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Abstract

To increase acceptance for humanoids in everyday situations, it is essential that motions of humanoid robots become
more human-like. A proper approach to achieve this requirement is introduced by adopting marker-based human mo-
tion capture. In order to efficiently re-use or analyze captured movements on various robots, an intermediate model,
named Master Motor Map (MMM), is proposed which decouples representation of motion from its execution on a real
robot. Moreover, we present a constrained nonlinear optimization to adapt pre-captured motions to our robot Armar-III
preserving necessary motion characteristics and preventing the robot from approaching specific limitations.

1 Introduction

Since humanoid robots increasingly become part of our ev-
eryday lives, they will serve as caretakers for the elderly
and handicapped people as well as assistants in various sit-
uations. For this purpose, it is essential that motions on
such a robot appear more human-like and less artificial.
However, for this to happen, programming and control of
motions and skills on such a robot must become simpler
and more intuitive.
Adaption of pre-recorded motions from human obser-
vation for controlling a robot constitutes a promising
approach. Regarding this challenge, motions must be
mapped to a given robot while preserving important
human-like characteristics and, on the contrary, they must
satisfy task-specific requirements. To achieve this goal, we
focused on an approach applying constrained large-scale
nonlinear optimization.
There exist numerous human motion capture systems
that produce output in terms of different models that are
stored in different formats making it more difficult to ex-
change modules in an overall infrastructure for humanoid
robots. To overcome this problem, the Master Motor Map
(MMM), firstly introduced in [1], represents an appropri-
ate framework to decouple motion capture data from fur-
ther post-processing tasks. The essential part of the MMM
framework is a unified model that supports mapping be-
tween different kinematics, independently and uniformly.
Since the effort is very high to create a model for each
subject individually, a unified model that can be scaled in
terms of body weight and height is also useful. To use
this model, for example, in terms of determining forward
and inverse dynamics, dynamic segment properties such

as mass distribution are required. Furthermore, common
benchmarks as well as evaluation methods in humanoid
robotics become only feasible when a common represen-
tation for human motion is shared.
To demonstrate the applicability of our approach, we trans-
fer various pre-captured motions to our humanoid robot
ARMAR-III being developed for applications in human-
centered environments [2]. The robot as shown in figure
1 is equipped with manipulative, perceptive, and commu-
nicative skills necessary for real-time interaction with the
environment and humans.

Figure 1: The humanoid robot ARMAR-III.

In section 2, we list related work from both, biomechanics
and robotics, to give an overview of biomechanic modeling
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of humans as well as transferring and editing pre-captured
motions. The extension of the MMM model is explained
in section 3. The actual method to map pre-captured mo-
tions to the proposed anthropometric model is presented in
section 4. Experimental results are shown in section 5.

2 Related Research

Generation of human-like motions has become a meaning-
ful technique for biomechanics and robotics. Although the
emphasis in both communities differs, an increasing num-
ber of methods that rely on motion capture data is used by
both. From a biomechanic perspective, human motion cap-
ture data are utilized for example to extract fundamental
principles of motion [3] or to improve meaningful param-
eters of biomechanic models [4]. On the contrary, the key
research areas in robotics are motion re-targeting, execu-
tion on a real robot and generalization.
Several approaches [5, 6, 7, 8] have been proposed in previ-
ous research to compute feasible joint angle trajectories in
order to control upper body motions for a humanoid robot
in free-space applying non-linear optimization. Further-
more, in [9], a novel approach is proposed to map from
three-dimensional marker position data recorded by opti-
cal motion capture systems to joint angle trajectories for
a skeleton with fixed limb lengths. According to the opti-
mization approach, another objective function that consid-
ers end-effector positions directly to determine joint angle
trajectories is introduced in [10].
Most of the mentioned approaches directly adapt motion to
the kinematic structure of the used humanoid robot without
considering intermediate models at all. Thus, further ap-
plication of the motion is restricted to the robot used in the
first place. For facilitating human motion data, researchers
have focused on storing motions in proper repositories. On
that account, sufficient intermediate models are required
that are complex enough to meet most requirements from
research and simple enough to be practicable.
Over the last decades, a lot of attempts have been made
to develop sufficient dynamic models for simulating and
analyzing complex motions of the human. Various biome-
chanic models are thoroughly reviewed in [11]. The mor-
phology of an anthropomorphic mathematical-geometrical
model of the segmented human body defines the number of
mechanical degrees of freedom (DoF) as well as the shapes
and inertial properties of the individual segment required to
calculate forward and inverse dynamics. In numerous pub-
lications [12, 13, 14, 15, 16, 17, 18] body segment proper-
ties are reported differing in gender and ethnic group of the
subjects as well as in measurement methods that were ap-
plied to obtain the properties. Many of the predictive equa-
tions generated from data are based on regression methods
or are equations based on geometric considerations. Linear
regressions such as scaling equations, based on total body
mass and segment length, are commonly used because of
their expediency.

