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Abstract

In this paper, we describe a modular software package, named VISP, that allows fast de-
velopment of visual servoing applications. Visual servoing consists in specifying a task as the
regulation of a set of visual features. Various issues have thus to be considered in the design of
such applications: among these issues we consider the control of robots motion, visual features
modeling, and the tracking of the visual measurements. Our environment features a wide class
of control skills, a library for real-time tracking and a simulation toolkit.

1 Motivations

Several software packages or toolboxes written in various languages have been proposed in order
to simulate robotic manipulator control: for example the Matlab robotics Toolbox [8] allows sim-
ple manipulation of serial-link manipulator and Roboop [14] is a manipulator simulation package
(written in C++). On the other hand, only few systems allow a simple specification and the execu-
tion of a robotic task on a real system. Some systems, though not always related to vision-based
robotics, have been however described in [9].

Visual servoing is a very important research area in robotics. Despite all the research in this
field, it seems that there was no software environment that allows fast prototyping of visual ser-
voing tasks. The main reason is that it usually requires specific hardware (the robot and specific
framegrabbers). The consequence is that the resulting applications are not portable and can be
merely adapted to other environments. Today’s software design allows us to propose elemen-
tary components that can be combined to build portable high-level applications. Furthermore, the
increasing speed of micro-processors allows the development of real-time image processing algo-
rithms on a simple workstation. A visual servoing toolbox for MATLAB / Simulink [3] has been
recently proposed but it features only simulation capabilities.

Chaumette, Rives and Espiau [6] proposed to constitute a “library of canonical vision-based
tasks” for visual servoing that contents the most classical linkages that are used in practice. Toyama
and Hager describe in [32] what such a system should be in the case of stereo visual servoing. The
presented system (called SERVOMATIC) is specified using the same philosophy as the XVision sys-
tem [16] and would have been independent from the robot and the tracking algorithms. Following
these precedents, VISP (VISP states for “Visual Servoing Platform”), the software environment
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we present in this paper, features all these capabilities: independence with respect to the hardware,
simplicity, extendibility and portability. Moreover, VISP features a large library of elementary
tasks wrt. various visual features that can be combined together, an image processing library that
allows the tracking of visual cues at video rate, a simulator, an interface with various classical
framegrabbers, etc. The platform is implemented in C++ under Linux.

2 VISP: Overview and major features

2.1 Control issue

Visual servoing techniques consist of using the data provided by one or several cameras in order
to control the motion of a robotic system [13, 19]. A large variety of positioning or target tracking
tasks can be implemented by controlling from one to all degrees of freedom of the system. What-
ever the sensor configuration, which can vary from one camera mounted on the robot end-effector
to several free-standing cameras, a set of visual features s has to be designed from the visual mea-
surements x(t) (s = s(x(t))), allowing control of the desired degrees of freedom. A control law
has to be designed also so that these features s reach a desired value s∗, defining a correct realiza-
tion of the task. A desired trajectory s∗(t) can also be tracked [1, 29]. The control principle is thus
to regulate the error vector s − s∗ to zero.

Control law. To ensure the convergence of s to its desired value s∗, we need to model or approx-
imate the interaction matrix Ls that links the time variation of the selected visual features to the
relative camera-object kinematics screw v and which is defined by the classical equation [13]:

ṡ = Lsv (1)

If we want to control the robot using the joint velocities, we have:

ṡ = Jsq̇ +
∂s

∂t
(2)

where Js is the features Jacobian and where ∂s
∂t

represents the variation of s due to potential motion
of the object (for an eye-in-hand system) or due to potential motion of the camera (for an eye-to-
hand system). More precisely, if we consider an eye-in-hand system we have:

Js = Ls
cVn

nJn(q) (3)

where

•
nJn(q) is the robot Jacobian expressed in the end-effector frame Rn ;

•
cVn allows to transform the velocity screw between here the camera frame Rc and the end-
effector frame Rn. It is given by :

cVn =

[
cRn [ctn]×

cRn

03
cRn

]
(4)
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where cRn and ctn are the rotation and translation between frames Rc and Rn and [t]× is
the skew matrix related to t. This matrix is constant if the camera is rigidly linked to the
end-effector.

Now, if we now consider an eye-to-hand system we have:

Js = −Ls
cVF

FJn(q) (5)

where

•
FJn(q) is the robot Jacobian expressed in the robot reference frame RF ;

•
cVF allows to transform the velocity screw between coordinate frames (here the camera
frame Rc and the robot reference frame RF . This matrix is constant if the camera is motion-
less.

