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Abstract

A visual servoing algorithm is proposed for a robot with a camera in the hand to track a
moving object in terms of image features and their variations, where fuzzy logics and fuzzy-
neural networks are involved to learn feature Jacobian-based kinematic control law.
Speci®cally, novel image features are suggested by employing a viewing model of the

perspective projection to estimate the relative pitching and yawing angles. Such perspective
projection-based features would not interact with the relative distance between the object
and the camera, and, desired feature trajectories for learning the visually guided line-of-

sight robot motion are obtained by measuring features by the camera in the hand not in
the entire workspace, but on a single linear path along which the robot moves under the
control of a commercially provided function of linear motion, and then, control actions of

the camera are approximately found by fuzzy-neural networks to follow such desired
feature trajectories.
To show the validity of the proposed algorithm, some experimental results are illustrated,

where a four-axis SCARA robot with a BW CCD camera is used. # 1999 Elsevier Science

Ltd. All rights reserved.
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1. Introduction

Visual servoing has been considered as one of the powerful tools for intelligent
robotic applications. Especially, a feature Jacobian has been mainly used for
visual servoing. The feature Jacobian can be classi®ed as a pose-based one, if its
elements are represented by a relative pose (translation and orientation) between
the camera and the object. Otherwise, it is classi®ed as a feature-based feature
Jacobian if its elements are represented by relative features. Since the pose-based
feature Jacobian is a function of the relative pose, it requires the depth
information from the camera to the object, which is often di�cult to obtain
[16,19,20]. Since a correctional motion of the robot end-e�ector with a camera in
the hand is given by the inverse of the feature Jacobian, computational complexity
and the singularity of the feature Jacobian may be considered for real time control
of the robot [7,11,12]. In contrast with the pose-based feature Jacobian, a feature-
based feature Jacobian is represented by a function of features. In [12], a feature
Jacobian was partially described by features. But, it may require a rather complex
computation of the inverse of the feature Jacobian at every visual sampling time,
and all of the six-dimensional motions of robot end-e�ectors represented not as
functions of features, but as functions of features and pose. Several approaches
using neural networks were proposed to learn the pose-based or feature-based
feature Jacobian [10,14,15]. A good related literature survey can be found in [5,9].

On the other hand, 6 degrees-of-freedom (DOF) motions of a robot were
directly described in terms of six features and their variations, and feature-based
feature Jacobian has been approximated by the fuzzy membership function-based
neural network (FMFNN) [13,18] to avoid the use of the inverse of the Jacobian.
However, desired feature trajectories were given without consideration of robot
dynamics, and thus, the robot had to move slowly in practical applications.
Furthermore, orientational motions of the camera were not completely considered.

Fig. 1. Schematic diagram of camera motion by employing the proposed visual servoing method.
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In this paper, a di�erent type of visual servoing approach from the ones in
[1,3,17] is proposed, where two control policies are applied according to the size of
the object as in Fig. 1: if the size of the object is measured by a feature to be
smaller than a prespeci®ed size at D, then the camera is controlled to move to the
object while keeping its gaze holding along the line-of-sight from A to D.
Otherwise, the camera is controlled to move along the linear path from the
current position to a target position in front of the object, while trying to have a
given desired relative orientation between the camera and the object from D to T.
It is noted that our proposed visual servoing approach seems to be similar to
visual servoing schemes of human or animals. Speci®cally, to make the desired
feature trajectories in such a way that the robot dynamics is involved, the camera
in the hand is made to approach the target position T in front of the object, while
measuring features and the current position of the robot end-e�ector. Here, the
desired feature trajectories are not obtained in the entire workspace, but on a
single linear path along which the robot moves using linear motion in an
industrial robot controller. For learning the feature Jacobian-based control law,
initial fuzzy rules are given to roughly follow the desired feature trajectory, and
then, the motion between D and T, FMFNN in [13,18] is employed to re®ne fuzzy
rules in such a way that the camera in the hand follows the desired feature
trajectory. It is noted that novel image features are suggested by employing a
viewing model of perspective projection to estimate relative pitching and yawing
angles. Such perspective projection-based features would not interact with the
relative distance between the object and the camera.

