Rede de Sensores Inerciais para Equilíbrio de um Robô Humanóide

Telmo Filipe de Jesus Rafeiro

Universidade de Aveiro rafeiro@ua.pt

15 de Dezembro de 2013

- 1 Introdução
- 2 Sensores Inerciais
- 3 Desenvolvimento da Rede
- 4 Validação da Rede de Sensores Inerciais
- 5 Conclusão e Trabalho Futuro

_Introdu<u>ção</u>

Projeto Humanóide da Universidade de Aveiro - PHUA

Projeto Humanóide da Universidade de Aveiro - PHUA

- Esforço conjunto dos departamentos de Engenharia Mecânica e Engenharia Electrónica, Telecomunicações e Informática.
 - Segunda Plataforma:
 - 27 Graus de Liberdade;
 - Atuação por servomotores *HITEC*[®]:
 - Atuação passiva;
 - 65 cm de altura;
 - 6 kg.

Motivação

- Modelo dinâmico do robô humanóide praticamente impossível de obter graças ao elevado número de GDL e folgas.
- A incorporação de elementos sensoriais trará dados que tornarão os modelos dinâmicos necessários menos complexos.

Objetivos

- Desenvolvimento e conceção de uma rede de sensores inerciais;
- Rede de sensores inerciais deverá ser dotada de modularidade;
- Realização de atividades experimentais de validação dos sensores e da rede;
- Desenvolvimento de *software* de aquisição de dados com recurso à plataforma ROS *Robot Operating System*.

- Sensores Inerciais
 - Sensores Disponíveis

Sensor A

RAZOR 9GDL- SEN 10736

Acelerómetro 3 GDL:

- Medições até $\pm 16~g$;
- Sensibilidade até 4 mg/LSB;

Giroscópio 3 GDL;

Medições até ± 2000 °/s; Sensibilidade até 6.96 mdps/LSB;

Magnetómetro 3 GDL;

- Medições até \pm 8 *Gauss*;
- Sensibilidade até 2 mGauss;

Microcontrolador integrado;

Comunicação por RS232.

- Sensores Inerciais
 - Sensores Disponíveis

Sensor B

POLOLU - MinIMU9DOF v2

Acelerómetro 3 GDL;

- Medições até $\pm 16~g$;
- Sensibilidade até 1 mg/LSB;

Giroscópio 3 GDL;

Medições até $\pm 2000~^{\circ}/s$; Sensibilidade até 8.75 mdps/LSB;

Magnetómetro 3 GDL;

- Medições até ± 8 Gauss;
- Sensibilidade até 1 mGauss;

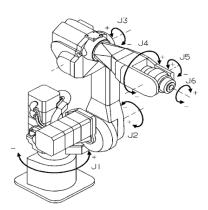
Comunicação por I^2C .

Grandezas dos Sensores

Grandezas dos Sensores

- Acelerómetro aceleração linear;
- Giroscópio
 velocidade angular;
- Magnetómetro campo magnético (grandeza não inercial).

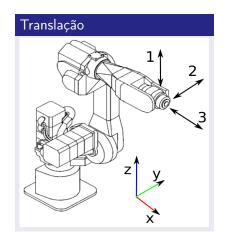
Experiências com Sensores

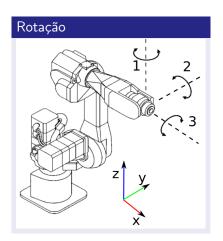

Caraterização de Sensores

Experiências com Sensores

Braço Robótico FANUC M-6iB 6s

- Capaz de manipular objetos até 5kg com elevada precição.
- Permite a obtenção da própria posição e orientação.

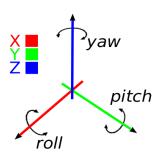

- Ferramenta ideal para a realização de testes com sensores.



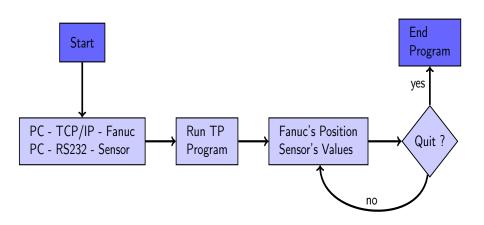
Sensores Inerciais

Experiências com Sensores

Movimentos do Braço Robótico



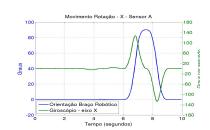
Obtenção dos Ângulos de Euler

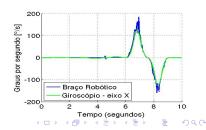

Sensor acelerómetro.

- Situações consideradas estáticas.
- De relações trigonométricas dos seus eixos, que apenas captam a aceleração gravítica, obtém-se:
 - roll;
 - pitch.

Representação dos ângulos de *Euler*.

