptic rendering. Haptics broadly
refers to touch interactions (physical
contact) that occur for the purpose
of perception or manipulation of
objects. These interactions can be
between a human hand and a real
object; a robot end-effector and a
real object; a human hand and a sim-
ulated object (via haptic interface
devices); or a variety of combina-
tions of human and machine inter-
actions with real, remote, or virtual
objects. Rendering refers to the
process by which desired sensory
stimuli are imposed on the user to
convey information about a virtual
haptic object. At the simplest level,

this information is contained in the representation of the
object’s physical attributes—shape, elasticity, texture,
mass, and so on. Just as a sphere visually rendered with
simple shading techniques will look different from the
same sphere rendered with ray-tracing techniques, a
sphere haptically rendered with a simple penalty func-

tion will feel different from the same sphere rendered
with techniques that also convey mechanical textures
and surface friction.

As in the days when people were astonished to see
their first wire-frame computer-generated images, peo-
ple are now astonished to feel their first virtual object.
Yet the rendering techniques we use today will some-
day seem like yesterday’s wire-frame displays—the first
steps into a vast field. 

To help readers understand the issues discussed in
this issue’s theme articles, we briefly survey haptic sys-
tems and the techniques needed for rendering the way
objects feel. We also discuss basic haptic-rendering algo-
rithms that help us decide what force should be exerted
and how we will deliver these forces to users. A sidebar
discusses key points in the history of haptics.

Architecture for haptic feedback 
Virtual reality (VR) applications strive to simulate real

or imaginary scenes with which users can interact and
perceive the effects of their actions in real time. Ideally
the user interacts with the simulation via all five sens-
es; however, today’s typical VR applications rely on a
smaller subset, typically vision, hearing, and more
recently, touch. 

Figure 1 shows the structure of a VR application incor-
porating visual, auditory, and haptic feedback. The
application’s main elements are: 

� the simulation engine, responsible for computing the
virtual environment’s behavior over time; 

� visual, auditory, and haptic rendering algorithms,
which compute the virtual environ-
ment’s graphic, sound, and force
responses toward the user; and
� transducers, which convert visu-

al, audio, and force signals from
the computer into a form the
operator can perceive.

The human operator typically
holds or wears the haptic interface
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1 Basic architecture for a virtual reality application incorporating visual,
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device and perceives audiovisual feedback from audio
(computer speakers, headphones, and so on) and visu-
al displays (a computer screen or head-mounted display,
for example). 

Whereas audio and visual channels feature unidirec-
tional information and energy flow (from the simula-
tion engine toward the user), the haptic modality
exchanges information and energy in two directions,
from and toward the user. This bidirectionality is often
referred to as the single most important feature of the
haptic interaction modality. 

Haptic interface devices 
An understanding of some basic concepts about hap-

tic interface devices will help the reader through the
remainder of the text. A more complete description of
the elements that make up such systems is available
elsewhere.1

Haptic interface devices behave like small robots that
exchange mechanical energy with a user. We use the term

device-body interface to highlight the physical connection
between operator and device through which energy is
exchanged. Although these interfaces can be in contact
with any part of the operator’s body, hand interfaces have
been the most widely used and developed systems to
date. Figure 2 shows some example devices. 

One way to distinguish between haptic interface
devices is by their grounding locations. For interdigit
tasks, force-feedback gloves, such as the Hand Force
Feedback (HFF),2 read finger-specific contact informa-
tion and output finger-specific resistive forces, but can’t
reproduce object net weight or inertial forces. Similar
handheld devices are common in the gaming industry
and are built using low-cost vibrotactile transducers,
which produce synthesized vibratory effects. Exoskele-
ton mechanisms or body-based haptic interfaces, which
a person wears on the arm or leg, present more complex
multiple degree-of-freedom (DOF) motorized devices.
Finally, ground-based devices include force-reflecting
joysticks and desktop haptic interfaces. 
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History of Haptics
In the early 20th century, psychophysicists introduced the word

haptics (from the Greek haptesthai meaning to touch) to label the
subfield of their studies that addressed human touch-based per-
ception and manipulation. In the 1970s and 1980s, significant
research efforts in a completely different field—robotics—also
began to focus on manipulation and perception by touch. Initially
concerned with building autonomous robots, researchers soon
found that building a dexterous robotic hand was much more
complex and subtle than their initial naive hopes had suggested.
In time these two communities—one that sought to understand
the human hand and one that aspired to create devices with dex-
terity inspired by human abilities—found fertile mutual interest
in topics such as sensory design and processing, grasp control
and manipulation, object representation and haptic information
encoding, and grammars for describing physical tasks. 