In all cases, a control law that minimizes the error s − s∗ is then given by:

q̇ = −λĴ+
s (s − s∗) −

∂̂s

∂t
(6)

where λ is the proportional coefficient involved in the exponential convergence of the error and
∂̂s
∂t

is an estimation of the object/camera motion. VISP allows to consider both eye-in-hand and
eye-to-hand configurations. Finally let us note that a secondary task e2 can be simply added (as
reported in Section 3.2.2) when all the degrees of freedom are not constrained by the visual task.
In that case, we have [13]:

q̇ = −λ
(
W+WĴ+

s (s − s∗) + (I − W+W)e2

)
+ (I − W+W)

∂e2

∂t
(7)

where W+ and I − W+W are projection operators that guarantee that the camera motion due to
the secondary task is compatible with the regulation of s to s∗.

If we consider here, without loss of generality, the case of an eye-in-hand system observing a
motionless target we have:

ṡ = Lsv (8)

where v = cVn
nJn(q) q̇ is the camera velocity. If the low-level robot controller allows v to be

sent as inputs, a simple control law can be obtained:

v = −λL̂+
s (s − s∗) (9)

where L̂s is a model or an approximation of the interaction matrix. It can be chosen as [4]:

• L̂s = L̂s(s, r) where the interaction matrix is computed at the current position of the visual
feature and the current 3D pose (denoted r) if it is available,

• L̂s = L̂s(s
∗, r∗) where the interaction matrix is computed only once at the desired position

of s and r,
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• L̂s = 1
2

(
L̂s(s, r) + L̂s(s

∗, r∗)
)

as reported in [23].

These possibilities have been integrated in VISP but other possibilities (such as a learning process
of the interaction matrix [18, 20, 21]) are always possible though they are not currently integrated
in the software. Let us point out that, in this case equation 7 can be rewritten by [13]:

v = −λ
(
W+WL̂+

s (s − s∗) + (I − W+W)e2

)
+ (I − W+W)

∂e2

∂t
. (10)

A library of visual servoing skills. With a vision sensor providing 2D measurements x(t), po-
tential visual features s are numerous, since as well 2D data such as coordinates of feature points
in the image can be considered, as 3D data provided by a localization algorithm exploiting the
extracted 2D measurements. It is also possible to combine 2D and 3D visual features to exploit the
advantages of each approach while avoiding their respective drawbacks [24].

A systematic method has been proposed to derive analytically the interaction matrix of a set
of visual features defined upon geometric primitives [13, 5, 6]. Any kind of visual features can
be considered within the same formalism (coordinates of points, straight line orientation, area or
more generally image moments, distance, etc.) Knowing these interaction matrices, the construc-
tion of elementary visual servoing tasks is straightforward. As explained in [6] a large library
of elementary skills can be proposed. The current version of VISP has the following predefined
visual features:

• 2D visual features: 2D points, 2D straight lines, 2D ellipses ;

• 3D visual features: 3D points, 3D straight lines, θuU where θ and u are the angle and the
axis of the rotation that the camera has to realize. These visual features are useful for 3D [34]
or 2 1/2 D visual servoing [24].

Using these elementary visual features, more complex tasks can be considered by stacking the
elementary matrices.

For example, if we want to build a 2 1/2 D visual servoing task defined by s = (x, y, log(Z/Z ∗), θu)
where (x, y) are the coordinates of a 2D point, Z/Z∗ is the ratio between the current and the de-
sired depth of the point, and desired position and where θ and u are the angle and the axis of the
rotation that the camera has to realize, the resulting interaction matrix is given by:

Ls =




Lp

Lz

Lθu


 (11)

where Lp, Lz and Lθu have the following forms:

Lp =

[
−1/Z 0 x/Z xy −(1 + x2) y

0 −1/Z y/Z 1 + y2
−xy −x

]
, (12)

Lz =
[

0 0 −1/Z −y x 0
]
, (13)

4



Lθu =
[

03 Lω

]
with Lω = I3 −

θ

2
[u]× + (1 −

sincθ

sinc2 θ
2

) [u]2
×

(14)

All these elementary visual features are available in VISP or can be simply built. The complete
code that allows to build this task is given in Section 3.2.3. This way, more feature-based tasks can
be simply added to the library.

