
Proprioceptive Visual Tracking of a Humanoid
Robot Head Motion

João Peixoto1, Vitor Santos1,2, and Filipe Silva1,2

1 Universidade de Aveiro,
2 Institute for Electronics Engineering and Informatics of Aveiro - IEETA

{joao.peixoto,vitor,fmsilva}@ua.pt

Abstract. This paper addresses the problem of measuring a humanoid
robot head motion by fusing inertial and visual data. In this work, a
model of a humanoid robot head, including a camera and inertial sen-
sors, is moved on the tip of an industrial robot which is used as ground
truth for angular position and velocity. Visual features are extracted
from the camera images and used to calculate angular displacement and
velocity of the camera, which is fused with angular velocities from a gy-
roscope and fed into a Kalman Filter. The results are quite interesting
for two different scenarios and with very distinct illumination conditions.
Additionally, errors are introduced artificially into the data to emulate
situations of noisy sensors, and the system still performs very well.

Keywords: Kalman filter, SURF, Inertial sensor, Humanoid balance

1 Introduction

Humanoid robot balance is a relevant and complex problem despite the contin-
uous progresses done by the research community in the field. The electrome-
chanical limitations and flaws of the structures and actuators make the problem
even harder by forbidding the existence of reliable models. Hence, to control
these robots, a rich set of sensors, both proprioceptive and exteroceptive, are
required. For balance measurement, and ultimately its control, force and/or in-
ertial sensors are usually combined, but the trend may be pushed further, and
the combination of more sensors altogether promises more robust and effective
representations of the robot internal state, and its state on the environment.

In that line, this paper presents a method for combining inertial and visual
data to measure, and later control, humanoid robot motion, namely at the level
of the head, where cameras are normally placed, along possibly with inertial
sensors. Combining such data may be presented as a challenging task, however
it may be very valuable in several contexts, including motion learning. This
sensorial merging can increase the robustness of the information since various
sensors will feed data into a single model. This work was developed for PHUA
(Project Humanoid at the University of Aveiro) with the intention of aiding the
progress made to date to this project[1].

The method presented in this paper is based on the Kalman Filter tool, which
will combine both sets of data (visual and inertial) into a single representation
that describes the movement of the robot, namely its head. The line of focus
of this research is to monitor especially the angular position of the robots head
relatively to the gravity vector.

2 Related Work

The creation of visual-inertial systems has been a complex field of study for
some time. Many researchers use this approach in order to improve data that
inertial systems can’t achieve alone. Commonly, visual-inertial systems are used
to enhance odometry [2] and in aiding navigation [3]. This kind of data merging
has been also applied to humanoid platforms in ego-motion estimation [4]. Often,
this approaches use Extended Kalman Filter (EKF) needing complex formulas in
order to describe the systems and the relation between sets of data. Commonly,
these research activities are based on experiments, lacking a robust ground truth
in order to compare the results to. This paper aims to simplify the problem in
order to understand how simplistic a model can be and yet create a functional
system with improved data, relying on a ground truth, in order to objectively
compare the results with and without the merging of different types of data.

3 Experimental Setup

For this paper, we used a trustworthy tool in order to obtain a reliable ground
truth, as well as repeatable experiments. This can be accomplished with an
industrial manipulator. The manipulator used is a FANUC 200iB, which presents
a high repeatability (±0.10mm), and has six degrees of freedom. For this fact
we are able to perform and reproduce testing trials with high repeatability rates
as well as acquiring extremely reliable data from its end-effector. In this case we
aimed to obtain the orientation of the FANUC end-effector. The software was
developed in language C++ in the environment ROS [5] (Robotic Operating
System) and makes use of ROS Topics and Bags.

4 Proposed Approach

4.1 Kalman Filter

The Kalman Filter is a powerful statistic tool created by Rudolf Kalman based
on linear algebra, which intends to estimate the value of a set of state variables.
In order to do that, the filter does an estimation of the values that it is expecting,
based on a given model that describes the behavior of the system.