In the early 1990s a new usage of the word haptics began to
emerge. The confluence of several emerging technologies made
virtualized haptics, or computer haptics,1 possible. Much like
computer graphics, computer haptics enables the display of sim-
ulated objects to humans in an interactive manner. However,
computer haptics uses a display technology through which
objects can be physically palpated. 

This new sensory display modality presents information by
exerting controlled forces on the human hand through a haptic
interface (rather than, as in computer graphics, via light from
a visual display device). These forces depend on the physics of

mechanical contact. The characteristics of interest in these
forces depend on the response of the sensors in the human hand
and other body parts (rather than on the eye’s sensitivity to
brightness, color, motion, and so on). 

Unlike computer graphics, haptic interaction is bidirectional,
with energy and information flows both to and from the user. 

Although Knoll demonstrated haptic interaction with simple
virtual objects at least as early as the 1960s, only recently was suf-
ficient technology available to make haptic interaction with com-
plex computer-simulated objects possible. The combination of
high-performance force-controllable haptic interfaces, compu-
tational geometric modeling and collision techniques, cost-effec-
tive processing and memory, and an understanding of the
perceptual needs of the human haptic system allows us to assem-
ble computer haptic systems that can display objects of sophisti-
cated complexity and behavior. With the commercial availability
of 3 degree-of-freedom haptic interfaces, software toolkits from
several corporate and academic sources, and several commercial
haptics-enabled applications, the field is experiencing rapid and
exciting growth. 

Reference
1. M.A. Srinivasan and C. Basdogan, “Haptics in Virtual Environ-

ments: Taxonomy, Research Status, and Challenges,” Computers
and Graphics, vol. 21, no. 4, 1997, pp. 393-404. 

(a) (b) (c) (d) (e) (f)

2 Sample of increasingly more complex haptic devices: (a) force-reflecting gripper, (b) Logitech Wingman force-
feedback mouse, (c) ForceDimension’s Omega haptic device, (d) SensAble’s Phantom haptic device, (e) the Hand
Force Feedback exoskeleton, and (f) Immersion’s Haptic Workstation.
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Another distinction between haptic interface devices
is their intrinsic mechanical behavior. Impedance hap-
tic devices simulate mechanical impedance—they read
position and send force. Admittance haptic devices sim-
ulate mechanical admittance—they read force and send
position. Simpler to design and much cheaper to pro-
duce, impedance-type architectures are most common.
Admittance-based devices, such as the Haptic Master,3

are generally used for applications requiring high forces
in a large workspace. 

Haptic interface devices are also classified by the
number of DOF of motion or force present at the device-
body interface—that is, the number of dimensions char-
acterizing the possible movements or forces exchanged
between device and operator. A DOF can be passive or
actuated, sensed or not sensed. 

Characteristics commonly considered desirable for
haptic interface devices include

� low back-drive inertia and friction;
� minimal constraints on motion imposed by the device

kinematics so free motion feels free;
� symmetric inertia, friction, stiffness, and resonate-

frequency properties (thereby regularizing the device
so users don’t have to unconsciously compensate for
parasitic forces);

� balanced range, resolution, and bandwidth of posi-
tion sensing and force reflection; and 

� proper ergonomics that let the human operator focus
when wearing or manipulating the haptic interface
as pain, or even discomfort, can distract the user,
reducing overall performance.

We consider haptic rendering algorithms applicable
to single- and multiple-DOF devices. 