2.2 Vision-based tracking

Definition of objects-tracking algorithms in image sequences is an important issue for research
and applications related to visual servoing and more generally for robot vision. A robust extraction
and real-time spatio-temporal tracking of visual measurements x(t) is one of the keys for success
of a visual servoing task. To consider visual servoing within large scale applications, it is now
fundamental to consider natural scenes without any fiducial markers and with complex objects in
various illumination conditions. From a historical perspective, the use of fiducial markers allowed
the validation of theoretical aspects of visual servoing research. If such features are still useful to
validate new control laws, it is no longer possible to limit ourselves to such techniques if the final
objectives are the transfer of these technologies in the industrial world.

Most of the available tracking techniques can be divided into two main classes: feature-based
and model-based tracking (see Figure 1). The former approach focuses on tracking 2D features
such as geometric primitives (points, segments, ellipses, . . . ) or object contours, regions of inter-
est, . . . The latter explicitly uses a 3D model of the tracked objects. This second class of methods
usually provides a more robust solution (for example, it can cope with partial occlusions of the
object). If a 3D model is available, tracking is closely related to the pose estimation and is then
suitable for any visual servoing approach. The main advantage of the 3D model-based methods
is that the knowledge about the scene allows improvement of robustness and performance by pre-
dicting hidden movement of the object and reducing the effects of outlier. Another approach may
also be considered when the scene is too complex (due to texture or lack of specific object). This
approach is not based on feature extraction and tracking as in the two other cases but on the analy-
sis of the motion in the image sequence. 2D motion computation provides interesting information
related to both camera motion and scene structure that can be used within a visual servoing process.

Fiducial markers. Most of papers related to visual servoing consider very basic image pro-
cessing algorithms. Indeed the basic features considered in the control law are usually 2D points
coordinates. Therefore, the corresponding object is usually composed of “white dots on a black
background”. Such a choice allows using various real-time algorithms (e.g. [33]). The main ad-
vantage of this choice is that tracking is very robust and very precise. It is then suitable for all
visual servoing control laws (2D but also 2 1/2 D and 3D since the position between camera and
target can easily be obtained using pose computation algorithm). From a practical point of view,
such algorithms are still useful to validate theoretical aspects of visual servoing research or for
educational purposes. Furthermore, in some critical industrial processes such a simple approach
ensures the required robustness (see Figure 2).
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Figure 1: Increasingly difficult examples of feature tracking in visual servoing experiments.

Figure 2: Visual servoing using fiducial markers for a grasping task: image acquired by the camera
on the front and eye-in-hand camera on the back.
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Figure 3: Tracking 2D features using the Moving Edges algorithm within visual servoing experi-
ments: (a) 3D reconstruction of a sphere using active vision, (b) contour following, (c) positioning
wrt. a cylinder with joint limits avoidance, (d) ellipses tracking (that correspond to the projection
of 3D straight lines in catadioptric images).

2D contour tracking. In order to address the problem of 2D geometric feature tracking, it is
necessary to consider at the low level a generic framework that allows local tracking of edge
points. From the set of tracked edges, it is then possible to perform a robust estimation of the
features parameters using an Iteratively Reweighted Least Squares based on robust M-estimation.

For the first point, few systems allow real-time capabilities on a simple workstation. The
XVision system is a nice example of such systems [16]. In our case, we decided to use the Moving
Edges (ME) algorithm which is adapted to the tracking of parametric curves [2]. It is a local
approach that allows to match moving contours. When dealing with low-level image processing,
the contours are sampled at a regular distance. At these sample points, a one dimensional search
is performed to the normal of the contour for corresponding edges. An oriented gradient mask is
used to detect the presence of a similar contour. One of the advantages of this method is that it only
searches for edges which are oriented in the same direction as the parent contour. This is therefore
implemented with convolution efficiency, and leads to real-time performance.

Figure 3 shows several results of features tracking (line, circle, contours,...) in visual servoing
experiments that use the ViSP library. The proposed tracking approach based on the ME algorithm
allows a real-time tracking of geometric features in an image sequence. It is robust with respect to
partial occlusions and shadows. However, as a local algorithm, its robustness is limited in complex
scenes with highly textured environment.

Pose estimation. In particular visual servoing types (most of 3D visual servoing, some 2 1/2
D visual servoing and the 2D visual servoing where the depth information must be recomputed
at each iteration), the 3D pose of the camera with respect to the scene is required. This pose
estimation process has been widely considered in the computer vision literature. Purely geometric,
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or numerical and iterative approaches may be considered [11]. Linear approaches use a least-
squares method to estimate the pose. Full-scale non-linear optimization techniques (e.g., [22,
7, 12]) consists of minimizing the error between the observation and the forward-projection of
the model. In this case, minimization is handled using numerical iterative algorithms such as
Newton-Raphson or Levenberg-Marquardt. The main advantage of these approaches are their
accuracy. In VISP, various algorithms are available: mainly the iterative approach proposed by
Dementhon [11] which is suitable for applications that consider fiducial markers, and a full scale
non-linear optimization based on the Virtual Visual Servoing approach [27].