On the other hand, gaze motions are designed for the alignment of the line-of-
sight of the camera with the center of the object regardless of the orientation of
the camera with respect to the object [2,4]. Thus, it is necessary to adjust the
orientation of the camera to become a given desired orientation with respect to
the object for correct grasping of the object. However, in our approach such an
orientational motion control of the robot end-e�ector is applied only near the
target position. When an orientational motion control as well as a gaze control
are simultaneously performed, a line-of-sight of the camera does not usually
coincide with the center of the object, and thus the camera will not move along
the desired linear path. Thus, corrective motions on the plane perpendicular to the
approaching direction of the robot end-e�ector should be considered. Such
corrective motion control algorithms are proposed by fuzzily estimating the
current position of the camera with respect to the object.

To show the validity of our proposed algorithms, some experimental results are
illustrated, where a four-axis SCARA robot with a CCD camera is utilized. It is
noted that the camera is mounted on the rolling axis (S-axis) of the robot in such
a way that the line-of-sight of the camera lies in the X±Y plane.

2. Image features for the design of visual servoing algorithms

In selecting image features for a visual feedback control, image selection criteria
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including unique features, feature set robustness, computational inexpensive
features, and feature set completeness have been proposed in [8]. Among them,
uniqueness should be strongly considered, since it gives e�ects on the
computational complexity of the visual feedback control algorithms. However, it
is usually di�cult to ®nd a unique feature because camera motion along the i-th
axis of the camera frame usually cause not only the i-th feature, Fi, but also other
features, Fj ( j$ i ), to be changed. To cope with such a di�culty, a viewing model
of perspective projection in [6] is employed here.

Speci®cally, consider a quadrangle (especially, a rectangle for the case of the
reference image) in the image as shown in Fig. 2. As shown in [3,5,11,13], features
obtained from four points or a quadrangle in the image plane could be generally
applicable to real tasks. Hereinafter, an object will be considered as a quadrangle.
Let (x1, y1), (x2, y2), (x3, y3) and (x4, y4) be the corner points of the rectangle in
the image plane as shown in Fig. 2. Then, features, Fi, for i= 1, 2, . . . , 6, are
chosen as

F1 � �x1 � x2 � x3 � x4�=4,

F2 � � y1 � y2 � y3 � y4�=4,

F3 � �x2 � x4 ÿ x1 ÿ x3� � � y2 � y4 ÿ y1 ÿ y3�,

Fig. 2. A quadrangle extracted from simple four dot pattern in the image plane.
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F4 � �m1x1 ÿm2x3 � y3 ÿ y1�=�m1 ÿm2� ÿ F1,

F5 � �m3�m4�x1 ÿ x2� � y2 ÿ y1��=�m3 ÿm4� � y1 ÿ F2, �1�
and

F6 � tan ÿ1�� y1 � y2 ÿ y3 ÿ y4�=�x1 � x2 ÿ x3 ÿ x4��:
In Eq. (1), m1, m2, m3, and m4 are given as ( y2ÿy1)/(x2ÿx1), ( y4ÿy3)/(x4ÿx3),
(x1ÿx3)/( y1ÿy3), and (x2ÿx4)/( y2ÿy4), respectively.

It is noted that F1 and F2, respectively, are X and Y coordinates of the center of
gravity of the quadrangle in the image plane. F3 is the area of the quadrangle in
the image plane. Let lij (x, y )=0 be the line connecting (xi, yi) with (xj, yj). F4

implies the di�erence between the F1 and X coordinate of the point of intersection
of two lines l12(x, y )=0 and l34(x, y )=0 as shown in Fig. 2. In computation of
F4, if m1 becomes equal to m2, then F4 is not computed, but given as a
prespeci®ed large number, and, F5 is the di�erence between the F2 and Y
coordinate of the point of intersection of two lines l13(x, y )=0 and l24(x, y )=0.
F6 is the degree of rotation of the quadrangle about the normal vector of the
image plane. It is also noted that F1, F2 and F3, respectively, are used for
translational motions of the camera along the cX-, cY- and cZ-axes. F4, F5 and F6,
respectively, are used to determine magnitudes of a pitching, a yawing, and a
rolling motion of the camera about the cX-, cY- and cZ-axes [18].