3 Model

The essential part of the MMM framework is based on a
three-dimensional whole-body, kinematic model enriched
with proper body segment properties (BSP), such as mass
distribution, segment length, moment of inertia, etc., in
order to compute gross body dynamics. The strategy with
respect to the kinematic model is to define the maximum
number of DoF that might be used by any visualization,
recognition or reproduction module used on a humanoid
robot. The kinematic model of the MMM framework in-
cluding DoF and the Euler angle conventions is shown in
table 1.

Joint DoF Euler Angles

Root 6 RX′Z′Y ′(α, β, γ)
Pelvis 3 RX′Z′Y ′(α, β, γ)
Torso 3 RX′Z′Y ′(α, β, γ)
Neck 3 RX′Z′Y ′(α, β, γ)
Skullbase 3 RX′Z′Y ′(α, β, γ)
Hip R/L 3 + 3 RX′Z′Y ′(α, β, γ)
Knee R/L 1 + 1 RX′Z′Y ′(α, 0, 0)
Ankle R/L 3 + 3 RX′Z′Y ′(α, β, γ)
Toe R/L 1 + 1 RX′Z′Y ′(0, β, 0)
Sternoclavicular R/L 3 + 3 RX′Z′Y ′(α, β, γ)
Shoulder R/L 3 + 3 RX′Z′Y ′(α, β, γ)
Elbow R/L 2 + 2 RX′Z′Y ′(α, β, 0)
Wrist R/L 2 + 2 RX′Z′Y ′(α, 0, γ)

Total 54

Table 1: Number of DoF and Euler angle conventions for
the joints of the MMM model.

The process of defining anthropomorphic properties of the
individual segments is guided by choices and scalings in
anthropometric tables and linear regression equations. For
this purpose, the linear equations from [16] are applied to
the model as they represent the most complete and prac-
tical series of predictive equations for college-aged Cau-
casian adults providing all frontal, sagittal, and horizon-
tal moments of inertia. The body segment properties are
adjusted with respect to the kinematics of the MMM and
listed in table 2. Users are cautioned not to apply the pro-
posed model outside the population from which they were
derived. However, little options are available when the re-
search subject under study is not represented in the litera-
ture.

Since the effort is very high to create an anthropomorphic
model for each subject individually, the proposed unified
MMM model is used instead which can be scaled with re-
spect to total body weight and length that are convenient
and easy to use in practice. In the following, it is shown
how these properties are used correctly to determine vari-
ous dynamic properties of a segment e.g. the thigh. The
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moment of inertia tensor is computed by

IThigh = 0.14·M ·(0.288·L)2·
⎛⎝ 0.25 0 0

0 0.114 0
0 0 0.25

⎞⎠2

where M is the total body weight and L is the total body
height of the considered subject. The position of the cen-
ter of mass in the local coordinate system of a segment is
likewise determined by

rThigh =

⎛⎝ 0
−0.33

0

⎞⎠ · 0.288 · L.

An anthropomorphic, voluminous model is useful in terms
of motion synthesis, adaption, and analysis. To determine
a sufficient voluminous model from the applied anthropo-
metric data set, simple geometric primitives are employed
that only have a few parameters to adjust. As an appro-
priate primitive, which also fits the human shape well, we
decided to utilize cylinders. The radius ri of the cylinder
corresponding to segment i is determined by

ri =

√
Mi

ρi · Li ·Π ,

where ρi is the density, Mi the mass, and Li the length of
the regarded segment.

4 Motion Generation

Our approach of adapting movements consists of two ma-
jor constrained large-scale nonlinear optimizations cover-
ing different requirements as illustrated in figure 2. The
first optimization transfers a pre-captured motion to the ar-
ticulated MMM model which can be stored in a motion
repository for further processing (section 4.1). To finally
execute movements on the humanoid robot ARMAR-III,
a transformation from MMM to ARMAR-III requires an-
other constrained non-linear optimization (section 4.2) dif-
fering in terms of additional task-specific requirements.