The first thing needed to implement the Kalman Filter is to define the state
variables. In this case we will use angular position and velocity as state variables,
since we obtain them directly from the sensors and they can describe fairly well
the behavior of the system (xk = [θk; θ̇k]T)

Peixoto
Realce

Peixoto
Realce

Fig. 1. Experimental setup (left) and a detailed view of the components (right)

Now, it is important to define the model that describes the behavior of the
humanoid. This is not a simple task, since we don’t know what kind of behavior
it will have. If we assume that the robot is in angular motion with constant
acceleration, we just need to assume that the acceleration is the process noise,
otherwise we need to calculate it using the previously known angular velocities.
This way, we can use an overall model for any behavior of the robot:

θk = θk−1 + θ̇k−1∆t+
1

2
θ̈k−1∆t

2 (1)

θ̇k = θ̇k−1 + θ̈k−1∆t (2)

θ̈k = θ̈k−1 = 0 (3)



θxk

θyk
θzk
θ̇xk

θ̇yk
θ̇zk

 =


1 0 0 ∆t 0 0
0 1 0 0 ∆t 0
0 0 1 0 0 ∆t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





θxk−1

θxk−1

θzk−1

θ̇xk−1

θ̇yk−1

θ̇zk−1

 +



∆t2

2 0 0

0 ∆t2

2 0

0 0 ∆t2

2
∆t 0 0
0 ∆t 0
0 0 ∆t





θ̇xk−1
− θ̇xk−2

∆tk−1

θ̇yk−1
− θ̇yk−2

∆tk−1

θ̇zk−1
− θ̇zk−2

∆tk−1


(4)

θ is the angular position
θ̇ is the angular velocity
θ̈ is the angular acceleration
∆t is a temporal iteration

Regarding the measurements, we just need to add as many as we need and
then relate them to the state variable matrix. In this case, we have a defined
number of outputs from the sensors, which are the angular position and velocities

Peixoto
Realce

Peixoto
Realce

for the three axis and a variable number of outputs from the camera, resulting in
equation (5). It is possible to obtain more than one measurement from the image,
therefore we present formula (5) using n measurements. In these experiments,
the camera was aligned with the y axis of the sensor, as we can observe in Fig.2.



θxSk

θySk

θzSk

θ̇xSk

θ̇ySk

θ̇zSk

θyCk1

θ̇yCk1

θyCk2

θ̇yCk2

...
θyCkn

θ̇yCkn



=



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 1 0
.
0 1 0 0 0 0
0 0 0 0 1 0





θxk

θyk
θzk
θ̇xk

θ̇yk
θ̇zk

 (5)

Fig. 2. Axis Definition from hu-
manoid point of view

The subscript S stands for values measured from the inertial sensor
The subscript C stands for values measured from the camera

4.2 Visual Tracking

When it comes to visual tracking, one of the most common and intuitive ways to
analyze an image is to perceive certain image regions (blobs) that can describe
an object which the robot can identify. However, it is not always possible to use
these global methods, since there aren’t always images simple enough to apply
this method to. As a result, there is the need to find a method which may be
used in more diverse situations.

An alternative way to work with an image is to try to extract some points
(features) that may show special properties such as being invariant to scale
and position. These are know as local features since they are calculated in key
points instead of global methods as those based in blob analysis. There are many
different approaches for these local descriptors, and for the work in this paper
the features of choice was SURF.

The idea of this method is to keep track of some relevant features in a given
image and extract information regarding the transformation between sets of
features, frame by frame.

Features are associated to pixels and are most relevant as a group. After
finding the SURF features with a specific detection algorithm [6], it is necessary
to extract them [6, 7] (extracted features are known as descriptors).

Descriptors save the information relative to a point (in the case of SURF a
n × 128 vector, where n is the number of features and 128 is used to describe
the quality of the point in relation to its surroundings [6]). Having the extracted
features, we need to compare the features [8, 9] existing in framei and framei−1

in order to find the ones that match, i.e., that exist in both frames. The next step
consists of calculating the transformation [10, 11] that occurred from framei−1

to framei, and extract the rotation component.

This extracted rotation (∆θBi) will be the base value to calculate the ori-
entation of the camera. This method allows to obtain a value for θ and θ̇, (6)
and (7), yielding for each frame, a single measurement of angular position and
velocity.

θ̇i =
∆θBi

ti − ti−1
(6)

θi = θi−1 + θ̇i(ti − ti−1) (7)

We can easily deduce from equation (7) that θi = θi−1 +∆θBi . This implies
that if the time of acquisition of each frame is unknown, we can still know the
orientation of the camera, although we can’t perceive its angular velocity. If
the time of acquisition is known, we can obtain both the angular position and
velocity (which is the best case scenario).

In Fig. 3 and Fig. 4 we can observe two consecutive frames with a portion of
the features found (red cross) and features matched (blue asterisk). For visualiza-
tion purposes, only a fraction (about 1/10) of the actual features is represented.