Now consider a viewing model of perspective projection of a regular

Fig. 3. A viewing model of perspective projection of a regular hexadron.
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hexahedron as shown in Fig. 3 to know how relative pitching and yawing angles
between the object and the camera a�ect image features. Let a quadrangle with
corner points C1, C2, C3 and C4 be denoted as Q(C1, C2, C3, C4). Let R(R1, R2,
R3, R4) in Fig. 3 be the image of Q(C1, C2, C3, C4) on the object to be visually
tracked, and Rvp be the viewpoint of the camera which is transformed from the
center of the camera frame to the image plane. Also let the plane including three
vanishing points, V1, V2 and V3, be represented as p(V1, V2, V3)=0. Here, note
that p(V1, V2, V3)=0 is orthogonal to the line-of-sight of the camera [6,13].
Assume that the viewpoint of the camera coincides with the center of Q(R1, R2,
R3, R4). Then, the angle a between p(V1, V2, V3) and the line connecting V3 with
C1, V3C1, which is called a vanishing line, becomes a pitching angle of the camera
with respect to the object. The angle b between p(V1, V2, V3) and V2C1 becomes a
relative yawing angle. It is noted here that the angles a and b, respectively, can be
simply represented by the di�erence of the Y coordinates of Rvp and V2 and the
di�erence of the X coordinates of Rvp and V2 [6]. It is also noted that the distance
between Rvp and V2 or V3 is not varied even if the relative distance between the
camera and the object is changed as shown in Fig. 4. Thus, to obtain relative
pitching and yawing angles, a and b, Rvp, V2 and V3 should be found. Here,
transformed Rvp in the image plane can be easily known, since the origin of the
camera frame is always mapped onto a ®xed point in the image plane, and V2 and
V3 can be computed by using the intersection of R1R2, and R4R3, and R1R4, and
R2R3, respectively. However, V2 and V3 are not linearly proportional to the angle
a and b, respectively. Thus, the fuzzy rules here are designed to represent the
relations between the angle a and V2, and the angle b and V3. It is noted that V2

Fig. 4. A schematic diagram of a viewing model of perspective projection to show that all vanishing

lines are met into vanishing points even if the viewing scale is changed.
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and V3 in Fig. 3 are the same as F4 and F5, respectively. For this, the line-of-sight
of the camera is made to be aligned to the center of the object, and the camera is
in front of the object as shown in Fig. 5. To get relations between F4 and the
relative yawing angle of the camera with respect to the object, the object is rotated
in a clockwise or counter-clockwise direction about the X-axis of the object frame,
oX1, from ÿbmax to bmax by an increment of bstep, while computing F4 at every
yawing angle. Then, the fuzzy rules can be given to represent the relations
between b and F4 as follows:

If F4 is NEAR Ji
4, then b is NEAR Oi

y, for i � 1, 2, . . . , n, �2�

where n is the number of fuzzy rules given as (2bmax/bstep+1), NEAR Ji
4 is the i-

th linguistic value of F4, and NEAR O i
y is the i-th linguistic value of b.

In the case of the relative pitching angle, the di�erence of the Y coordinate
between Rvp and V3 is employed, and, since F6 is linearly proportional to the
relative rolling angle, the scale factor is only required to get a real relative rolling
angle.