Figure 4: 2D 1/2 visual servoing experiment: in the images the tracked object appears in green and
its desired position in blue.

Other tracking capabilities. VISP also features other tracking capabilities that can be consid-
ered within visual servoing experiments [28]. It integrates:

• an algorithm to estimate an homography and camera displacement from matched coplanar
or not coplanar points [25] ;

• a version of the Hager Belhumeur [15] tracking algorithm that allows the matching of image
templates at video rate ;

Though not directly integrated into the software, VISP provides a direct interface with third-
party tracking or image processing algorithms. For example, we propose interfaces

• with a point of interests tracker library. We have considered a tracker, built on a differential
formulation of a similarity criterion: the well-known Shi-Tomasi-Kanade algorithm [31].

• with a motion estimation algorithm (Motion 2D [30] available in open Source) which has
been used for motion-based visual servoing [10]. Such image processing algorithms can be
used to handle very complex images, as shown on Figure 1f and for applications dealing
with complex object tracking, stabilization of a camera mounted on a submarine robot, etc.

• with a 3D model-based tracking algorithm based on the virtual visual servoing approach [7].
In that case, the image processing is potentially very complex. Indeed, extracting and track-
ing reliable contour points in real environment is a non trivial issue. In the experiment
presented in Figure 4, images were acquired and processed at video rate (50Hz). Tracking is
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always performed at below frame rate (usually in less than 10ms). All the images given in
Figure 4 depict the current position of the tracked object in green while its desired position
appears in blue. The considered object is a video multiplexer. It was placed in a highly
cluttered environment. Tracking and positioning tasks were correctly achieved. Multiple
temporary and partial occlusions were made by a hand and various work-tools.

Simulation capabilities In order to allow fast prototyping of new control laws, VISP also pro-
vides simulation capabilities. 3D geometric primitives can be forward-projected on the image
plane of a virtual camera and a virtual robot can then be controlled. In order to obtain realistic
simulation, it is possible to consider virtual robots with specific Jacobian, joint limits, etc. Fur-
thermore noise can be added in measures computation and robot motion and in camera intrinsic
parameters. An advantage of this approach wrt. Matlab simulation (such as the Visual Servoing
Toolbox for MATLAB / Simulink [3] or the Matlab Robotics toolbox [8]) is that the written code
can then be used with only minor modifications on a real robot with real images. Figure 5 shows an
example of the simulation output. The display interface is written using the Open Inventor library
(a C++ layer of Open GL).

a b

Figure 5: VISP simulation module built using the Open Inventor library: (a) external view (b)
view from the camera.

3 Implementation issues

As already stated, while developing this software, our goal was to allow a portable (independent
from the hardware), fast and reliable prototyping of visual servoing applications. We also wanted
to provide a package that is suitable for real-time implementation and that allows to perform both
simulations and real experiments from the same (or at least very similar) code. Object-oriented
programming languages feature these qualities and therefore we choose the C++ language for the
implementation of VISP.

The first part of this section presents the internal architecture of the system and how it has
been implemented. Describing the full implementation of the software is out of reach in this
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paper, therefore, we will focus on the notion of extendibility and portability. The second part
describes how to use the available libraries from a end-user point of view. Let us note that all the
functionalities described in this section have been implemented and are fully operational.

3.1 An overview of the VISP architecture

To fulfill the extendibility and portability requirements, we divided the platform into three different
modules: a module for visual features , visual servoing control laws and robot controller, a module
for image processing, tracking algorithms and other computer vision algorithms, and a module for
visualization dependent library. Figure 6 summarizes the basic software architecture and module
dependencies.

servo
Visual

Visual
Features

Tracking
Image processing
Computer VisionImage

Trackers

Dots Forward
projection

Model−based
trackingEdges

Moving

Pose Homography

Robot
Controller

Simulation 

Visualization

Display

Device
Videoexternal world

Transformation estimation

Visual servoing

Figure 6: VISP software architecture.