System architecture for haptic rendering 
Haptic-rendering algorithms compute the correct

interaction forces between the haptic interface repre-
sentation inside the virtual environment and the virtual
objects populating the environment. Moreover, haptic-

rendering algorithms ensure that the haptic device cor-
rectly renders such forces on the human operator. 

An avatar is the virtual representation of the haptic
interface through which the user physically interacts
with the virtual environment. Clearly the choice of avatar
depends on what’s being simulated and on the haptic
device’s capabilities. The operator controls the avatar’s
position inside the virtual environment. Contact between
the interface avatar and the virtual environment sets off
action and reaction forces. The avatar’s geometry and
the type of contact it supports regulates these forces. 

Within a given application the user might choose
among different avatars. For example, a surgical tool
can be treated as a volumetric object exchanging forces
and positions with the user in a 6D space or as a pure
point representing the tool’s tip, exchanging forces and
positions in a 3D space. 

Several components compose a typical haptic ren-
dering algorithm. We identify three main blocks, illus-
trated in Figure 3. 

Collision-detection algorithms detect collisions
between objects and avatars in the virtual environment
and yield information about where, when, and ideally
to what extent collisions (penetrations, indentations,
contact area, and so on) have occurred. 

Force-response algorithms compute the interaction
force between avatars and virtual objects when a colli-
sion is detected. This force approximates as closely as
possible the contact forces that would normally arise dur-
ing contact between real objects. Force-response algo-
rithms typically operate on the avatars’ positions, the
positions of all objects in the virtual environment, and
the collision state between avatars and virtual objects.
Their return values are normally force and torque vec-
tors that are applied at the device-body interface. 

Hardware limitations prevent haptic devices from
applying the exact force computed by the force-response
algorithms to the user. Control algorithms command
the haptic device in such a way that minimizes the error
between ideal and applicable forces. The discrete-time
nature of the haptic-rendering algorithms often makes
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3 We split haptic rendering into three main blocks. Collision-detection algorithms provide information about con-
tacts S occurring between an avatar at position X and objects in the virtual environment. Force-response algorithms
return the ideal interaction force Fd between avatar and virtual objects. Control algorithms return a force Fr to the
user, approximating the ideal interaction force to the best of the device’s capabilities. 



this difficult, as we explain later in the article. Desired
force and torque vectors computed by force-response
algorithms feed the control algorithms. The algorithms’
return values are the actual force and torque vectors that
will be commanded to the haptic device. 

A typical haptic loop consists of the following
sequence of events: 

� Low-level control algorithms sample the position sen-
sors at the haptic interface device joints. 

� These control algorithms combine the information
collected from each sensor to obtain the position of
the device-body interface in Cartesian space—that is,
the avatar’s position inside the virtual environment. 

� The collision-detection algorithm uses position infor-
mation to find collisions between objects and avatars
and report the resulting degree of penetration or
indentation. 

� The force-response algorithm computes interaction
forces between avatars and virtual objects involved
in a collision. 

� The force-response algorithm sends interaction forces
to the control algorithms, which apply them on the
operator through the haptic device while maintain-
ing a stable overall behavior. 

The simulation engine then uses the same interaction
forces to compute their effect on objects in the virtual
environment. Although there are no firm rules about how
frequently the algorithms must repeat these computa-
tions, a 1-KHz servo rate is common. This rate seems to be
a subjectively acceptable compromise permitting pre-
sentation of reasonably complex objects with reasonable
stiffness. Higher servo rates can provide crisper contact
and texture sensations, but only at the expense of reduced
scene complexity (or more capable computers). 