4.1 Conversion to MMM

In our approach, we use motions represented by three-
dimensional marker trajectories that can be captured with a
sophisticated marker-based motion capture system such as
Vicon. One difficult problem, specifically related to trans-
ferring marker-based motion data to an articulated model,
is the non-trivial mapping of the three-dimensional marker
positions to a motion defined by joint angles. For this pur-
pose, constrained large-scale nonlinear optimization is ap-
plied frame by frame. As optimization method to mini-
mize the objective function, sequential quadratic program-
ming (SQP) [19] is used. SQP is one of the most popular

and robust algorithms which has been proved highly ef-
fective for solving constrained optimization problems with
smooth nonlinear functions.

Figure 2: Overview of the proposed system.

4.1.1 Definition of an Objective Function and Con-

straints

The objective function should maintain desirable prop-
erties of the motion and should refuse undesirable arti-
facts which might appear unnatural. For this reason, a
proper objective function contains components that pre-
serve oscillations and the overall configuration as well
as components that prevent the model from approaching
specific limitations. In our approach, the objective func-
tion is therefore based on minimization of the sum of the
squared distance between pre-captured and virtual markers
expressed as:

F (Θt) =
1

2
Δy(t,Θt)

TWΔy(t,Θt) (1)

subject to

l ≤
⎛⎝ Θt

f (Θt)
ALΘt

⎞⎠ ≤ u,

where Δy(t,Θt) is denoted by

Δy(t,Θt) = ỹ(Θt)− y(t).
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Segment Segment

Length/ Total

Body Height

Segment

Weight/ Total

Body Weight

Center of Mass/

Segment Length

[x y z]

Radius of Gyration/

Segment Length

[rxx, ryy, rzz]

Hip 0.26 0.11 [0 4 0] [38 36.5 34]
Spine 0.10 0.10 [4 46 0] [32 26 28.6]
Chest 0.18 0.17 [0 46 0] [35 28.5 31.3]
Neck 0.05 0.024 [0 20 0] [31.6 22 31.6]
Head 0.13 0.07 [12 13 0] [31 26 30]
Shoulder R/L 0.10 0.021 [0 0 -66] [26 26 12]
Upper Arm R/L 0.16 0.027 [0 -57.3 0] [26.8 15.7 28.4]
Lower Arm R/L 0.13 0.016 [0 -53.3 0] [31 14 32]
Hand R/L 0.11 0.006 [0 -36 0] [23.5 18 29]
Thigh R/L 0.25 0.14 [0 -33 0] [25 11.4 25]
Shank R/L 0.23 0.04 [0 -44 0] [25.4 10.5 26.4]
Foot R/L 0.15 0.013 [39 -6 0] [12 19.5 21]

Table 2: Adjusted body segment properties for the MMM model. Segment masses are relative to body masses; segment
lengths are relative to body heights. Both segment center of mass and radii of gyration are relative to the respective
segment lengths.

Here, Θt = {Θ1(t), . . . ,ΘN (t)} are joint angles of the
considered model; ỹ are virtual markers that particularly
correspond to pre-captured markers y; W is a pre-defined
weighting matrix that can be used to indicate the impor-
tance of certain markers; f(�) is a smooth non-linear con-
straint and AL a sparse matrix representing linear con-
straints. Upper and lower limits of the considered con-
straints are stored in u and l. Here, constraints are mainly
associated with anatomic limitations of human extremities.
Virtual markers are defined as fixed and pre-labeled
points onto the surface of the voluminous anthropomorphic
model which have to be set up in advance. Mathematically
speaking, a virtual marker ỹj is defined by

ỹj(Θt) = [

N∏
i=0

Ai(Θt)]ŷj = hj(R(t), o(t),Θt),

where Ai is a homogeneous transformation matrix deter-
mined by using Euler angles of the proposed MMM model,
ŷj is the local position of the considered virtual marker j,
o is the position and rotation matrix R the orientation of
the root. Furthermore, each virtual marker is defined by
its bone position of the considered segment and a direction
vector denoting a line which intersection point with the as-
sociated cylinder indicates the local virtual marker position
ŷj . The used virtual marker set is illustrated in figure 3.
To avoid large differences in the model configuration at
adjacent time steps, resulting in considerable jerks leading
to shaky and unnatural-looking motions, caused by locally
optimal solutions, markers of adjacent time steps are con-
sidered by adding a preview term to the objective function.
For this, a function Ftk is defined by

Ftk(Θt) =
1

2
Δy(tk,Θt)

TWΔy(tk,Θt).

The objective function as denoted in equation 1 is then re-

defined using function Ftk by

F (Θt) =

T∑
i=0

αiFt+i(Θt).

Thus, succeeding markers have influence on the computa-
tion of the actual configuration which is decreasing with
the distance to the actual frame explicitly modeled by αi.
The objective function without considering adjacent time
steps is denoted accordingly as F (Θt) = Ft(Θt).