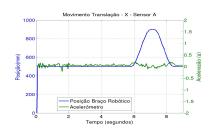
Aquisição de Dados


Aquisição de dados do braço robótico e sensores realizada a 20 Hz.


Sensores Inerciais

Experiências com Sensores

Giroscópios


- Medições fiáveis perante os movimentos de rotação.
- Observação de pequenas oscilações em movimentos de translação.

Acelerómetros

- Em movimentos de translação:
 - Ruido elevado, com origem em:
 - vibrações causadas pelos servomotores do braço robótico:
 - interferência entre eixos dos acelerómetros.
 - Oscilações e valores da aceleração por vezes da mesma ordem de grandeza.

Acelerómetros

- Inclinações:
 - Medição de inclinações bem sucedida.
 - Inclinações que diferem pelo menos de 5°, são possíveis de distinguir.



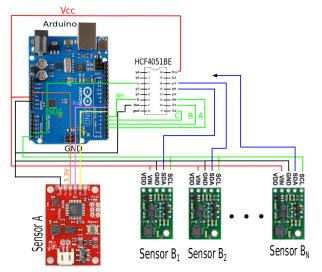
Magnetómetros

- Valores de Yaw:
 - Grandes variações de *yaw*, quando deveriam ser constantes.
 - Variações originadas pela interferência da corrente dos servomotores do braço robótico no campo magnético.

Resultados da caraterização dos sensores

- Unidades inerciais A e B apresentam comportamentos semelhantes.
- Giroscópios fiáveis na medição de velocidade angular e pequenas oscilações em translações.
- Acelerómetro B com ruído ligeiramente superior.
- Acelerómetros em movimentos de translação apresentaram ruído por vezes da mesma ordem de grandeza das acelerações envolvidas nos movimentos.
- Magnetómetros inviabilizados para implementação no robô humanóide.

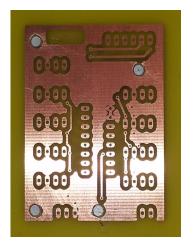
Rede de Sensores Inerciais


Rede de Sensores Inerciais

Seleção de Unidades Inerciais

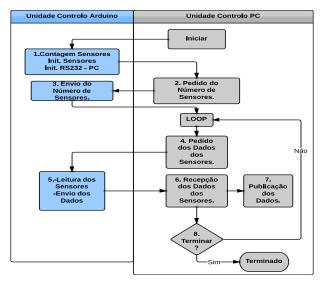
Com base na caraterização de sensores:

- Rede composta maioritariamente por **Sensores** B.
 - Sensores B com menores dimensões.
 - Não dispõem de endereço I²C configurável.
 - Utilização de dispositivo de re-direcionamento de comunicação.
- Necessidade de uma **unidade de controlo** para realizar leituras dos sensores.


Ligações da Rede

Rede de Sensores Inerciais

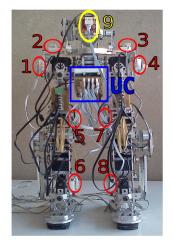
Placa de Circuito Impresso


Placa de Circuito Impresso

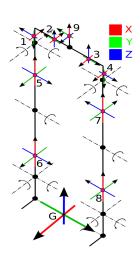
Rede de Sensores Inerciais

└Aquisição dos Dados da Rede

Módulo ROS para aquisição de dados da rede a 7Hz.


Resultado Final da Rede

- Rede com um máximo de 9 unidades inerciais:
- Aquisição de dados aproximadamente a uma frequência de 7Hz;
- Possibilidade de funcionamento com qualquer número de unidades (compreendido de 1 a 9);
- Posicionamento das unidades variável:
- Possibilidade de conexão com qualquer dispositivo externo.


Rede de Sensores Inerciais

└ Implementação da Rede no Humanóide

Implementação da Rede no Humanóide

Rede no Robô Humanóide.

Sistemas Coordenadas das Unidades.

Validação da Rede de Sensores Inerciais

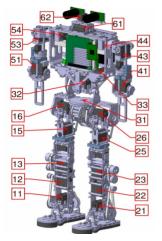
Setup Experimental

- Joystick Háptico;
- parte inferior do robô humanóide;
- rede de sensores inerciais;
- unidade de controlo externa PC.

Validação da Rede de Sensores Inerciais

Setup Experimental

Armazenamento dados: Posição Obtidos Joystick - Servomotores Háptico - Rede Inercial Controlo Pedido Feedback Receção Rede de Sensores Inerciais Servomotores humanóide

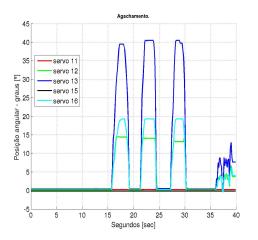

Dados

Funcionamento da montagem experimental - aquisição e controlo através da plataforma *ROS*.

