

ww

Abstract— In this paper, we discuss a coordinated haptic
training architecture useful for transferring expertise in
teleoperation-based manipulation between two human users.
The objective is to construct a reality-based haptic interaction
system for knowledge transfer by linking an expert’s skill with
robotic movement in real time. The benefits from this approach
include 1) a representation of an expert’s knowledge into a more
compact and general form by learning from a minimized set of
training samples, and 2) an increase in the capability of a novice
user by coupling learned skills absorbed by a robotic system
with haptic feedback. In order to evaluate our ideas and present
the effectiveness of our paradigm, human handwriting is
selected as our experiment of interest. For the learning
algorithms, artificial neural network (ANN) and support vector
machine (SVM) are utilized and their performances are
compared. For the evaluation of the performance of the output
of the learning modules, a modified Longest Common
Subsequence (LCSS) algorithm is implemented. Results show
that one or two experts’ samples are sufficient for the
generation of haptic training knowledge, which can successfully
recreate manipulation motion with a robotic system and
transfer haptic forces to an untrained user with a haptic device.
Also in the case of handwriting comparison, the similarity
measures result in up to an 88% match even with a minimized
set of training samples.

I. INTRODUCTION

APTIC transference of an expert’s skill to non-experts is a
well-established methodology [1], [10]. By capturing the

sophisticated operation of a human expert using high
degree-of-freedom haptic interfaces, a user’s skill can be
stored, analyzed, and transferred to other human operators.
The ability of the haptic device to capture and generate forces
positions the haptic device as both a mediator and a trainer in
the skill transfer process.
 What we find common in the various architectures used in
this transfer process is that the expert’s data is usually not
altered – i.e. the ground truth that is used without
modification. It has led to a common architecture that
primarily copies the expert’s data, instead of compiling the
generalized representation of the expert’s skills. As such, we
focus on an approach for manipulating the expert’s data for

This work was supported by the National Science Foundation under

Award Number IIS-0705130.
C. H. Park and A. M. Howard are with the Human Automation Systems

(HumAnS) Lab., School of Electrical and Computer Engineering, Georgia
Institute of Technology, U.S.A. J. W. Yoo is with the College of Computing,
Georgia Institute of Technology, U.S.A.

E-mail: {chungpark, ayanna.howard, jyoo}@gatech.edu

the purpose of compacting and generalizing the haptic data
into a form of “haptic knowledge.”
 The next aspect of the conventional haptic transfer system
we examine is the utilization of a robotic system in the
transfer process. Although in some cases two identical haptic
devices function as a master-slave system, the expert’s skill is
not always directly identifiable. We propose the bidirectional
linkage of a robotic system be coupled with a haptic
interaction process that allows more realistic operation and
increases understanding of a real-world practice through a
direct observation of the robot’s performance while operating
the haptic device.
 Our research is similar in nature to the concept of “learning
from demonstration” (also called imitation learning or
programming by demonstration) in the robotics community,
as we need to both capture human motions as well as
mimic/recreate them with a robotic/haptic system. As
illustrated in Fig. 1, our intention with this work is to integrate
the learning path with the haptic knowledge flow, to increase
the efficiency of the haptic training loop and to broaden the
modality in human-robot interaction with the haptic pathway.

 We select human handwriting as the subject of our
experiments, since handwriting functions as a good testbed
for showcasing the complexity of human dexterity. Hand-
writing is a research topic that is studied in the haptics area for
training applications, and it is also a challenging area for
robotics [15], [16]. The reason that handwriting is difficult is
that it is a three dimensional task, which increases to six
dimensions if changes in orientation are considered. Most
importantly, the position and velocity of the writing utensil
(or pen) can change abruptly over the time-domain, making it
more difficult to generalize the pattern. For example, to write
a simple letter ‘b’, one needs to approach a paper with a pen,
make contact with the pen tip, apply a straight down-stroke
motion followed by a circular stroke, stop at the same spot as

Transfer of Skills between Human Operators through
Haptic Training with Robot Coordination

Chung Hyuk Park, Jae Wook Yoo, and Ayanna M. Howard

H

Fig. 1. Our paradigm of robot-coordinated haptic training.

