Haptic interface data acquisition system Master Thesis Presentation

Pedro Miguel Batista Cruz

University of Aveiro - Department of Mechanical Engineering

December 2012

Scientific supervision: Dr. Vítor Manuel Ferreira dos Santos Dr. Filipe Teixeira Miguel Pereira da Silva

Contents

1 Framework

- Objectives
- Haptics
- PHUA robot
- 2 SimMechanics Simulator
 - Model
 - Step Climbing
- 3 Command Interface Setup
 - Wiring and mechanical modifications
 - Elastic elements
 - Haptic Device and Software

4 Robot Command

- Kinematics
- Servomotor Controller
- Command Methods
- 5 Haptic Demonstrations
 - Application Developed
 - Workspace Limitations
 - Object Interaction
 - Support Leg Balancing
- 6 Conclusions
 - Conclusions
 - Future Work

- 1 Framework
 - Objectives
 - Haptics
 - PHUA robot
- 2 SimMechanics Simulator
- 3 Command Interface Setup
- 4 Robot Command
- 5 Haptic Demonstrations

6 Conclusions

Objectives

Main objectives and goals of the PHUA project

One of the goals of the PHUA project is autonomous **balancing** and locomotion through robot leaning from demonstration using an enhanced teleoperation known as **tele-kinesthetic teaching**.

- Objectives:
 - Dynamical robot simulator using MATLAB SimMechanics;
 - Development of a force feedback haptic command and sensing mechanism for perception/actuation data logging;
 - Haptic tele-kinesthetic demonstrations showing telerobotic haptics.

What is *haptics*?

Concept

- Greek root haptikos: "able to grasp or perceive".
- Includes kinesthesia: perception of a body position, movement and weight.

Haptic Interaction

- Can be defined as *manipulation* using the *human sense of touch*.
- Use of natural sense of touch to feel and manipulate computed quantities.

University of Aveiro humanoid platform

Anthropometrically built

- 65cm height
- 6kg weight
- 27 Degrees-of-freedom
 - 25 active joints
 - 2 passive joints (toes)
- Hybrid actuation system
 - Elastic elements on the . ankle. knee and torso

Other features

- Force sensors in the feet
- Artificial vision system
- 5000mAh LiPo batteries

1 Framework

2 SimMechanics Simulator Model Step Climbing

- 3 Command Interface Setup
- 4 Robot Command
- 5 Haptic Demonstrations

6 Conclusions

SimMechanics model construction

- SimMechanics
 - Multibody simulation environment for mechanical systems.
- Complete robot model
 - Joint trajectory curves as input, joint torques as output
 - Centre-of-gravity calculations

Step climbing simulation examples

- Step climbing:
 - Step height up to 125mm.
- 4 stage motion.
 - From home position to foot over the step.
 - 5th degree polynomial joint trajectories.
- The hybrid actuation results for the knees are incorrect.
 - The elastic elements are simulated as being pressed instead of pulled when the knee bends.

1 Framework

2 SimMechanics Simulator

3 Command Interface Setup
Wiring and mechanical modifications
Elastic elements
Haptic Device and Software

4 Robot Command

5 Haptic Demonstrations

6 Conclusions

Servomotor wiring and communications

Servomotor IDs:

Mechanical modifications:

・ロト ・得ト ・ヨト ・ヨ

Wiring boards:

Elastic element mounting

< 行

Haptic hardware and software solutions

- Haptic Joystick
 - 6DOF SensAble PHANToM OMNI
 - 3DOF force (3.3N)
 - Wrist pivoting motion
- OpenHaptics Toolkit
 - Dedicated haptics/graphics libraries
 - Divided in APIs to ease development
- Other libraries
 - ROS
 - Armadillo
 - • •

1 Framework

- 2 SimMechanics Simulator
- 3 Command Interface Setup
- 4 Robot Command
 - Kinematics
 - Servomotor Controller
 - Command Methods

Kinematics

Forward/Inverse/Differential kinematics

3DOF Arm

Link		d	$\boldsymbol{\theta}$	α
1	0	0	$ heta_1$	$-\pi/2$
2	L_1	0	θ_2	$\pi/2$
3	L_2	0	θ_3	0

3DOF Detached Leg

 θ_3

0

Lo

03/12/12

()

Servomotor controller and communication protocol

Internal Controller

Trajectory Planner

Bidirectional Serial Interface

byte	1	2	3	4	5	6	7	
Controller	Startbyte	Command	Param1	Param2	Checksum	0×00	0×00	
Servomotor		Return1	Return2					

03/12/12

Command methodologies: Position

Closed loop between the PHANToM and the robot end-effector. The coordinate mapping between the robot's end-effector and the joystick position is relative.

Command methodologies: Velocity

 Uses the PHANToM Cartesian velocity vector instead of position. There is no direct coordinate mapping between the robot's end-effector and the joystick position.

1 Framework

- 2 SimMechanics Simulator
- 3 Command Interface Setup

4 Robot Command

- 5 Haptic Demonstrations
 - Application Developed
 - Workspace Limitations
 - Object Interaction
 - Support Leg Balancing

Developed application structure

Workspace limits

æ

< ∃⇒

< 行

Workspace limitations demonstration

< 行

< ∃ > < э

Plane drawing (UA Summer Academy)

Plane drawing (haptic object interaction)

< 3 > < 3

Balancing the detached support leg

1 Framework

- 2 SimMechanics Simulator
- 3 Command Interface Setup
- 4 Robot Command
- 5 Haptic Demonstrations
- 6 Conclusions
 - Conclusions
 - Future Work

Conclusions

- SimMechanics model was successful on determining torque requirements for complex motions.
 - However, its limitations with elastic elements must not be overlooked.
- The position command strategy was the first choice among the inexperienced operators.
- Haptic systems can effectively bridge together the robot teleoperation and kinesthetic teaching fields.
 - Workspace limitations haptics are intuitive while teleoperating and critical for enriched data logging.
 - Telerobotic physical interaction with world objects is possible using haptics.
 - Haptic signals for balance applications are possible but must not interfere with the control.

Relevant future work suggestions

Human Interface:

- Test overall user-friendliness.
- Test buzzing, force kicking, etc...
- Software:
 - V-REP.
 - ROS.
 - OpenHaptics, H3DAPI, etc...
- Hardware:
 - Timing belts.
 - Conditioning of the elastic elements.
 - Tabletop power supply.

Thank you!

Pedro Miguel Batista Cruz Haptic interface data acquisition system December 2012