Visual features and control law. Each specific visual feature is derived from a virtual class
vpBaseFeatures. This class mainly defines few variables (e.g., a vector that describes the
parameters s) and a set of virtual members that are feature-dependent (e.g., the way to compute
the interaction matrix Ls or the virtual function that allows the computation of the visual features
s from the measurements in the image x(t)). It is important to note that all the relations between
the control laws library and the visual features library is done through this class. The virtual
functions defined in vpBaseFeatures can be directly used by the controller vpServo even if
they are not yet defined. The consequence is that the controller class never knows the nature of
the manipulated features and manipulates only vectors and matrices. Another consequence is that
it is not necessary to modify the controller library when adding a new feature. On the other hand,
when adding a new feature in the visual features library, the programmer must define the number
of its component, the way to compute the interaction matrix, etc. This is done at a lower level (e.g.,
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vpFeaturePoint, vpFeatureLine, . . . ). A generic feature vpGenericFeature allows
the user to simply define a new feature and to test easily its behavior.

The controller (provided in the vpServo class) itself provides therefore a generic interface
with the visual features. It computes the control law that minimizes the error s − s∗ as described
in Section 2 according to a list of visual features that defines the task. Various control laws have
been implemented as proposed that consider the eye-in-hand or eye-to-hand systems and various
formulations of the model of the interaction matrix L̂s. Along with the interaction matrix Ls,
Jacobian Ĵs (that depends of a particular robot, see next paragraph) and its pseudo inverse Ĵ+

s and
its null space, the corresponding projection operator (W + and I − W+W) are also computed if a
secondary task has to be added to the main visual task (see equation 7).

Hardware portability. One of the challenges dealing with a visual servoing package is that it
has to deal with multiple robotic platforms as well as with various framegrabbers. Obviously the
package does not (and cannot) provide an interface with all possible robots and grabbers but we
built it in order to facilitate adding new hardware.

A new robot class can be derived from the vpRobot virtual class. Although vpRobot defines
the prototypes of each member, it does not provide any interface with a real robot. The new class
that has to be implemented for each new robot redefines some pure virtual methods defined in
vpRobot such as robot motion orders or Jacobian computation generally specific to a given robot)
and inherits all the methods and attributes of vpRobot (i.e., generic control issues). Simulated
robots are considered and can be controlled exactly as real robots (specific Jacobian, inverse and
forward kinematics, joint limits and singularities can be modeled and simulated).

Similarly, dealing with framegrabbers, a generic vpVideo class has been developed from
which a particular framegrabber class can be derived. Some vpVideo pure virtual methods have
to be defined within this new class (mainly initialization, acquisition, closing methods). Such an
interface with VISP is very simple to add since such methods should already exist on the user’s
system. In the current version of VISP, some classical framegrabbers are already supported (IEEE
1394, Video4Linux2, Matrox Meteor, IT ICcomp,...). Along with these acquisition capabilities,
VISP provides various classes to display images using either the X11 system or higher level li-
braries such as Open GL or QT.

Image processing and tracking. A template image class vpImage is provided. It has allowed
the development of the various trackers described in the previous section. Along with elemen-
tary image processing functions, it provides an interface with the images acquisition and display
classes. Dealing with the tracking algorithms, a virtual class vpTracker is defined and is then
derived according to each particular tracking algorithms. An interface with the visual features class
is provided.

Matrices. Furthermore, C++ provides capabilities to handle matrices operation using a “Matlab
like” syntax. Various numerical analysis algorithms (e.g., SVD and LU decompositions provided
by the GSL library) are widely used throughout.
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3.2 VISP from a end-user point of view

Our other claim was that VISP is simple to use. We will therefore describe the software environ-
ment, from the end-user point of view, in the light of three simple examples implemented using
VISP.

3.2.1 Build a basic 2D visual servoing task

Listing 1 defines a typical initialization process that can be used in most programs using VISP.
These lines define the framegrabber (here an IEEE1394 camera), the display system (here X11R6),
a robot (the 6 d.o.f Afma gantry robot of IRISA), a camera (with given calibration parameters) and
finally creates a task.