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 229

the end of the straight stroke, then finally lift up the pen from
the paper. This simple depiction is representative of the
complexity inherent in the motion, variability in velocity, and
changes in position associated with a handwriting task.
 To successfully tackle the skill transfer issue, we propose a
haptically-linked human-robot interactive learning architect-
ure. In Section II, we describe previous research related to
this subject matter. We explain the architecture of our system
and the algorithms in Section III, and we display the
experimental setup in Section IV. We discuss the
corresponding results and analysis in Sections V and VI. We
then conclude our work with a brief summary in Section VII.

II. RELATED WORKS
There are a number of research efforts that have

successfully showcased robotic learning of behaviors.
Nicolescu and Matarić [2] divided the sequence of tasks
being performed by a robot into multiple behaviors and
accomplished the learning and generalization process using
the longest common subsequence algorithm. Campbell et al.
[3], [4] introduced the sensory-motor coordination and
behavioral superposition, which enabled a humanoid robot to
perform 3D manipulation tasks such as grasping and
handling. However, their work required many repeated
training samples for each short period of subtasks (e.g. 45
reruns for grasping). Mayer et al. [5] suggested the use of
Recurrent Neural Networks (RNNs) with long short-term
memory cells for training the robot to do more complex
shaped manipulation tasks such as tie-knotting. The
drawbacks with this approach are that RNNs are hard to train
and are unable to meet the performance criteria with respect
to the run-time due to the noise, and only a portion of a
subtask is learnable. One research effort that is similar to our
proposed work, in terms of human trajectory learning, was
conducted by C. Lee in his thesis [6], in which principal
curves were collected and regenerated using a spline
smoothing method to find the best-fit for a human trajectory
data. His work though required the existence of a model to
derive principal curves of the trajectory.

Handwriting has been continuously studied in the haptics
arena, with the primary purpose of aiding in teaching or
rehabilitation, mainly through the use of haptic guidance.
Among many haptic guidance related studies, Feygin et al.
evaluated the effectiveness of haptic and visual guidance in
the training of perceptual motor skills [9], and Liu et al.
compared performance associated with combining haptic
guidance and visual guidance in training new movements for
rehabilitation [10]. Wang et al. developed a Chinese character
teaching system using a haptic interface and experimented
with sequential training accompanied by haptic and visual
guidance which evaluated the trainee’s memorization level
[11]. Much more work can be found in the past decade with
regard to this matter, but the most common characteristic in
these efforts is that the expert data is carefully recorded and
just replayed in the training process. Even when the data was

preprocessed with learning methods, the number of example
data was usually high (at least more than10 samples).
 In this work, we adopt supervised learning algorithms to
process the haptic task performing data provided by a human
expert, human-handwriting in this case. The data is then
transformed into a generalized haptic knowledge that is both
applicable for the haptic system and for the robotic system,
and in turn is used to transfer skills to the human novice by
combining the output from both systems.

III. SYSTEM ARCHITECTURE
There are three primary components that govern our robot

coordinated haptic training architecture: the human control
loop, the robotic learning loop, and the haptic training loop
(Fig. 2). At first, the human teacher tele-operates the robot to
perform a task, that is, write a letter in this case. After the
robot executes the commands from the human operator, the
learning modules are trained over the temporal sequences of
the trajectory. Then, the learned modules are used to control
the robotic system and to autonomously perform the trained
task. During this process, the haptic device simultaneously
generates force guidance input through the haptic device to
the human novice, synchronizing the robotic motion and the
haptic interface.