The following sections explain the basic principles of
haptic-rendering algorithms, paying particular atten-
tion to force-response algorithms. Although the ability
to detect collisions is an important aspect of computing
contact force response, given the familiarity of CG&A’s
readership with the topic, we don’t dwell on it here. The
geometric problem of efficiently detecting when and
where contact and interobject penetrations occur con-
tinues to be an important research topic in haptics and
related fields. The faster real-time needs of haptic ren-
dering demand more algorithmic performance. One
solution is to accept less accuracy and use simpler colli-
sion model geometries. Alternately, researchers are
adapting graphics-rendering hardware to enable fast
real-time collision detection among complex objects.
Lin and Manocha give a useful survey of collision-detec-
tion algorithms for haptics.4

Computing contact-response forces 
Humans perceive contact with real objects through

sensors (mechanoreceptors) located in their skin, joints,
tendons, and muscles. We make a simple distinction
between the information these two types of sensors can
acquire. Tactile information refers to the information
acquired through sensors in the skin with particular ref-
erence to the spatial distribution of pressure, or more

generally, tractions, across the contact area. Kinesthet-
ic information refers to the information acquired
through the sensors in the joints. Interaction forces are
normally perceived through a combination of these two.
A tool-based interaction paradigm provides a conve-
nient simplification because the system need only ren-
der forces resulting from contact between the tool’s
avatar and objects in the environment. Thus, haptic
interfaces frequently utilize a tool handle physical inter-
face for the user. 

To provide a haptic simulation experience, we’ve
designed our systems to recreate the contact forces a
user would perceive when touching a real object. The
haptic interfaces measure the user’s position to recog-
nize if and when contacts occur and to collect informa-
tion needed to determine the correct interaction force.
Although determining user motion is easy, determining
appropriate display forces is a complex process and a
subject of much research. Current haptic technology
effectively simulates interaction forces for simple cases,
but is limited when tactile feedback is involved. 

In this article, we focus our attention on force-
response algorithms for rigid objects. Compliant object-
response modeling adds a dimension of complexity
because of nonnegligible deformations, the potential
for self-collision, and the general complexity of model-
ing potentially large and varying areas of contact. 

We distinguish between two types of forces: forces
due to object geometry and forces due to object surface
properties, such as texture and friction. 

Geometry-dependent force-rendering algorithms 
The first type of force-rendering algorithms aspires to

recreate the force interaction a user would feel when
touching a frictionless and textureless object. Such inter-
action forces depend on the geometry of the object being
touched, its compliance, and the geometry of the avatar
representing the haptic interface inside the virtual envi-
ronment. Although exceptions exist,5 the DOF necessary
to describe the interaction forces between an avatar and
a virtual object typically matches the actuated DOF of
the haptic device being used. Thus for simpler devices,
such as a 1-DOF force-reflecting gripper (Figure 2a), the
avatar consists of a couple of points that can only move
and exchange forces along the line connecting them. For
this device type, the force-rendering algorithm computes
a simple 1-DOF squeeze force between the index finger
and the thumb, similar to the force you would feel when
cutting an object with scissors. When using a 6-DOF hap-
tic device, the avatar can be an object of any shape. In
this case, the force-rendering algorithm computes all the
interaction forces between the object and the virtual
environment and applies the resultant force and torque
vectors to the user through the haptic device. 

We group current force-rendering algorithms by the
number of DOF necessary to describe the interaction
force being rendered. 

One-DOF interaction. A 1-DOF device measures
the operator’s position and applies forces to the opera-
tor along one spatial dimension only. Types of 1-DOF
interactions include opening a door with a knob that is
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constrained to rotate around one axis, squeezing scis-
sors to cut a piece of paper, or pressing a syringe’s piston
when injecting a liquid into a patient. A 1-DOF interac-
tion might initially seem limited; however, it can render
many interesting and useful effects. 

Rendering a virtual wall—that is, creating the inter-
action forces that would arise when contacting an infi-
nitely stiff object—is the prototypical haptic task. As one
of the most basic forms of haptic interaction, it often
serves as a benchmark in studying haptic stability.6–8

The discrete-time nature of haptic interaction means
that the haptic interface avatar will always penetrate
any virtual object. A positive aspect of this is that the
force-rendering algorithm can use information on how
far the avatar has penetrated the object to the compute
interaction force. However, this penetration can cause
some unrealistic effects to arise, such as vibrations in
the force values, as we discuss later in the article. As Fig-
ure 4 illustrates, if we assume the avatar moves along
the x-axis and x < xW describes the wall, the simplest
algorithm to render a virtual wall is given by 

where K represents the wall’s stiffness and thus is ideally
very large. More interesting effects can be accomplished
for 1-DOF interaction.9,10