3. Desired feature trajectories and learning of line-of-sight motion

Desired feature trajectories should be chosen in such a way that learning both
line-of-sight motion of a robot end-e�ector and correct positioning without
oscillations at the target position are guaranteed. For this, consider the case,
without loss of generality, that a robot end-e�ector is made to move along a
linear path from a position L1 to the target position T in the camera frame as
shown in Fig. 5. Here, such a linear motion is achieved by means of the function
of linear move that is basically provided in most of commercial industrial robot
controllers [8]. Fig. 6(a) and (b), respectively, show a typical position trajectory
and the velocity pro®le for such a linear motion of the robot end-e�ector when
the dynamics of the robot is assumed as 6.5/(s + 6.5). In Fig. 6, (tA, A ) and (tD,
D ), respectively, imply the time and the position at which acceleration becomes
zero, and deceleration begins to reduce the velocity. To let the end-e�ector of a

Fig. 5. The line-of-sight of the camera which is aligned to the center of the object.
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robot learn how to follow such a position trajectory or a velocity pro®le under
our feature-based feature Jacobian control algorithm, we will let the robot move
with its maximum velocity unless the magnitude of features F3 is smaller than FD

3 ,
the magnitude of F3 is measured at D. The reference features necessary for
learning visually guided motion are only obtained along the linear path from D to
T at every visual sampling time. We will now call them a desired feature
trajectory, FR

3 (t ).
On the other hand, the robot end-e�ector can begin to move from an arbitrary

position Li, for i = 2, 3, . . . , n, on the linear path as shown in Fig. 5. Thus,
corresponding velocity pro®les become di�erent from the case that the robot
begins to move from L1. Thus, feature trajectories corresponding to several
velocity pro®les are obtained along the same linear path from D to T by letting
the end-e�ector of the robot begin to move from several di�erent positions.
Therefore, the robot end-e�ector velocity as well as features are required to
identify which feature trajectory should be chosen as follows. Here, variation of
features F3, dF3, is to be used instead of robot velocity for such identi®cation.

Now, let dX3 be the camera motion along the cX3 (=cZ )-axis during on visual
sampling time, and let G(F3, dF3) be the relationship between (F3, dF3) and dX3.
To approximately get G(F3, dF3), a modi®ed version of FMFNN in [13,18] is
used. Speci®cally, G(F3, dF3) is approximated by fuzzily combining m functions,
Gi (F3i, dF3i), for i = 1, 2, . . . , m. For this, an approximated Gi (F3i, dF3i) is
initially found by fuzzy rules, where dF3i is assumed, without loss of generality, to
be given, and then is iteratively improved by FMFNN. To design such initial m
fuzzy rules for the coarse tracking, it is noted that precise control actions need to
be applied near the set point to prevent an overshoot of the feature trajectory.

Fig. 6. A position trajectory and a velocity pro®le of a camera in the hand when the robot moves from

L1 to T.
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Thus, fuzzy values to represent the feature trajectory should be given to be dense
near the set point. For the case that dF3 is similar to dF3i, an example of fuzzy
rules can be given as

If F3 is Large, then dcX3 is Small, or

If F3 is Medium, then dcX3 is Medium, or

If F3 is Small, then dcX3 is Large: �3�
Here, F3 is used for implicitly representing the distance between the robot and the
object. Now, for the ®ne visual tracking, initial fuzzy rules for coarse tracking are
represented as a form of a neural network, FMFNN [13,18], given by

dcX3 �
Xq
i�1

liFi�F3�: �4�

The basis function of FMFNN, Fi���, is a triangular membership function of the
input fuzzy variable of the i-th fuzzy rule. The weight of FMFNN, li, is the
singleton membership function of the output fuzzy variable. Now, li is iteratively
re®ned by using the reference feature trajectory, FR

3 (t ). For this, an error function
for an FMFNN is given as

E�t� � 1
2 �F R

3 �t� ÿ F3�t��2 �5�

and F3 can be represented as

F3 � I�cX3� � G

 
g

 Xq
i�1

liFi

!!
, �6�

where I(�) is a mapping from cX 2 Rm to F 2 Rn, G(�) is a mapping from dcX 2 Rm

to F 2 Rn, and g(�) is an output node function as usual in a neural network.
Without loss of generality, g(�) can be given as

g�u� � ku, �7�
where k is a slope of linear output node function. From Eqs. (5) and (6), the
derivative of the error function E(t ) with respect to the weights of the i-th
FMFNN, li, can be obtained as