A. Control Flow
In the human control loop, a human expert controls a

pen-like haptic device (Phantom Omni) which can receive
continuous six-dimensional position inputs over its
workspace. The control input is linearly converted to match
the differences between the workspace of the input device
and the workspace of the robotic manipulator. The mapped
pattern then updates the robot controller which transmits back
the status of the robot, the position and velocity vectors in
Cartesian space, to the learning module.

The role of the learning module during the robotic learning
cycle is to train the learning algorithms over the expert’s
haptic data and generalize it into suitable parameters for
subsequent task implementation. In this learning cycle, haptic
movement sequences are scaled down to increase the
performance of the learning algorithm, and passed to the
learning module along with the scaled data of the robot’s
previous status. The haptic movement sequence is a sampled

Fig. 2. Teaching data flow for the robot coordinated haptic training
system architecture. (Blue arrow: human expert’s teaching flow; Red
dashed arrow: novice teaching flow with the learning module)

230

trajectory of human handwriting taken over the workspace of
the haptic device at every haptic device update cycle. After
each haptic operation is finished, the training data is updated
and the learning module is trained over the data.

The processes of up-scaling and down-scaling the input
data have two merits. First, it transforms the data into a fixed
uniform range so any learning module can be used
interchangeably. Secondly, since the 3D motions are
transformed to fit into a confined volume space, it allows the
learning module to be trained over any type of motion,
accounting for variability in ranges of movement and velocity
constraints, thus minimizing the chance of losing the detailed
features that define the task.

Finally in the haptic training loop, the learned module is
provided with the robot’s previous and current status (which
are also scaled down), and its output is scaled up and handed
to both the haptic controller and the robotic controller. The
output consists of the velocity vector for the next movement,
corresponding to the position and velocity of each timestep,
and the sequential output vector controls the robot while, at
the same time, providing input into the haptic device for
generating the guiding forces to make the same trajectory.

B. Learning Algorithms
Learning a three-dimensional data pattern involves

predicting the next robot command sequence given its
previous sequence and its current position at a certain time.
This was studied previously in [14] only without the effect of
the time variable. In this work, we trained the learner with and
without the time variable as an input and observed the
difference in performances.

We investigate the performances derived from implement-
ing the multi-layer feed-forward neural network (NN) and the
support vector machine (SVM) as our learning algorithms,
which are selected based on the fact that these two supervised
learning algorithms possess good generalization capability
over continuous range space of input data with
high-dimensional characteristics.

1) Neural Networks
For learning in three-dimensional Cartesian space, we first

implement the neural network regression algorithm. The
time-series data patterns are collected from the human control
sequences, and fed into our multi-layer feed-forward neural
network (NN) modules to train them recursively over the
pattern.

As illustrated in Fig. 3, the NN module takes as inputs the
current arm’s end position in 3D space, the differential values
of current position and previous position (representing the
velocity of the arm’s end position), and the timesteps from the
beginning of the sequence. The timestep input is needed to
provide additional dimension, since the time value can
differentiate between states when there are intersections or
circular motions in writing.
We train 3 networks (corresponding to each X,Y,Z space) for
each letter dataset. The parameters for the network
configuration are primarily based on our a priori knowledge,
and only a few parameters are changed to evaluate over
complex letters. The back-propagation [12] method is
adopted to optimize the networks and the training is
terminated if the error term reaches a certain allowable
criteria—details are discussed in the results section. The
networks then go through a preliminary evaluation process
and a real-system evaluation in sequence.

2) SVM
SVM [7], [13] is another popular machine learning

algorithm that shows good performances in data classifi-
cation and dimensional reduction. The SVM uses a kernel
method to find the best hyperplane between high dimensional
training datasets in a relatively fast time compared to other
classification algorithms. Since it is crucial in robotic learning
problems to guarantee accurate control and strong resilience
against disturbances while maintaining short training time,
we choose to utilize SVM for our human trajectory regression
problem.