└Validação da Rede de Sensores Inerciais

└─ Movimentos a Realizar

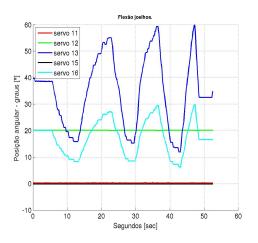
Servomotores Envolvidos em Cada Movimento


Servomotores do robô humanóide.

Movimento	Juntas que se movem	
1 - Agachamento	12,22,13,23,16,26	
2 - Flexão do joelho	13,23,16,26	
3 - Movimento lateral	11,21,15,25	

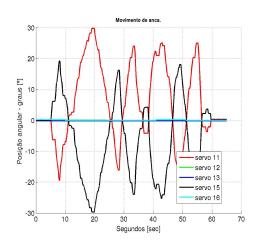
Juntas envolvidas para cada tipo de movimento.

└Validação da Rede de Sensores Inerciais


1 - Agachamento

Valor angular dos servomotores no agachamento.

Validação da Rede de Sensores Inerciais


2 - Flexão do Joelho


Valor angular dos servomotores na flexão do

Validação da Rede de Sensores Inerciais

3 - Movimento Lateral

Valor angular dos servomotores no movimento

└Validação da Rede de Sensores Inerciais

└-Grandezas a Avaliar

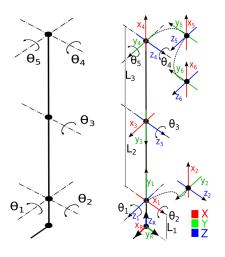
Grandezas a avalidar:

- Velocidade Angular
- Aceleração Linear
- Inclinação

Comparadas com:

- Velocidade dos servomotores
- Cálculos provenientes da cinemática direta das pernas

Velocidade Angular


Zona do tornozelo e tíbia:

- comparação direta entre giroscópio e velocidade do servomotor.

Zonas do joelho e anca:

- comparação entre a velocidade do servomotor e a diferença de velocidades dos giroscópios adjacentes.

└Cinemática de Uma Perna do Robô

Elo	θ_i	L_i (mm)	d_i (mm)	α_i
1	$\frac{\pi}{2}$	0	L_1	$\frac{\pi}{2}$
2	$\theta_1 + \frac{\pi}{2}$	0	0	$\frac{\pi}{2}$ $\frac{\pi}{2}$
3	θ_2	L_2	0	Ō
4	θ_3	L ₃	0	0
5	θ_4	0	0	$\frac{\pi}{2}$
6	$\begin{array}{c c} \theta_1 + \frac{\pi}{2} \\ \theta_2 \\ \theta_3 \\ \theta_4 \\ \theta_5 \end{array}$	0	0	Ō

Tabela de *Denavit-Hartenberg* para as pernas do robô humanóide PHUA.

Aceleração Linear

Comparação direta dos dados dos acelerómetros e a aceleração obtida pelos dados da cinemática direta.

$$d\vec{r} = J \cdot d\vec{q} \tag{1}$$

$$\frac{d^2\vec{r}}{dt^2} = J \cdot \frac{d^2\vec{q}}{dt^2} + \frac{d}{dt}J \cdot \frac{d\vec{q}}{dt}$$
 (2)

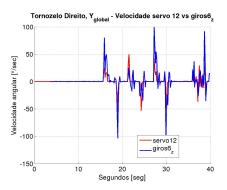
$$\Delta^2 r = J \cdot \Delta^2 q + \Delta J \cdot \Delta q \tag{3}$$

└─Validação da Rede de Sensores Inerciais └─Cinemática de Uma Perna do Robô

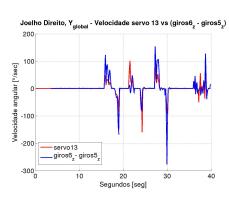
Inclinação

Comparação entre ângulos *roll* e *pitch* obtidos pelos dados dos acelerómetros e obtidos pelos dados da cinemática.

$${}^{R}T_{n} = \begin{bmatrix} r_{x,x} & r_{x,y} & r_{x,z} & x \\ r_{y,x} & r_{y,y} & r_{y,z} & y \\ r_{z,x} & r_{z,y} & r_{z,z} & z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(4)

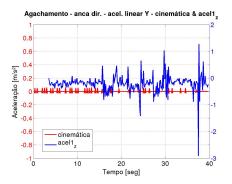

$$pitch = \arctan\left(\frac{-r_{z,x}}{\sqrt{r_{z,y}^2 + r_{z,z}^2}}\right)$$
 (5)

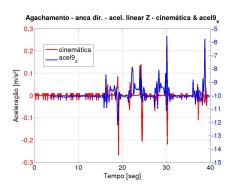
$$roll = \arctan\left(\frac{r_{z,y}}{r_{z,z}}\right) \tag{6}$$


└Validação da Rede de Sensores Inerciais

Resultados Obtidos

Velocidade angular - Agachamento

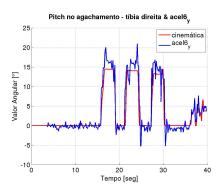

Velocidade angular na zona da tíbia.