Two-DOF interaction. Examples of 2-DOF inter-
actions exist in everyday life—for example, using a
mouse to interact with a PC. Using 2-DOF interfaces to
interact with 3D objects is a bit less intuitive. It’s pos-
sible, however, and is an effective way to interact with
simpler 3D virtual environments while limiting the
costs and complexity of haptic devices needed to ren-
der the interactions. Two-DOF rendering of 3D objects
is, in some cases, like pushing a small ball over the sur-
face of a 3D object under the influence of gravity. Var-
ious techniques enable this type of rendering by
projecting the ideal 3-DOF point-contact interaction
force on a plane,11,12 or by evaluating the height
change between two successive contact points on the
same surface.13

Three-DOF interaction. Arguably one of the most
interesting events in haptics’ history was the recogni-
tion, in the early 1990s, of the point interaction para-
digm’s usefulness. This geometric simplification of the
general 6-DOF problem assumes that we interact with
the virtual world with a point probe, and requires that
we only compute the three interaction force components
at the probe’s tip. This greatly simplifies the interface
device design and facilitates collision detection and
force computation. Yet, even in this seemingly simple
case, we find an incredibly rich array of interaction pos-
sibilities and the opportunity to address the fundamen-
tal elements of haptics unencumbered by excessive
geometric and computational complexity. 

To compute force interaction with 3D virtual objects,
the force-rendering algorithm uses information about
how much the probing point, or avatar, has penetrated
the object, as in the 1-DOF case. However, for 3-DOF
interaction, the force direction isn’t trivial as it usually
is for 1-DOF interaction. 

Various approaches for computing force interaction
for virtual objects represented by triangular meshes exist.
Vector field methods use a one-to-one mapping between
position and force. Although these methods often work
well, they don’t record past avatar positions. This makes
it difficult to determine the interaction force’s direction
when dealing with small or thin objects, such as the inter-
action with a piece of sheet metal, or objects with com-
plex shapes. Nonzero penetration of avatars inside
virtual objects can cause the avatars to cross through
such a thin virtual surface before any force response is
computed (that is, an undetected collision occurs). To
address the problems posed by vector field methods,
Zilles and Salisbury and Ruspini et al. independently
introduced the god-object14 and proxy algorithms.15 Both
algorithms are built on the same principle: Although we
can’t stop avatars from penetrating virtual objects, we
can use additional variables to track a physically realis-
tic contact on the object’s surface—the god object or
proxy. Placing a spring between avatar position and god
object/proxy creates a realistic force feedback to the user.
In free space, the haptic interface avatar and the god
object/proxy are collocated and thus the force response
algorithm returns no force to the user. When colliding
with a virtual object, the god object/proxy algorithm
finds the new god object/proxy position in two steps:

1. It finds a set of active constraints. 
2. Starting from its old position, the algorithm identifies

the new position as the point on the set of active con-
straint that is closest to the current avatar position. 

Morgenbesser and Srinivasan’s introduction of force
shading—the haptic equivalent of Phong shading—suc-
cessively refined both algorithms.16 Whereas graphic-ren-
dering interpolated normals obtain more smooth-looking
meshes, haptic-rendering interpolated normals obtain
smooth-changing forces throughout an object’s surface. 

Walker and Salisbury recently proposed an interest-
ing variation of the god-object/proxy algorithms applic-
able to cases involving triangular meshes based on large
quantities of polygons.17
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Salisbury and Tarr introduced an extension of the
god-object algorithm for virtual objects based on implic-
it surfaces with an analytical representation.18 For
implicit surfaces, collision detection is much faster and
we can calculate many of the variables necessary for
computing the interaction force, such as its direction
and intensity, using closed analytical forms. Other
examples of 3-DOF interaction include algorithms for
interaction with NURBS-based19 and with Voxels-based
objects.20

More than 3-DOF interaction. Although the
point interaction metaphor has proven to be surprisingly
convincing and useful, it has limitations. Simulating
interaction between a tool’s tip and a virtual environ-
ment means we can’t apply torques through the contact.
This can lead to unrealistic scenarios, such as a user feel-
ing the shape of a virtual object using the tool’s tip while
the rest of the tool lies inside the object. 