We use ε-SVR approach to map our 7 dimensional real
valued input data to continuous real valued 3 dimensional
outputs, forming a set of SVM classification over continuous
output range space. The objectives of ε-SV regression are in a
given training set of N instance pairs (xi , yi), i = 1, ..., N where
xi in RN , firstly to find a function f(x) that has at most ε
deviation from the actually obtained targets yi for all the
training data, and secondly to make the function as flat as
possible at the same time. Specifically, it requires solving the
following optimization problem:

∑
=

+
N

i
i

T

bw
Cww

1,, 2
1min ξ

ξ
 that is subject to (1)

()() ii
T

i bxwy ξϕ −≥+ 1 , 0≥iξ (2)
where w is the weight coefficient vector, iξ the slack variable,
and () () ()j

T
iji xxxxK ϕϕ=, the kernel function which maps the

training vectors ix to a higher dimensional space by the
transformation function)(ixϕ . Then, SVM is used to find a
separating hyperplane with the maximal margin in this higher
dimensional space. The kernel functions we use are as
follows:

Linear kernel: () j
T

iji xxxxK =, (3)

RBF kernel: () 0),exp(,
2

>−−= γγ jiji xxxxK (4)

Fig. 3. Training loop by a human teacher and robot’s self-writing loop.

231

Throughout Eq. (1) to (4), C and γ affect the accuracy of
the SVM module most significantly, where C>0 is the penalty
parameter of the error term and γ is a kernel parameter. In our
experiment, to find good values for C and γ in a reasonable
amount of time, we adapted the grid search method [8].

C. Haptic Guidance
Forces for haptic guidance are generated both in the human

control cycle and in the haptic training cycle. During the
human control cycle, the haptic device creates a passive
guidance force feedback which generates potential-like
centering forces to the operator’s hand position. The primary
objective of this guidance is to provide a reliable control
environment, since it is difficult for a human operator to
maintain a steady position in a 3 dimensional workspace
without any support in the device. The haptic device is
updated every 10 ms (100 Hz), so as the human operator
moves the haptic device, the passive potential force follows
the human operator’s position and creates continuous holding
forces, enabling a passive haptic support.

In the haptic training loop, after the learning cycle, a
guiding force field is also applied to the device, except that
this time the learning module generates a potential-like force
field based on the current position and velocity. In this
regard, the haptic force guidance becomes an active guidance
toward the next position, thus guiding the human trainee to
follow the same trajectory as the human expert - i.e. guidance
in writing the same letter.

D. Validation Algorithm (Similarity Measure)
As the last step of the experiment, the robot’s writing

trajectories are processed to evaluate the robot’s performance
given the specific human training example. We adopt and
implement a LCSS (Longest Common Sub-Sequence)
algorithm, which was originally designed to compare
common phrases in texts.

We modified the algorithm to measure the differences in
two vectors by extracting the longest sequence of similar
trajectory slices. This algorithm increases the number of ‘hits’
if the error between the two trajectory slices is within a
certain threshold, and keeps the maximal value of the ‘hits’ if
not. With this method, we measure the similarity between the
original pattern and the pattern created by the robot, and
provide a computational match between the two writings.

The algorithm is described in detail in Eq. 5. For the
comparing of a sequence A(i) and an original sequence B(i),

⎪
⎩

⎪
⎨

⎧

−
<−Δ−−+

=

=

 ,))(),1((max(
)()(,))1(),1((1

)(),(, 0
))(),((

,,,,

otherwiseiBiALCSS
iBiAifiBiALCSS

nulliBiAif
iBiALCSS

zyxzyx δ

(5)

IV. EXPERIMENT

A. System Setup
The robotic platform used for our haptic training system

consists of a 5 DoF (degrees-of- freedom) robotic manipula-
tor with a 6 DoF input haptic device, the Phantom Omni. A

human operator, or namely the human teacher, manipulates
the Omni to control the manipulator to perform a
sophisticated task, and a PC connected to the system performs
the required calculations such as running the machine
learning algorithms.
The data to be learned are constructed as a set of arrays of real
valued data taken over time. The human control data consist
of a set of trajectories over 3D space, and the related data that
we learn are the set of motion vectors corresponding to the
trajectories from current positions to the next positions.
Computed over the time-series data, the final learned result
becomes a function F such that