@E�t�
@li�t� � ÿ�F

R
3 �t� ÿ F3�t��@F3�t�

@li�t� : �8�

Unfortunately, it is impossible to get the derivative of F3(t ) with respect to li (t )
as a closed form. But, in the case of F3, it is obvious that the size of the object in
the image plane is always increasing when the camera is approaching the object.
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Thus, since we can assume that the sign of li's variation is the same as F3(t )'s
variation, @F3(t )/@li (t ) can be replaced as @FÃ3(t )/@li (t ) given by

@ F̂3�t�
@li�t� � Z sgn

�
F3�t� ÿ F3�tÿ 1�
li�t� ÿ li�tÿ 1�

�
: �9�

It is noted that the convergence speed of E(t ) when using @F3(t )/@li (t ) is not the
same as the one of E(t ) when using the estimated derivative in Eq. (9), but the
convergence direction of E(t ) will be the same. Thus, the derivative of F3(t ) with
respect to li (t ) can be obtained as

@E�t�
@li�t�1ÿ kZ�F R

3 �t� ÿ F3�t��sgn

�
F3�t� ÿ F3�tÿ 1�
li�t� ÿ li�tÿ 1�

�
�10�

and, the learning rule for adapting the weight of the modi®ed FMFNN is given as
follows:

li�t� 1� � li�t� � kZ�F R
3 �t� ÿ F3�t��sgn

�
F3�t� ÿ F3�tÿ 1�
li�t� ÿ li�tÿ 1�

�
: �11�

It is noted that convergence of the FMFNN was discussed in [18]. It is also noted
that feature trajectories that are not learnt a priori can be encountered. Such cases
can be handled by using previously learnt line-of-sight motions. For this, a simple
linear interpolation method is used here, since visual servoing dynamics for line-
of-sight motions are not expected to be much di�erent. That is, dX3, the motion
command for the cZ-axis of the camera is determined as

dX3 � C�F3� jdF3

� j dF
i
3 ÿ dF3 j Gi�1�F3, dF3�� j dF i�1

3 ÿ dF3 j Gi�F3, dF3�
j dF i

3 � dF i�1
3 j

, �12�

when dF3 is measured as a value between dF i
3 and dF i + 1

3 .

4. Visual servoing control law using feature-based feature Jacobian

It is noted that our design problem is to ®nd a visual servoing control law by
using a feature-based feature Jacobian. We ®rst found the motion command, dX3,
for the cZ-axis of the camera as C(F3) in Eq. (12) by utilizing FMFNN. Now, we
will determine the translational motion commands, d cX1, d

cX2, and d cX3, of the
camera along the linear path from D to T during a visual sampling time by using
C(F3).

To endow our visual controller with a gaze holding capability for the case that
the line-of-sight of the camera does not coincide with the center of an object, it is
necessary to determine how much the camera should be rotated about the
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perpendicular axes with respect to the cZ-direction along which the camera
approaches the object. Without loss of generality, consider a simple 2-D
con®guration of a camera and an object as shown in Fig. 7.

Then, by using the geometric relationship between the camera and the object,
F1 in Eq. (1) can be represented as

F1 � ks
f

cZo

cYo, �13�

where f and ks, respectively, denote the focal length of the camera and an image
scaling factor and can be known a priori. In Eq. (13), cYo and cZo, respectively,
are the cY and cZ directional positions of the object with respect to the camera
frame. Thus, by using Eq. (13), the angle gb for gaze holding can be obtained
using only feature F1 as

gb � tan ÿ1
�

cYo

cZo

�
� tan ÿ1

�
F1

cZo=ksf
cZo

�
� tan ÿ1

�
F1

ksf

�
: �14�

It is noted here that since dynamics for rotational motions of the camera are
relatively faster than those for translational motions of the camera, orientational
motions of the camera can be controlled without considering the robot dynamics.
To be speci®c, let gbm be the angle of the camera to be maximally rotated during
one visual sampling time, which can be determined by a mechanical and electrical
speci®cation of the robot to be used. Then, if gb in Eq. (14) is smaller than gbm,
the camera is made to be rotated by the angle of gb in one visual sampling time.
Otherwise, the camera is made to be rotated by the angle of gbm until the current
gaze angle gb becomes smaller than gbm. It is also noted that the pitching angle of
the camera for gaze holding in a 3-D con®guration, ga, can be determined by