Fig. 3. Detected and Matched Features -
frame 32 - first experiment

Fig. 4. Detected and Matched Features -
frame 33 - first experiment

5 Results

The experiment consists of the rotation of the set of camera and inertial sensors
around the y-axis describing a semi-circle with r = 150mm and α ∈ [0;π], using
two different backgrounds and illuminations. The base image frame (the image
frame with α = π

2) from each experiment is presented in Fig. 5 and Fig. 6. We
can observe that experiment one was done under much brighter illumination
conditions and has more suitable objects for blob extraction, however blob ex-
traction was not applied in any of the experiments, being used only the feature
extraction method to determine θ and θ̇, thus we can compare equal sets of data
that went under the same calculations.

Fig. 5. Base frame from experiment one
(good light)

Fig. 6. Base frame from experiment two
(poor light)

The results of the experiments are shown in table 1. These are the comparison
between the values obtained from the algorithms and the values obtained from
the FANUC robot, using formula (8), which essentially describes the average of
the absolute difference between two sets of data:

res =

∑n
t=1 |Ft − dt|

n
(8)

res mean error (displayed on tables)
Ft Ground truth from FANUC at instant t
dt data measured or predicted
n number of measurements

The raw data obtained from the experiment is the one that comes from the
sensors, in which we get θx, θy, θz, θ̇x, θ̇y and θ̇z. The ground truth data (obtained
from the FANUC) is only θx, θy and θz. The experiment was performed in such
a way that there was only rotation around y, which will simplify the analysis
and will prove the concept for 3D rotation. Therefore, we will need to compare
the rotation obtained from the FANUC in y axis to the rotations obtained from
the sensors, camera and merged data.

Exp1 Exp2
Exp1
(noise)

Exp2
(noise)

Inertial 1.58◦ 2.80◦ 8.82◦ 8.73◦

Visual 2.26◦ 4.68◦ 2.26◦ 4.68◦

Inertial Kalman (θ̈ = 0) 1.56◦ 2.52◦ 5.03◦ 4.35◦

Visual Kalman (θ̈ = 0) 2.42◦ 6.16◦ 2.43◦ 3.80◦

Both Kalman (θ̈ = 0) 1.09◦ 2.43◦ 2.15◦ 2.47◦

Inertial Kalman (θ̈ 6= 0) 1.49◦ 2.57◦ 4.86◦ 3.87◦

Visual Kalman (θ̈ 6= 0) 1.96◦ 3.79◦ 1.99◦ 2.86◦

Both Kalman (θ̈ 6= 0) 1.00◦ 2.49◦ 2.08◦ 2.37◦

Table 1. Results from two different experiments without and with noise added to the
measurements. The numbers represent the mean error when compared to the ground
truth provided by the FANUC robot.

In table 1, ”Inertial” is the comparison between the FANUC robot and sensor
data (raw), ”Visual” is the average of the comparisons between the data obtained
from the visual data (one or multiple feature tracking) and the ground truth,
”Inertial and Visual Kalman” is the inertial and visual data processed by the
Kalman Filter (no merging), ”Both Kalman” is the merged data submitted to
the Kalman process, whilst θ̈ = 0 and θ̈ 6= 0 refers to the comparison of data

submitted to Kalman Filter process with θ̈k = 0 and θ̈k = θ̇k−1−θ̇k−2

tk−1−tk−2
respectively.

Fig. 7 and Fig. 8 present the the ground truth, inertial, visual and combined
data in Exp1 (noise) and Exp2 (noise) where the Kalman filter including
both inertial and visual performed nearly as good as the ground truth.

Fig. 7. All data from Exp1 (Noise) Fig. 8. All data from Exp2 (Noise)

As we can verify in table 1, the inertial data obtained in Exp1 is very reliable,
which almost excludes the need to use other data in order to improve it, since we
may be actually distorting its good results. If we apply the inertial data into a
Kalman Filter, it improves, but it in a negligible manner. This may be explained
by the fact that the model used in the Kalman Filter is not describing the
movement of the robot but rather the general laws of motion regarding angular
displacement. The visual data is worst than the inertial data, however, when

we apply this data (only) into a Kalman Filter, the output of the filter has a
great increase in accuracy. The results are better when we calculate θ̇. As it was
expected, joining inertial and visual data into a single Kalman Filter improves
the accuracy of result, surpassing the individual accuracy of each.

In experiment Exp2 the results are not so promising. The sensors data is
slightly poorer and the visual data is much worst, as it was expected, since the
captured images weren’t as good as in the first experiment. The deficiency in
illumination greatly influences the experiment (Fig. 5 and Fig. 6). Despite that,
the conclusions are similar to the ones obtained in Exp1.