SVM / NNwith function learned the:

 at time taken be tor tomotion vecnext :

 at timetor motion vec previous:

 at timeposition current :
) timesteps(totalpattern theof size N N, ,1,

 V) , VF(P

i),v,v(vV

i),v,v(vV

i),p,p(pP
iFor

N
i

P
i

C
i

i
N
z

N
y

N
x

N
i

i
P
z

P
y

P
x

P
i

i
C
z

C
y

C
x

C
i

=

=

=

=

== L

 (6)

B. Experimental Setup
To test ouralgorithms, we select letters ‘3’, ‘b’, and a word

‘ML’. The numbers ‘3’ and ‘b’ are chosen since the ‘3’ is
written in one continuous stroke consisting of two similar
curves, and ‘b’ is selected since it contains two basic strokes,
a straight line and a circle with a sharp turn in between,
sharing an intersection. These two letters are thus suitable for
evaluating whether the NN and the SVM learning modules
are capable of learning spatiotemporal patterns. The word
‘ML’, abbreviation for ‘Machine Learning’, is selected to
validate if the learning modules can learn to write multiple
letters as a whole sequence.

For the SVM training and implementation process, we
utilize the LibSVM [8] to implement the SVM learner in our
system. LibSVM provides basic SVM functions in an
integrated software package for support vector classification,
regression, and distribution estimation.

V. RESULTS

A. Preliminary Results

After the system was setup, a preliminary experiment was

initiated to see whether our haptic system was able to learn a
trajectory pattern. One training example of writing a number

Fig. 5. Robot Arm writing ‘3’ after learning the pattern wth SVM.

Fig. 4. Pioneer3AT mobile robot with 5DoF robotic arm, and the GUI.

232

‘3’ was given to the learners, and after training, outputs from
the learning modules were observed given the same input
data. This was not a cross-validation, and it would require
more validation dataset to be a realistic test of performance.
However, the primary goal was to check if the algorithms
could actually perform regression over complex three-
dimensional patterns with only a single training data example.

The results were quite satisfactory, and as expected, the
NN module showed a tendency to produce smoother output
compared to the initial data, while the SVM tried to follow
more details in the pattern as shown in Fig. 6.

B. Neural Network Results
With the NN as a learning module, the commonly used

parameters were 7 input nodes, {4,8,12,16} hidden layer
nodes, and one output node for each NN structure. Also, the
learning rate of 0.15, momentum term of 0.85, error limit of
5%, and iteration count of 3000 were the other parameters
used, with minor variances depending on the dataset.

As shown in Fig. 7, the robot learned the pattern of writing
‘3’ with a single input pattern (Fig. 7, left). Although the
trajectory became smoother than the human pattern, it
promptly regenerated (Fig. 7, center) the two sequential
curves for the number ‘3’ as the human had written.

Then, the letter ‘b’ was demonstrated twice for the robot
(Fig. 8, top), and the robot’s execution, with the timestep as
an input to the NN and without the input parameter of
timestep, were recorded. When ran without the timestep
information, the robot miscalculated at the first straight
down-stroke and drew a slightly bent curve, and after
finishing the circle it kept circling again since the velocity and
orientation matched again whenever it returned. However,

when the time parameter was used as an input vector to the
NN, it drew a perfect straight line at the first stage, and
reduced speed after drawing one circle (Fig. 8, bottom left).
The NN module even resulted in a more smooth and
generalized pattern than the original data.

Lastly, ‘ML’ was provided to the NN learner, and after a
few minutes of training, the robot started to write a deformed
‘M’ with a smoothed out ‘L’ quickly (Fig. 9).