Listing 1: Typical code for VISP initialization
1 vpImage<unsigned char> I ;
2

3 vpIeee1394 grabber(VIDEO_PORT) ; // use the 1394 framegraber
4 grabber.open(I) ; // associate the grabber to the image
5 grabber.acquire(I) ;
6

7 vpDisplayX display(I,‘‘a new X11 window’’) ; // use the X11R6 window system to display the image
8 vpDisplay::display(I) ; // associate the display to the image
9

10 vpRobotAfma6 rob ; // use the Afma6 robot
11 vpCameraParameters cam(u0,v0,px,py) ; // set the value of camera calibration parameters
12

13 vpServo task ; // create a task
14

15 < code for a specific experiment >

Once these initializations have been achieved, the user is ready to define the tracker of the visual
cues and the visual servoing task. In this first example we choose the classical positioning task wrt.
four points using their x and y coordinates in the image. Dealing with the tracking process, in this
example we choose to track fiducial markers (vpDot). The features (vpFeaturePoint) are
created from the tracked markers (vpDot) using member functions of the vpFeatureBuilder
class (in this simple case, it mainly achieves a pixel-to-meter conversion). The desired values of
the visual feature s∗ is also defined and a link between the current value (s[i]) of the visual
feature in the image and the desired value (sd[i]) is then created. sd is initialized using the
buildFrom method that allows to set x and y 2D coordinates along with the desired depth Z
that is used in the interaction matrix computation. Each call to the addFeature method creates
a 2 × 6 interaction matrix which is “stacked” to the current one. At the end of this process a 8 × 6
matrix and the corresponding error vector is then created. Line 38 specifies that we consider an eye-
in-hand configuration with velocity computed in the camera frame. Furthermore, the interaction
matrix will be computed at the desired position L̂s = L̂s(s

∗, r∗) (Line 39) and the control law
will be computed using the pseudo-inverse of the interaction matrix (other possibilities such as
considering the transpose of Ls also exist even if we do not recommend at all to use them).

Listing 2: An example of task definition: positioning wrt. four points
16 int nbpoint =4 ;
17 vpDot dot[nbpoint] ; // tracked objects
18 vpFeaturePoint s[nbpoint], sd[nbpoint] ; // current and desired feature (nbpoint points)
19 double xd[nbpoint], yd[nbpoint], Zd[nbpoint] ;
20
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21 < initialize desired visual feature xd[], yd[], and Zd[] >
22

23 for (i=0; i<nbpoint; i++)
24 {
25 dot[i].initTracking(I) ; // initialize the tracking process
26

27 // build current visual features from the tracked objects
28 vpFeatureBuilder::create(s[i],cam, dot[i]) ;
29

30 // Init here the desired visual features s∗ along with
31 // the 3D information required to compute the interaction matrix
32 sd[i].buildFrom(xd[i],yd[i],Zd[i]) ;
33

34 task.addFeature(s[i],sd[i]) ; // add point-to-point image constraint
35 // defines the list of visual features, the error vector
36 // as well as the interaction matrix
37 }
38 task.setServo(vpServo::EYEINHAND_CAMERA) ;
39 task.setInteractionMatrixType(vpServo::DESIRED, vpServo::PSEUDO_INVERSE) ;

It is then straightforward to write the control loop itself. It features the image acquisition
(line 43) and the current visual features computation from the result of the dots tracking (line 46
and 47). The task is then automatically updated. Finally the control law given in equation (9) is
computed and the result is sent to the robot controller.

Listing 3: Typical code for the visual servoing closed loop
40 task.setLambda(0.2) ; // set the gain λ
41 while(...) {
42 vpColVector v(6) ; // velocity vector
43 grabber.acquire(I) ; // acquire a new image
44 for (i=0 ; i < nbpoint ; i++)
45 {
46 dot[i].track(I) ; // perform the feature tracking and the pixel/meter conversion
47 vpFeatureBuilder::create(s[i],cam, dot[i]);
48 }
49

50 v = task.computeControlLaw() ;
51

52 // send the computed velocity (expressed in the camera frame) to the robot controller
53 robot.setVelocity(vpRobot::CAMERA_FRAME, v) ;
54 }

3.2.2 Introduce more complex image processing and a secondary task

Let us consider now a curve-following task [26]. This problem can be divided in two sub-tasks.
The primary task consists of servoing the tangent to the curve (for instance maintaining this tangent
horizontal and centered in the image). The positioning skill used in this experiment is therefore a
2D line-to-2D line link and visual features used here are s = (ρ, θ) where ρ and θ are the cylindric
parameters of the straight line that is the tangent to the curve. A secondary task can be added and
it has been specified as a trajectory tracking at a given constant velocity Vx in the X direction of
the camera frame (see Figure 7).