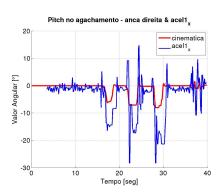

Velocidade angular na zona do joelho.

Resultados Obtidos

Aceleração Linear - Agachamento

Aceleração linear na zona da anca - acelerómetro 1

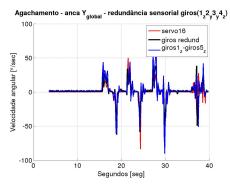


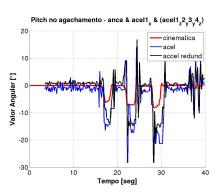

Aceleração linear na zona da anca - acelerómetro 9.

└Validação da Rede de Sensores Inerciais

Resultados Obtidos

Inclinação - Agachamento




Pitch na zona da tíbia - acelerómetro 6. Pitch na zona da anca - acelerómetro 1.

Resultados Obtidos

Redundância Sensorial - Agachamento

Velocidade angular na anca - redundância.

Pitch na anca - redundância.

Validação da Rede de Sensores Inerciais

Resultados Obtidos

Resultados Obtidos

Situação	EQM	Coef. Correlação	Regressão Linear	
			A	В
Vel. Ang. Tíbia	168.58	0.74	1.42	0.70
Vel. Ang. Joelho	506.19	0.77	1.25	1.15
Acel. Lin. Anca Y	0.15	0.01	0.25	-0.22
Acel. Lin. Anca Z	98.9	0.01	0.19	-9.93
Pitch Tíbia	4.64	0.95	1.13	-0.07
Pitch Anca	46.51	0.64	2.14	-0.15
Redund. Vel. Ang.	84.63 *(149.77)	0.67 *(0.63)	0.75 *(0.86)	0.84 *(2.19)
Redund. Pitch Anca	21.27 *(36.37)	0.82 *(0.75)	2.18 *(2.2)	0.73 *(-1.28)

Parâmetros de avaliação para as curvas apresentadas.

^{*} valores para a mesma situação, apenas com 1 sensor.

└─Validação da Rede de Sensores Inerciais └─Resultados Obtidos

Resultados Obtidos

- A técnica da medição da velocidade angular revelou-se bem sucedida, com os padrões dos giroscópios a corresponder aos dos servomotores, embora com amplitudes diferentes.
- Embora as curvas da aceleração linear, por vezes, apresentem comportamentos da mesma natureza face aos valores da cinemática, as amplitudes e ordens de grandeza são completamente díspares.
- Medição das inclinações revelou-se bem sucedida, no entanto, alguns gráficos apresentam disparidades em que apenas a referência da cinemática não é suficiente para justificar.
- A redundância sensorial apresentou pequenas melhorias nos resultados apresentados.

Conclusões e Trabalho Futuro

└ Conclusões

Conclusões

- Desenvolvimento da rede de sensores inerciais bem sucedido.
- Modularidade da rede bem sucedida.
- Módulo de aquisição de dados da rede desenvolvido.
- Experiência da rede implementada no robô demonstrou esta como funcional:
 - Acelerómetros mostraram-se fiáveis para a medição de amplitudes angulares ou deslocamentos angulares, para situações consideradas estáticas.
 - Giroscópios mostram-se fiáveis nas suas medições.
- Acelerómetros não se encontram, de momento, aptos para o cálculo de deslocamento no espaço cartesiano.
- ROS mostrou-se uma grande ajuda na execução e gestão de processos multi-modulares.

Trabalho Futuro

- Concepção de nova placa de circuito impresso, fisicamente mais robusta;
- Realização de novos testes para avaliação de acelerómetros, envolvendo maiores acelerações;
- Agilizar *firmware* e *software*, e com possibilidade de *hardware* para maior taxa de aquisição (atualmente a 7 *Hz*);
- Prosseguir com estudo de algoritmos que recorram aos dados da rede, para o controlo do robô, visando a capacidade de este se equilibrar.
- Testar a implementação de filtros suavizantes nos dados dos sensores da rede.

Conclusões e Trabalho Futuro

Trabalho Futuro

Rede de Sensores Inerciais para Equilíbrio de um Robô Humanóide

Telmo Filipe de Jesus Rafeiro

Universidade de Aveiro rafeiro@ua.pt

15 de Dezembro de 2013