The only parameter we usually had to change for the NN

was the number of hidden layer nodes. The common rule of
thumb for the middle layer node number is the average of
input and output node numbers, which in our structure is 4.
The 4 middle nodes worked fine with connected characters
such as ‘b’ and worked ok with ‘3’, but with more complex
letters such as ‘M’ or ‘A’, the nonlinearity in the pattern
increased and required a larger number of hidden layer nodes.
Yet, training over 4 different ranges of middle layer nodes of
{4,8,12,16} was enough to find a well trained network.

C. SVM Results
In grid search for the SVM learner, a set of (C, γ) pairs are

tried over the range and the one with the best cross-validation
accuracy is selected. Specifically, the pair that generates the
least MSE (mean squared error) is kept per each iterations.

Fig. 6. Top: original data for letter ‘3’, middle: pattern generated by
NN for letter ‘3’, bottom: pattern generated by SVR_Linear for letter
‘3’.

Fig. 9. Original data (left) and the ANN result for the word ‘ML’
(right).

Fig. 8. Letter ‘b’: human writing patterns (top) and robot’s writing
patterns (bottom). Bottom left: result with NN learner, bottom right:
result with SVR learner.

Fig. 7. Letter ‘3’: human writing pattern (left) and robot’s writing
pattern (center, right). Center: result with NN learner, right: result with
SVR learner.

233

Exponentially growing sequences of C and γ is a well-known
method to identify good parameters. In our experiment, the
tested C and γ ranges are 102− to 102 , and they are searched
exhaustively. One of the advantages of this approach is that
the search can easily be parallelized, because each (C, γ) pairs
are independent.

Scaling is also used to derive better performances. The
dataset is scaled down before training and scaled up when the
learning module is in control. The scaled range is -1 to 1. By
means of scaling method, we were able to get two positive
results. One, it created more elaborate output data, and two, it
dramatically shortened the training time. Especially, when we
used a linear kernel for training, the order of training time
decreased from minutes to seconds.

As shown in Fig. 7-8, for the characters ‘3’ and ‘b’, the
SVM module showed successful learning with more
elaborate drawings, recreating the details of human
hand-writing. Especially, when the robot wrote ‘b’, the SVM
learner stopped moving exactly when it finished writing the
letter, but the NN module looped the last stroke (a circle)
again.

However, for complex patterns such as ‘ML’, the SVM
learner didn’t work; the grid search couldn’t find a proper
parameter combinations and the module couldn’t manage to
write any letters, while the NN tried to write ‘ML’ although
the letters were smoothed out excessively.

D. Haptic Guidance Result
Haptic guidance forces were generated with a potential-like

field, shifting the centers to the sequential points resulting
from the learning algorithms (NN / SVM) thus creating a
series of guidance for writing a letter. So the difference
between the expert’s trajectory and the haptic guidance
becomes the same as the difference between the expert’s data
and the data created from the learning algorithms. We leave
the discussion of the user study for a future paper, and
visualize the resulting haptic guidance trajectory in Fig. 10.

The clear and smooth trajectory of this writing training

sample is due to the good training result of the NN learner,
while the actual robot’s trajectory in the attached video seems
to have unnecessary movements. The reason for this
discrepancy lies in the following facts: First, the learning
process is performed over the user’s haptic data, and the
generalized haptic knowledge is recreated as a control input
to the robotic and the haptic systems; Secondly, the

manipulator with our robotic system is a low-cost educational
device, having a slow response-time and a low accuracy
movement with back-lashes, thus limiting us from achieving
perfect closed-loop control. With these limitations, however,
we prove that our algorithms can successfully perform actual
learning and transference of the haptic knowledge.

VI. ANALYSIS

A. Data Compressibility
The first factor we looked for, in order to show the

effectiveness of applying machine learning algorithms on our
problem, was the ability to compress the data. As shown in
Table I and Fig. 11, the original pattern data for the writing
samples of ‘b’, ‘3’, and ‘ML’ were 27kB, 22kB, and 36kB
each. However, the trained NNs noticeably downsized them
to 2kB, 4kB, and 6kB each, while the SVMs only reduced the
size by 2/3, resulting in 17kB, 14kB, and 21kB each.