Image processing consists here in tracking a spline in the image sequence and in computing
the equation of the tangent to the curve from which we can control the camera motion. In our
software environment, there is no direct relation between the tangent to a curve (that is, here, the
measurement x) and a straight line (that is the visual feature s). As explained in the previous
example, VISP usually allows the user to avoid an explicit access to the tracker, but the number
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Figure 7: Pipe following task: 3 images acquired during the task with tracked curve (red) and
tangent to the curve (green)

of relationships among visual cues and control features is virtually infinite. Therefore a direct
access to the trackers is necessary. In this example, the spline tracker is defined in Line 1 whereas
the visual features (represented by parameters ρ and θ of a straight line) are associated to this
tracker in Line 5. Then in the control loop, the spline is tracked in each frame and the new visual
features are computed (Line 14) and introduced in the task. The secondary task is then considered
in Line 17 where g = −Vx correspond to ∂e2

∂t
in equation 7. For simplicity we have considered

that e2 = X − X0 − Vxt is always equal to 0. This visual servoing task also features the use
of a secondary task. Vector g is combined with the primary task using the projection operator
I − W+W.

This example allows us to show the importance of the three libraries: the trackers library, the
visual features library, and the controller library and how they interact with each other.

Listing 4: Code for a curve following task: task definition and visual servoing closed loop
1 vpSpline S(CUBICSPLINE) ; // define a tracker (here track a spline using the ME algorithm)
2 S.initTracking(I) ;
3

4 vpFeatureLine L ; // define the visual feature: a line
5 L = S.tangent(0,0) ; // defined by the tangent to the spline
6 vpFeatureLine Ld(0,PI/2) ; // and that must be seen horizontal and centered in the image
7

8 task.addFeature(L,Ld) ; // define the visual task
9

10 while(...) {
11 vpColVector v(6), g(6)
12 grabber.acquire(I) ;
13 S.track(I) ; // Track the spline (visual cue)
14 L = S.tangent(0,0) ; // compute the tangent
15

16 g[0] = -Vx ; // define secondary task

17 v = task.computeControlLaw()+ task.addSecondaryTask(g) ; // v = −λW+WL
+
s (s − s∗) + (I − W+W)gs

18

19 robot.setVelocity(vpRobot::CAMERA_FRAME, v) ;
20 }

3.2.3 Building a 2 1/2 D visual servoing task

We now consider the 2 1/2 D visual servoing task presented in Section 2.1, the visual features s are
defined by s = (x, y, logZ/Z∗, θu). To achieve this task one solution is to consider an estimation
of the 3D position of the point and the camera pose wrt. to the object. Listing 5 shows how to
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get the pose cMo from a set of seven points (see Figure 8). The class vpPose provides functions
that compute the pose from a list of points (list built using the addPoint method). Different
methods can be considered to compute the pose. In this example, it is first initialized using the
Dementhon-Davis [11] approach and improved using a non-linear minimization method.

a a a

Figure 8: 2 1/2 D visual servoing task as implemented in section 3.2.3

Listing 5: An example of opse estimation
1

2 int nbPoint = 7 ;
3 vpDot dot[nbPoint] ; // current visual feature associated with a tracker
4 // (here track 7 white dots)
5

6 // init the 3D coordinates (X,Y,Z) of the points in object frame
7 vpPoint point[nbPoint] ;
8 point[0].setWorldCoordinates(-L,-L,0) ; point[1].setWorldCoordinates(L,-L,0) ;
9 point[2].setWorldCoordinates(L,L,0) ; point[3].setWorldCoordinates(-L,L,0) ;

10 point[4].setWorldCoordinates(2*L,3*L,0); point[5].setWorldCoordinates(0,3*L,0) ;
11 point[6].setWorldCoordinates(-2*L,3*L,0) ;
12

13

14 vpPose pose ;
15 for (i=0; i<nbPoint; i++)
16 {
17 dot[i].initTracking(I, cam) ; // initialize the tracking process
18 dot[i].track(I) ; // get the 2D position of the point in meter
19 vpPixelMeterConversion::convertPoint(cam, dot[i], point[i]) ;
20 // at this point the 2D coordinates (x,y) and 3D coordinates (X,Y,Z)
21 // are available
22 pose.addPoint(point[i]) ; // consider this point in the pose computation algorithm
23 }
24

25 vpHomogeneousMatrix cMo ;
26 pose.computePose(vpPose::DEMENTHON, cMo) ;
27 pose.computePose(vpPose::NON_LINEAR, cMo) ;
28

29 cout << ‘‘Pose’’ << cMo << endl ;