To improve on this situation, some approaches use
avatars that enable exertion of forces or torques with
more than 3 DOF. Borrowing terminology from the
robotic-manipulation community, Barbagli et al.21

developed an algorithm to simulate 4-DOF interaction
through soft-finger contact—that is, a point contact with
friction that can support moments (up to a torsional fric-
tion limit) about the contact normal. This type of avatar
is particularly handy when using multiple-point inter-
action to grasp and manipulate virtual objects. 

Basdogan et al. implemented 5-DOF interaction, such
as occurs between a line segment and a virtual object, to
approximate contact between long tools and virtual envi-
ronments.22 This ray-based rendering technique allows
us to simulate the interaction of tools by modeling them
as a set of connected line segments and a virtual object.

Several researchers have developed algorithms pro-
viding for 6-DOF interaction forces. For example,
McNeely et al.23 simulated interaction between modest-
ly complex rigid objects within an arbitrarily complex
environment of static rigid objects represented by vox-
els, and Otaduy and Lin24 simulated contact between
complex polygonal environments and haptic probes. 

Surface property-dependent force-rendering
algorithms 

All real surfaces contain tiny irregularities or inden-
tations. Obviously, it’s impossible to distinguish each
irregularity when sliding a finger over an object. How-
ever, tactile sensors in the human skin can feel their
combined effects when rubbed against a real surface.
Although this article doesn’t focus on tactile displays,
we briefly present the state of the art for algorithms that
can render virtual objects’ haptic textures and friction
properties. 

Micro-irregularities act as obstructions when two sur-
faces slide against each other and generate forces tan-
gential to the surface and opposite to motion. Friction,
when viewed at the microscopic level, is a complicated
phenomenon. Nevertheless, simple empirical models
exist, such as the one Leonardo da Vinci proposed and
Charles Augustin de Coulomb later developed in 1785.
Such models served as a basis for the simpler frictional

models in 3 DOF.14,15

Researchers outside the haptic community have
developed many models to render friction with higher
accuracy—for example, the Karnopp model for model-
ing stick-slip friction, the Bristle model, and the reset
integrator model. Higher accuracy, however, sacrifices
speed, a critical factor in real-time applications. Any
choice of modeling technique must consider this trade-
off. Keeping this trade-off in mind, researchers have
developed more accurate haptic-rendering algorithms
for friction (see, for instance, Dupont et al.25). 

A texture or pattern generally covers real surfaces.
Researchers have proposed various techniques for ren-
dering the forces that touching such textures generates.
Many of these techniques are inspired by analogous tech-
niques in modern computer graphics. In computer graph-
ics, texture mapping adds realism to computer-generated
scenes by projecting a bitmap image onto surfaces being
rendered. The same can be done haptically. Minsky11 first
proposed haptic texture mapping for 2D; Ruspini et al.
later extended his work to 3D scenes.15 Researchers have
also used mathematical functions to create synthetic pat-
terns. Basdogan et al.22 and Costa and Cutkosky26 inves-
tigated the use of fractals to model natural textures while
Siira and Pai27 used a stochastic approach. 

Controlling forces delivered through
haptic interfaces 

So far we’ve focused on the algorithms that compute
the ideal interaction forces between the haptic interface
avatar and the virtual environment. Once such forces
have been computed, they must be applied to the user.
Limitations of haptic device technology, however, have
sometimes made applying the force’s exact value as
computed by force-rendering algorithms impossible. 

Various issues contribute to limiting a haptic device’s
capability to render a desired force or, more often, a
desired impedance. For example, haptic interfaces can
only exert forces with limited magnitude and not equal-
ly well in all directions, thus rendering algorithms must
ensure that no output components saturate, as this
would lead to erroneous or discontinuous application
of forces to the user. 