B. Training Time Comparison
The second feature we observed is the training time.

Compared to the NN, which is known for its long training
time, the training time for the SVM regression was
surprisingly fast (Table II). The NN usually took 10~30 times
longer than the SVM’s training time, while the SVM usually
finished training in a few seconds.

However, the additional fact we gathered is that the SVM
learners are very sensitive to the parameters (especially with
C and γ) on each dataset, while the NNs usually trained over
several datasets with the same parameters. So we had to run
grid-search for every datasets we collected, and the time
taken for the parameter search summed up with the time for
training a single NN, which was around 1 minute.

TABLE II
TRAINING TIME FOR ANN AND SVM OVER 3 DATASETS (UNIT=SEC)

Learner ‘3’ ‘b’ ‘ML’
NN 57 62 183

SVM 1.39 5.62 9.31

TABLE I
DATA COMPRESSION RATIO OF ANN AND SVM (UNIT=KB)

Learner ‘3’ ‘b’ ‘ML’
NN 2 4 6

SVM 17 14 21
Original Data 27 22 36

Fig. 10. Haptic guidance for ‘b’ with NN module. Each arrow
represents the change in the center of haptic guidance with the size
corresponding to the speed in between guiding points, together with
color representation(blue=slow, green=modest, red=fast change).

Fig. 11. Data compression ratio of ANN and SVM over 3 datasets.

234

C. Validation
The last parameter that we observed was the measure of

similarity, that is, how well the learning module had learned
from what the human teacher had taught (and only with a few
teaching trials). As shown in Table 3, the LCSS results for the
character ‘3’ were 65.7% and 87.7% for each ANN and SVM
learners. Although both learners created letter ‘3’ that was
legible, the SVM’s result were closer to the features of the
original data which is the ‘human hand writing’, and the
results from our similarity measure algorithm support that.
For ‘b’, both algorithms created good results, but the SVM’s
LCSS result was higher, due to the fact that the SVM learned
more details such as the crooked circle shape or the edge at
the end.

However, both algorithms have limitations as well. When
challenged to learn to write a word ‘ML’, we only achieved
42.9% match from the ANN and failure in training with the
SVM.

VII. DISCUSSION

We have proposed a human-robot coordinated interactive
haptic training architecture, in which the demonstration of the
robotic system is linked with the haptic control flow and the
machine learning algorithms transform the haptic data into
the compact haptic knowledge. Results show that our system
successfully creates generalized haptic knowledge from only
1 or 2 training examples, and the system is capable of
transferring the haptic knowledge both through the haptic
force guidance as well as through the robotic demonstration.

As expected, the SVM results in learning more detailed and
accurate strokes than the NN, since the SVM algorithm tries
to find more optimal classifiers by keeping specific features.
However, the NN exhibits better results if the sequence gets
more complex, due to the NN’s powerful capabilities in
generalization.

The next step we are planning to take is to apply this
learning process to other human-motor skills, such as object
manipulation or basic exercise patterns. To expand the area of

application, we will also expand the modalities of haptic feed-
back. The enhanced haptic learning process will be able to
increase the performance of haptic training, such as medical
training system and skill transfer for the visually impaired.
Future research will also focus on applying our methodology
to robot-assisted rehabilitation and training.

REFERENCES
[1] Y. Yokokohji, R. L. Hollis, T. Kanade, K. Henmi, and T. Yoshikawa,

“Toward Machine Mediated Training of Motor Skill,” in 5th
International Workshop on Robot and Human Communication, Nov.
1996, pp. 32-37.