Fig. 7. 2-D con®guration for representing the relative yawing angle of the camera with respect to the

object.
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ga � tan ÿ1
�
F2

ksf

�
: �15�

It is further noted that ga and gb in Eqs. (15) and (14) are used for controlling the
approaching direction of the camera in the hand to follow the linear path from A
to D as shown in Fig. 1. Recall, that in our visual servoing problem, a desired
path to be visually followed is not given as an actual line-of-sight path from the
position D to the center of the object, but given as the linear path from D to the
target position T. Thus, for the visually guided linear motion from D to T, D(oXD,
oYD,

oZD) is necessary to be estimated. To avoid use of a rather complex and/or
expensive distance measuring technique in [16], a fuzzy-based position±estimation
technique is now proposed, which can estimate the relative position of the camera
with respect to the object. Speci®cally, fuzzy rules are designed by using
empirically obtained relational data between F3 and the actual distance, where
relative pitching and yawing angles are ®xed to be null. For this, let dDT be the
distance between D and T, and let FD

3 and FT
3 be the features measured at D and

T, respectively. Also let dFTD
3 be de®ned as (FT

3ÿFD
3 )/n, where n is an integer

implying the number of fuzzy rules to be designed. Then, choose dDTi on a linear
path from D to T in such a way that

dDTi � F D
3 � i � dF TD

3 , for i � 1, 2, . . . , n: �16�
Since the position measuring rules to be proposed are designed under the
assumption that the relative orientation between the camera and the object is near
zero, some errors may be generated if the relative orientation is not zero. That is,
F3 can be decreased due to nonzero yawing and pitching angles. To reduce such
errors, consider the 3-D con®guration of the camera and the object, where if an
object whose size is L is declined to a and b with respect to cX and cY,
respectively, the length of the object is scaled down as L cos a cos b. Since a and
b can be estimated by the fuzzy rules in Eq. (2), the actual size of the object can
be estimated by FÃ3 given as

F̂3 � F3 cos ÿ1�a� cos ÿ1�b�: �17�
Then, fuzzy rules for estimating the relative position between the camera and the
object can be given as

If F̂3 is near F3i, then oZ �c is near �oZT � dDTi �, for i � 1, 2, . . . , n, �18�
where oZ �c and oZT, respectively, are the estimated relative positions of the camera
and the pre-measured target position with respect to the object. Here, linguistic
values near F3i and near (oZT+dDTi), respectively, are given as triangular and
singleton membership functions.

After getting the estimated position between the camera and the object, the
moving direction of the camera has to be calculated to follow the linear path
between D and T as shown in Fig. 1. Thus, since T is given a priori with respect
to the object frame and the current camera position is estimated by employing
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Eqs. (17) and (18), the unit vector for the line from the current camera position to
T, uc, can be obtained as

uc �
24 ucx

ucy

ucz

35 � 1������������������������������������������
tan 2 a� tan 2 b� 1

p
24 tan a

tan b
1

35: �19�

Then, the translational motion commands, d cX1, d
cX2, and d cX3, of the camera

along the linear path from D to T during a visual sampling time can be computed
by usingC(FÃ3) in Eq. (12) as24 dcX1

dcX2

dcX3

35 � C�F̂3�uc: �20�

Controls of d cX1, d
cX2 and d cX3 for camera motions along a linear path from D

to T might cause the camera to lose gaze holding. Thus, it is necessary that the
orientation of the robot should be readjusted for the gaze holding. For this, a
pitching angle, Ea, and a yawing angle, Eb, during the camera motion along a
linear path from D to T can be obtained geometrically by using oZ �c, d

cX1, d
cX3,

a and b as follows:

Ea � tan ÿ1
 

oZ �c cos aÿ dcX1

oZ �c ÿ dcX3

!
, �21�

and

Eb � tan ÿ1
 

oZ �c cos bÿ dcX1

oZ �c ÿ dcX3

!
: �22�

Ea and Eb in Eqs. (21) and (22) are valid for the case that the camera is modeled
as a pin-hole lens and the output values of the fuzzy rules in Eqs. (2) and (18) are
exactly the same as actual values. Thus, in addition to Ea and Eb in Eqs. (21) and
(22), an additional orientational motion may be required to reduce orientational
errors. To comply with such a requirement, pitching and yawing control
commands, dX4 and dX5 are given by incorporating gazing angles gb and gb,
respectively, in Eqs. (14) and (15) as follows:

dX4 � Ea � kpga, �23�
and

dX5 � Eb � kpgb, �24�
where kp is given as a positive constant less than unity.

Now, the rolling control commands, dX6, of the camera in the hand is simply
given to be proportional according to the error between the desired and the actual
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rolling degree, where the actual rolling degree is estimated by using feature F6,
which is independent to the relative distance between the camera and the object.

5. Experimental results

To show the validity of the proposed visual servoing method, some
experimental results are illustrated. For this, a four-axis SCARA robot, SPR-600
[25], with a B/W CCD camera [23] is utilized, where the camera is mounted on the
rolling axis (S-axis) of the robot in such a way that the line-of-sight lies in the X±
Y plane of the robot frame. Speci®cally, the CCD camera is composed of a signal
module, IK-M41MK, and a lens module, IK-M30 M, of which the focal length is
7.5 mm. The control system employs an MC68030/68882-based commercial CPU
board (Force CPU 30 [21]) and a commercialized real-time multitasking O.S,
VxWorks [24]. An additional FORCE CPU 30 and a B/W frame grabber, DT-
1451 [22], are embedded into the control system for image acquisition and feature
extraction. On the other hand, to reduce computational complexity for image
processing the object is given as a 4 � 4 cm white square on a dark background.
The target position T is chosen as (25.3, 55.8, and 10.8 cm) in the robot frame.
The maximum distances dXmax, dYmax, and dZmax for the camera to move along
the X-, Y- and Z-axes of the camera frame during one visual sampling time of 160
ms are given as 11 mm. Here, the sampling time for the control of the robot is
chosen as 40 ms.

To compute the position trajectory, the camera at L1 (13.0, 55.8, and 10.8 cm)
is made to move to T with its maximum speed. Then, the deceleration position D
is chosen from the position trajectory of the camera, and, FD

3 is computed at D.
To compute the feature trajectory, the camera is also made to move from L1 to T,
while F3 is computed, where F3's larger than FD

3 are memorized for the feature
trajectory. For learning the line-of-sight motion, 11 initial fuzzy rules for the
relative yawing angle between the camera and the object in Eq. (2) are used, and
membership functions of their input variables are shown in Fig. 8. Now, for the
®ne visual servoing, the weight of FMFNN, li, in Eq. (4) is adapted by employing
Eq. (11). Fig. 9 shows the trajectory of F3 while the FMFNN is trained. It is
observed from Fig. 9 that the steady state error converges to near zero within 30
trials. To compute other feature trajectories for various robot speeds passing

Fig. 8. Membership functions for input.
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through the position D, the camera in the hand at L2 (15.0, 55.8, and 10.8 cm), L3

(17, 55.8, and 10.8 cm) and L4 (19, 55.8, and 10.8 cm) is moved to target position
T. After learning such feature trajectories, the linear interpolation method in Eq.
(12) is employed to handle feature trajectories that are not learnt a priori.

Fig. 10 shows the servoing performances of the proposed algorithm, when the
camera is visually controlled to move from untrained locations, A1 (13.0, 58.5,
and 10.8 cm), A2 (13.1, 61.2, and 10.8 cm), A3 (13.0, 63.96, and 10.8 cm) and A4

(13.0, 66.87, and 10.8 cm) to the target location T. Speci®cally, at the starting
positions Ai, i= 1, 2, 3, and 4, the camera is turned by the gaze angle, gb, in

Fig. 9. Feature trajectories with respect to the number of learning trials, when the FMFNN is trained

in such a way that the camera moves from D to T.