In addition, haptic devices aren’t ideal force trans-
ducers. An ideal haptic device would render zero imped-
ance when simulating movement in free space, and any
finite impedance when simulating contact with an
object featuring such impedance characteristics. The
friction, inertia, and backlash present in most haptic
devices prevent them from meeting this ideal. 

A third issue is that haptic-rendering algorithms oper-
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ate in discrete time whereas users operate in continu-
ous time, as Figure 5 illustrates. While moving into and
out of a virtual object, the sampled avatar position will
always lag behind the avatar’s actual continuous-time
position. Thus, when pressing on a virtual object, a user
needs to perform less work than in reality; when the user
releases, however, the virtual object returns more work
than its real-world counterpart would have returned. In
other terms, touching a virtual object extracts energy
from it. This extra energy can cause an unstable
response from haptic devices.7

Finally, haptic device position sensors have finite res-
olution. Consequently, attempting to determine where
and when contact occurs always results in a quantiza-
tion error. Although users might not easily perceive this
error, it can create stability problems. 

All of these issues, well known to practitioners in the
field, can limit a haptic application’s realism. The first
two issues usually depend more on the device mechan-
ics; the latter two depend on the digital nature of VR
applications. 

As mentioned previously, haptic devices feature a
bidirectional flow of energy, creating a feedback loop
that includes user, haptic device, and haptic-render-
ing/simulation algorithms, as Figure 5 shows. This loop
can become unstable due to the virtual environment
energy leaks.

The problem of stable haptic interaction has received
a lot of attention in the past decade. The main problem
in studying the loop’s stability is the presence of the
human operator, whose dynamic behavior can’t be gen-
eralized with a simple transfer function. Researchers
have largely used passivity theory to create robust algo-
rithms that work for any user. 

For a virtual wall such as the one in Figure 4, Colgate
and Brown6 analytically showed that a relation exists
between the maximum stiffness a device can render,
the device’s level of mechanical damping, the level of
digital damping commanded to the device, and the
servo rate controlling the device.6 More specifically, to
have stable interaction, the relationship b > KT/2 + B
should hold. That is, the device damping b should
always be higher than the sum of the level of digital
damping that can be controlled to the device B and the
product KT/2 where K is the stiffness to be rendered by
the device and T is the servo rate period. Stiffer walls
tend to become unstable for higher servo rate periods,
resulting in high-frequency vibrations and possibly
uncontrollably high levels of force. Increasing the level
of mechanical damping featured by the device can limit
instability, even though this limits the device’s capa-
bilities of simulating null impedance when simulating
the device’s free-space movements. Thus high servo
rates (or low servo rate periods) are a key issue for sta-
ble haptic interaction. 

Two main sets of techniques for limiting unstable
behavior in haptic devices exist. The first set includes
solutions that use virtual damping to limit the energy
flow from the virtual environment toward the user when
it could create unstable behavior.8,28 Colgate introduced
virtual coupling, a connection between haptic device and
virtual avatar consisting of stiffness and damping, which

effectively limits the maximum impedance that the hap-
tic display must exhibit.28 A virtual coupling lets users
create virtual environments featuring unlimited stiff-
ness levels, as the haptic device will always attempt to
render only the maximum level set by the virtual cou-
pling. Although this ensures stability, it doesn’t make a
haptic device stably render higher stiffness levels. 

The second set of techniques includes solutions that
attempt to speed up haptic servo rates by decoupling
force-response algorithms from other slower algo-
rithms, such as collision-detection, visual-rendering,
and virtual environment dynamics algorithms.29 This
can be accomplished by running all of these algorithms
in different threads with different servo rates, and let-
ting the user interact with a simpler local virtual object
representation at the highest possible rate that can be
accomplished on the system. 