[2] M. N. Nicolescu and M. J. Matarić, “Natural methods for robot task
learning: Instructive demonstrations, generalization and practice,” in
Proceedings of the Second International Joint Conference on
Autonomous Agents and Multi-Agent Systems, 2003, pp. 242-248.

[3] C. L. Campbell, R. A. Peters II, R. E. Bodenheimer, and W. J.
Bluethmann, “Superpositioning of Behaviors Learned Through Tele-
operation,” IEEE Transactions on Robotics, Vol.22, No.1, Feb.2006.

[4] R. A. Peters and C. L. Campbell, “Robonaut Task Learning through
Teleoperation,” in Proceedings of the IEEE International Conference
on Robotics & Automation, Sept. 2003, Vol.2, pp. 2806-2811.

[5] H. Mayer, F. Gomez, D. Wierstra, I. Nagy, A. Knoll, and J.
Schmidhuber, “A System for Robotic Heart Surgery that Learns to Tie
Knots Using Recurrent Neural Networks,” in Proceedings of the
IEEE/RSJ International Conference on Intelligent Robot and Systems,
Beijing, China, Oct. 9 - 15, 2006, pp. 543-548.

[6] C. Lee, “Learning Reduced-Dimension Models of Human Actions,”
Ph.D. dissertation, tech. report CMU-RI-TR-00-17, Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA, May 2000.

[7] V. Vapnik, The Nature of Statistical Learning Theory. New York:
Springer-Verlag, 1995.

[8] C. C. Chang and C. J. Lin. LIBSVM: a library for support vector
machines, 2001. Available: http://www.csie.ntu.edu.tw/~cjlin/libsvm

[9] D. Feygin, M. Keehner, and F. Tendick, “Haptic Guidance:
Experimental Evaluation of a Hpatic Training Method for a Perceptual
Motor Skill,” in Proceedings of 10th International Symposium on
Haptic Interfaces for Virtual Environment and Teleoperator Systems,
Orlando, FL, Mar. 2002, pp. 40-47.

[10] J. Liu, S. C. Cramer, and D. J. Reinkensmeyer, “Learning to perform a
new movement with robotic assistance: comparison of haptic guidance
and visual demonstration,” Journal of NeuroEngineering and Rehab-
ilitation, Vol. 3, Issue 20, Aug. 2006.

[11] D. Wang, Y. Zhang, and C. Yao, “Machine-mediated Motor Skill
Training Method in Haptic-enabled Chinese Handwriting Simulation
System,” in IEEE International Conference on Intelligent Robots and
Systems, Beijing, Oct. 2006, pp. 5644-5649.

[12] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” Parallel Distributed Processing:
explorations in the microstructure of cognition, Vol. I, pp. 318-362,
MIT Press, 1986.

[13] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector
Machines and Other Kernel-Based Learning Methods, Cambridge
University Press, 2000.

[14] S. Remy, C. H. Park, and A. M. Howard, “Improving the Performance
of ANN Training With an Unsupervised Filtering Method,” in
International Joint Conference on Neural Networks, 2009, pp.
2627-2633.

[15] V. Potkonjak, S. Tzafestas, D. Kostic, G. Djordjevic, M. Rasic, “The
Handwriting Problem [Man-machine Motion Analogy in Robotics],”
IEEE Robotics & Automation Magazine, Vol. 10, Issue 1, pp. 35-46,
March 2003.

[16] V. Potkonjak, D. Kostic, S. Tzafestas, M. Popovic, M. Lazarevic, G.
Djordjevic, “Human-like behavior of robot arms: general
considerations and the handwriting task Part II: the robot arm in
handwriting,” Robotics and Computer Integrated Manufacturing, pp.
317-327, Vol. 17, 2001.

Fig. 12. Training time for ANN and SVM over 3 datasets.

TABLE III
LCSS RESULT COMPARISON FOR ANN AND SVM

Learner ‘3’ ‘b’ ‘ML’
NN 65.7 % 83.5 % 42.9 %

SVM 87.7 % 85.6 % -

235