Fig. 10. The servoing performances of the proposed algorithm, when the camera is visually controlled

to move from A1 (13.0, 58.5, and 10.8 cm), A2 (13.1, 61.2, and 10.8 cm), A3 (13.0, 63.96, and 10.8 cm)

and A4 (13.0, 66.87, and 10.8 cm) to the target location T.
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Eq. (14) for the initial gaze holding. Then, the camera is controlled to move from
Ai to Di along the line-of-sight with its maximum speed. It is recalled that the
visual servoing controller determines whether it reduces speed commands by
comparing the current feature F3 and FD

3 . When the current F3 is larger than FD
3 ,

translational motions of the camera to the target position T are controlled by
incorporating Eqs. (2), (12), and (17)±(20). The orientational motions are
controlled by Eqs. (23) and (24). It is observed from Fig. 10 that actual paths of
the camera from Ai to Di, i = 1, 2, 3, and 4, are almost linear. This implies that
the line-of-sight motion control with gaze holding works successfully in the whole
workspace as expected. It is also observed from Fig. 10 that the actual paths from
Di, i= 1, 2, 3, and 4, to T shows a tolerable average error of 2 mm, which might
be caused by untrained camera motions along the cX- and cY-axes, but shows
little positioning errors at T. Thus, the proposed visual servoing algorithm for the
control phase from Di to T seems to be valid on any paths in the whole
workspace, even though FMFNN is trained only on a single path.

On the other hand, we investigate the capability of the proposed visual servoing
method to track the moving object along the line-of-sight. For this, we consider
the case that the object moves along a linear path from (43.0, 55.8, and 43.0 cm)
to (44.7, 55.2, and 41.2 cm) with a velocity of 3 mm/s, and the camera traces the
object from (39.0, 80.0, and 39.0 cm). The desired and the actual trajectories of
the camera are shown in Fig. 11, where a steady state error of 0.5 mm is observed
for the Y-axis of the camera frame. It is noted that the steady state error is mainly
caused by computational time delay of one visual sampling time. It is also noted
that the camera motions in 6 DOF can be easily extended by using similar
approaches used in this experiment.

Fig. 11. Tracking performance of the proposed algorithm when the object moves along a linear path

from (43.0, 55.8, and 43.0 cm) to (44.7, 55.2, and 41.2 cm) with a velocity of 3 mm/s, and the camera

traces the object from (39.0, 80.0, and 39.0 cm).
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6. Concluding remarks

In this paper, novel features and an improved visual servoing algorithm were
proposed. A viewing model of perspective projection was used to get the image
features F4 and F5 with relatively high noise-immunity and size invariant
characteristics. Owing to the uniqueness of the proposed image features, at most
two input variables were employed for the design of fuzzy logics and/or fuzzy-
neural networks. To compensate dynamic characteristics of the robot, desired
feature trajectories for learning visually guided line-of-sight robot motions were
obtained by measuring features by the camera in the hand not in the entire
workspace, but on a single linear path along which the robot moves under the
control of a commercially provided function of linear motion, and then, the
control actions for the line-of-sight motion of the camera are approximately found
by fuzzy-neural networks to follow desired feature trajectories when the
orientational motions of the camera are controlled by gaze holding. From the
experimental results, it was shown that the proposed visual servoing method
worked successfully on any paths in the whole workspace.

The advantages of our proposed visual servoing can now be summarized as
follows: (1) the robot dynamics can be e�ectively considered by using the feature
trajectories; (2) a novel perspective model based image feature is robust against
image noises and/or computation errors; (3) relatively little geometric information
is required on the camera, the object and the environment; (4) the amount of
learning is small since the line-of-sight motions of a robot-mounted camera are
required to be learnt not in the entire workspace, but on a single linear path; (5)
line-of-sight motions of the robot can be guaranteed in the whole workspace by
using both the line-of-sight motion on a single linear path and the gaze holding;
and (6) comparing the conventional feature Jacobian, relatively fast computation
can be achieved since no computations of the inverse of the feature Jacobian are
required.
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