Four main threads exist. The visual-rendering loop is
typically run at rates of up to 30 Hz. The simulation
thread is run as fast as possible congruent with the
simulated scene’s overall complexity. A collision-detec-
tion thread, which computes a local representation of
the part of the virtual object closest to the user avatar,
is run at slower rates to limit CPU usage. Finally a
faster collision detection and force response is run at
high servo rates. An extremely simple local represen-
tation makes this possible (typical examples include
planes or spheres). Surface discontinuities are nor-
mally not perceived, given that the maximum speed
of human movements is limited and thus the local rep-
resentation can always catch up with the current
avatar position. This approach has gained success in
recent years with the advent of surgical simulators
employing haptic devices, because algorithms to accu-
rately compute deformable object dynamics are still
fairly slow and not very scalable.30,31

Conclusion 
As haptics moves beyond the buzzes and thumps of

today’s video games, technology will enable increas-
ingly believable and complex physical interaction with
virtual or remote objects. Already haptically enabled
commercial products let designers sculpt digital clay
figures to rapidly produce new product geometry,
museum goers feel previously inaccessible artifacts, and
doctors train for simple procedures without endanger-
ing patients. 

Past technological advances that permitted record-
ing, encoding, storage, transmission, editing, and ulti-
mately synthesis of images and sound profoundly
affected society. A wide range of human activities,
including communication, education, art, entertain-
ment, commerce, and science, were forever changed
when we learned to capture, manipulate, and create
sensory stimuli nearly indistinguishable from reality. It’s
not unreasonable to expect that future advancements
in haptics will have equally deep effects. Though the
field is still in its infancy, hints of vast, unexplored intel-
lectual and commercial territory add excitement and
energy to a growing number of conferences, courses,
product releases, and invention efforts. 

For the field to move beyond today’s state of the art,
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researchers must surmount a number of commercial
and technological barriers. Device and software tool-
oriented corporate efforts have provided the tools we
need to step out of the laboratory, yet we need new busi-
ness models. For example, can we create haptic content
and authoring tools that will make the technology
broadly attractive? Can the interface devices be made
practical and inexpensive enough to make them wide-
ly accessible?

Once we move beyond single-point force-only inter-
actions with rigid objects, we should explore several
technical and scientific avenues. Multipoint, multihand,
and multiperson interaction scenarios all offer entic-
ingly rich interactivity. Adding submodality stimulation
such as tactile (pressure distribution) display and vibra-
tion could add subtle and important richness to the
experience. Modeling compliant objects, such as for sur-
gical simulation and training, presents many challeng-
ing problems to enable realistic deformations, arbitrary
collisions, and topological changes caused by cutting
and joining actions. 

Improved accuracy and richness in object modeling
and haptic rendering will require advances in our under-
standing of how to represent and render psychophysi-
cally and cognitively germane attributes of objects, as
well as algorithms and perhaps specialty hardware
(such as haptic or physics engines) to perform real-time
computations. 

Development of multimodal workstations that pro-
vide haptic, visual, and auditory engagement will offer
opportunities for more integrated interactions. We’re
only beginning to understand the psychophysical and
cognitive details needed to enable successful multi-
modality interactions. For example, how do we encode
and render an object so there is a seamless consistency
and congruence across sensory modalities—that is, does
it look like it feels? Are the object’s density, compliance,
motion, and appearance familiar and unconsciously
consistent with context? Are sensory events predictable
enough that we consider objects to be persistent, and
can we make correct inference about properties?

Finally, we shouldn’t forget that touch and physical
interaction are among the fundamental ways in which
we come to understand our world and to effect changes
in it. This is true on a developmental as well as an evo-
lutionary level. For early primates to survive in a physi-
cal world, Frank Wilson suggested that

a new physics would eventually have to come into
this their brain, a new way of registering and rep-
resenting the behavior of objects moving and
changing under the control of the hand. It is pre-
cisely such a representational system—a syntax
of cause and effect, of stories, and of experiments,
each having a beginning, a middle, and an end—
that one finds at the deepest levels of the organi-
zation of human language.32

Our efforts to communicate information by render-
ing how objects feel through haptic technology, and the
excitement in our pursuit, might reflect a deeper desire
to speak with an inner, physically based language that

has yet to be given a true voice. �
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