Listing 6 shows how to build the 2 1/2 D visual servoing control law. In a first time, we initial-
ized the current and desired value of the visual features. The basic features related to a point and
to θu are available in the visual feature library (vpFeaturePoint and vpFeatureThetaU).
However there is no predefined basic feature for log(Z/Z∗). In such case it is possible to use a
generic vpGenericFeature feature. The user has then to compute, at each iteration, the state
vector, the interaction matrix, and the error vector. The task is then built by “stacking” the different
visual features using the addFeature method. Let us note that dealing with logZ and tu these
desired values are zero thus, we do not have to specify them (this is implicitly done). Line 68
specifies that the interaction matrix will be computed at the current position L̂s = L̂s(s, r). In the
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closed loop itself, we find the point tracking that provides the measurement necessary to compute
the pose and the position of the 2D point (Line 83). The pose is updated from these measurements
using a non-linear minimization method and the displacement θu along with the depth Z of the
point are updated (let us note that operator * has been overloaded to allows simple frame transfor-
mation: cP = cMo

oP). The interaction matrix related to log Z/Z∗ has to be computed according
to equation (13) (see Line 97). The global task interaction is then updated and the control law
computed.

Listing 6: An example of a 2 1/2 D visual servoing task
55

56 // define the feature ----------------------------------------------
57 vpFeaturePoint p, pd) ; // 2D reference point
58 vpGenericFeature logZ(1) ; // log (Z/Z*)
59 vpFeatureThetaU tu ; // ThetaU
60

61 // build the task (stack the features) -----------------------------
62 task.addFeature(p,pd) ;
63 task.addFeature(logZ) ;

64 task.addFeature(tu) ; // s = (x, y, log Z/Z∗, θu)>

65

66 //------------------------------------------------------------------
67 // interaction matrix computed at the current position
68 task.setInteractionMatrixType(vpServo::CURRENT) ;
69

70 // compute Z* and p*
71 vpColVector cP = cdMo*point[0] ;
72 double Zd ; Zd = cP[2] ;
73 pd.set_x(cP[0]/Zd) ; pd.set_y(cP[1]/Zd) ;
74

75 while(1) { //--------------------------------------------------------
76 g.acquire(I) ;
77 vpDisplay::display(I) ;
78

79 // compute the pose using a non linear minimisation method
80 pose.clearPoint() ;
81 for (i=0 ; i < nbPoint ; i++) {
82 dot[i].track(I) ;
83 vpPixelMeterConversion::convertPoint(cam, dot[i], point[i]) ;
84 pose.addPoint(point[i]) ;
85 }
86 pose.computePose(vpPose::NON_LINEAR, cMo) ;
87

88 // compute the current Z
89 cP = cMo * point[0] ; Z = cP[2] ;
90 p.buildFrom(point[0].get_x(), point[0].get_y(), Z) ;
91

92 // compute log (Z/Z*) and the corresponding interaction matrix
93 logZ.set_s(log(Z/Zd)) ;
94 vpMatrix LlogZ(1,6) ;
95 LlogZ[0][0] = LlogZ[0][1] = LlogZ[0][5] = 0 ;
96 LlogZ[0][2] = -1/Z ; LlogZ[0][3] = -p.get_y() ; LlogZ[0][4] = p.get_x() ;
97 logZ.setInteractionMatrix(LlogZ) ;
98

99 cdMc = cdMo*cMo.inverse() ; // Compute the displacement to achieve
100 tu.buildFrom(cdMc) ;
101

102 v = task.computeControlLaw() ;
103 robot.setVelocity(vpRobot::CAMERA_FRAME, v) ;
104 }

In this example, to compute the depth of the reference point and the rotation that the camera
has to achieve we have considered a pose estimation process. Let us note that this can also be
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achieved by the estimation of the homography between the current and the desired image (as
explained in [24]). VISP features also the capability to estimate such homography using various
algorithms [17, 24] and to extract from this homography the camera displacement and some useful
values such as Z/Z∗.

4 Conclusion

VISP is a fully functional modular architecture that allows fast development of visual servoing
applications. The platform takes the form of a library which can be divided in three main modules:
two are dedicated to control issues (one for control processes and one for canonical vision-based
tasks that contains the most classical linkages) and one dedicated to real-time tracking. Let us
finally note that VISP also features a virtual six dof robot that allows to simulate visual servoing
experiments.

VISP is developed within the INRIA Lagadic project and its kernel, available under the Linux
system, is distributed using an Open Source license (QPL License). Other modules such as the 3D
model-based tracker are subject to other licences. The VISP website is located at
http://www.irisa.fr/lagadic/visp. The examples given in the paper and many others
can be found in the software distribution.
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