In order to understand how this technique behaves in less accurate data, noise
was added to the sensor data (to each value was added a normal distributed
random number in the range [−10◦; 10◦]) and the exact same calculations were
repeated.

At this point, the sensor data is highly inaccurate and no good conclusion
may be taken from it in order to perceive the robot orientation.

The visual results may be better, but aren’t still accurate enough to use
due to a lack of measurements in time (each frame takes around 0.3s in order
to be taken and processed as the sensor data is more than 3 times faster). In
experiment one, we can see that the usage of vision data improves greatly the
accuracy of the Kalman Filter data. Calculating the acceleration during the
Kalman Filter process improves slightly the output results.

Remember that the model used in Kalman Filter plays a role in guessing
the state variable matrix value. The model used does not predict the movement
of the robot, since we don’t know what the robot will do, but even so, it can
greatly improve the results when a large error occurs, thus proving the power of
this tool.

The same conclusion may be taken from Exp2 with noise. In this case,
since the visual data isn’t as good as in Exp1 with noise, the output from the
Kalman Filter isn’t as good either.

It is also important to notice that ”Visual” and ”Visual Kalman” have the
same rate of data acquisition (about 3 Hz), whilst all the others have the same ac-
quisition rate as ”Inertial” (about 10 Hz). This is relevant because, even though
”Visual” data may have a smaller error, it also has less measurements per second
than ”Both Kalman”, which may affect the response of the humanoid.

6 Conclusions and Future Perspectives

This paper studies the effect of merging visual and inertial data with a Kalman
Filter to measure a robot angular position and velocity. The trials were success-
ful, proving that it is possible to use different sources of measurements in order
to merge and improve them into an overall set of state variables that describe
the behavior of the object of study, as shown in chapter 5. The Kalman Filter
works better when we try to deduce the angular acceleration at every iteration,
however, not doing so does not present itself as a big loss in accuracy.

When the data is highly unreliable (inertial data with error), we can use
subsets of external data (visual data) that isn’t fully reliable by itself, but may
help in filtering the noise in the initial data.

In conclusion, this approach was validated by the results and the next step
is to try to implement this method in a real-life situation with real-time calcula-
tions. There is a problem that must be solved in order to accomplish this, which
is the synchronization of the inertial and visual data when being processed by
the Kalman Filter. In this work, all the image related calculations were made
and then fed into the filter. In real-time experiments, the time that the image
needs in order to be processed may be a challenge when trying to implement the
filter. Some modifications to the system may be of need.

References

1. Vı́tor Santos, Rui Moreira, and Filipe Silva. Mechatronic design of a new humanoid
robot with hybrid parallel actuation. International Journal of Advanced Robotic
Systems, 9, 2012.

2. A. I. Comport, E. Malis, and P. Rives. Accurate quadrifocal tracking for robust
3D visual odometry. In Proceedings - IEEE International Conference on Robotics
and Automation, 2007.

3. Stephan Weiss, Markus W. Achtelik, Simon Lynen, Margarita Chli, and Roland
Siegwart. Real-time onboard visual-inertial state estimation and self-calibration of
MAVs in unknown environments. In Proceedings - IEEE International Conference
on Robotics and Automation, 2012.

4. Konstantine Tsotsos, Alberto Pretto, and Stefano Soatto. Visual-inertial ego-
motion estimation for humanoid platforms. In IEEE-RAS International Conference
on Humanoid Robots, 2012.

5. Morgan Quigley, Ken Conley, Brian Gerkey, Josh FAust, Tully Foote, Jeremy Leibs,
Eric Berger, Rob Wheeler, and Andrew Mg. ROS: an open-source Robot Operating
System. Icra, 3(Figure 1), 2009.

6. Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-Up
Robust Features (SURF). Computer Vision and Image Understanding, 110(3),
2008.

7. Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer Vision with the
OpenCV Library, volume 1. 2008.

8. David G. Lowe. Distinctive image features from scale-invariant keypoints. Inter-
national Journal of Computer Vision, 60(2), 2004.

9. Marius Muja and David G Lowe. Fast Approximate Nearest Neighbors with Au-
tomatic Algorithm Configuration. International Conference on Computer Vision
Theory and Applications (VISAPP ’09), 2009.

10. Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vi-
sion. 2004.

11. Philip H. S. Torr and Andrew Zisserman. MLESAC: A New Robust Estimator
with Application to Estimating Image Geometry. Computer Vision and Image
Understanding, 78(1), 2000.