Figure 3: Applied marker set for capturing whole-body
motions of a human.
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Since the actor’s and the model’s body shape are different
due to simplification of design, a compensatory component
must be added to the objective function. Furthermore, the
term also accounts for misplaced markers and can be visu-
alized as an elastic band between pre-captured and corre-
sponding virtual markers whose springiness is decreasing
over time. According to this, the mentioned aspect is inte-
grated in the objective function, defined in equation 1, as
follows

F (Θt) =
1

2
(Δy(t,Θt)− d(t))TW(Δy(t,Θt)− d(t))

in which the function d(t) is computed recursively by

d(t+ 1) = d(t) + γt ‖Δy(t,Θt)‖

at the beginning of time step t+ 1. The parameter γ mod-
els the stiffness and must be set up in advance. An initial
value is given by

d(0) = 0.

As to preserve certain configurations of the pre-captured
motion, additional constraints such as position, velocity,
and acceleration of pre-defined reference points at particu-
lar time steps are used. A reference points is a point onto
the surface of the considered model which has an accen-
tuated importance. Following additional constraints cover
the mentioned issue:

q(t)− εpos ≤ p(t) ≤ q(t) + εpos

q̇(t)− εvel ≤ ṗ(t) ≤ q̇(t) + εvel

q̈(t)− εacc ≤ p̈(t) ≤ q̈(t) + εacc.

Function q is the desired and p the current trajectory of cer-
tain reference points. Therefore, function q can be deter-
mined by using either the pre-captured marker set or par-
ticular trajectory planning methods.

4.1.2 Determining an Initial Pose

In order to make raw marker data available for optimiza-
tion, one has to determine the position, orientation, and
scaling of the pre-captured marker set to transform mark-
ers into model space. In this research, local displacement
and scaling of segments are permitted to preserve the nat-
ural appearance of the mapped motion. Thus, only one
homogeneous transformation matrix for all markers must
be determined initially by using the first frame of the pre-
captured motion.
The mentioned problem can be solved sufficiently by ap-
plying the basic objective function as defined in equation
1. Here, the aforementioned pre-captured markers y are
separately expressed as

yj(t) = Tȳj(t),

where ȳj represents raw marker data of marker j and T the
sought homogeneous matrix as mentioned before.

Assuming that no initial pose with the actor was agreed
or addition knowledge about certain markers are available,
a solution is quite difficult to find methodically. For this
reason, a genetic algorithm is utilized in our approach.

4.1.3 Filtering the Transferred Motion

Since the proposed method considers each frame almost
independently, slightly different alterations to each frame
are determined according to local minima of the objec-
tive function. As a result, noise, contributed heavily to the
high-frequency components is added to the motion. How-
ever, details of a motion that account for the natural look
are also included in high-frequency components as repre-
sented in [20]. In order to suppress noise, pragmatic so-
lutions, such as low-pass filtering, outweigh most other
choices with respect to the design of an objective func-
tion. According to that, the Butterworth low-pass filter is
applied in our approach which is introduced in [21].

4.2 Conversion to ARMAR kinematic model

Due to the differences in the kinematic structures of the
MMM model and our humanoid platform ARMAR-III
e.g. differing joints and limb measurements, in general,
a one-to-one mapping does not lead to a goal-directed and
human-like reproduction of a human movement. There-
fore, in two stages, the joint angles, given in the MMM for-
mat, are optimized concerning the tool center point (TCP)
position and the kinematic structure of the robot. First, a
feasible solution is estimated, which serves as an initial so-
lution for an optimization step in the second stage. Follow-
ing this scheme, one obtains a human-like motion on the
robot, while preserving its goal-directed characteristics.

4.2.1 Similarity Measure

One of the most crucial factors in the reproduction of hu-
man motion is the measure for rating the similarity be-
tween the imitated and the demonstrated movement. To
achieve a trade-off between goal-directedness and human-
likeness, both, the joint angle configuration Θt ∈ R

n with
n joints and key point correspondences, are combined in a
similarity measure which is defined as follows:

S(Θt) = 2−

n∑
i=1

(
Θ̂i(t)−Θi(t)

)2

nπ2
−

3∑
i=1

(p̂k(t)− pk(t))
2

3 (2 · larm)
2

(2)
with Θi(t), Θ̂i(t) ∈ [0, π] and pk(t), p̂k(t) ∈
[−larm, larm], whereas larm describes the robots arm
length. The reference joint angle configuration is denoted
by Θ̂t ∈ R

n, while p̂t ∈ R
3 stands for the desired TCP

position. The current TCP position pt can be determined
by applying the forward kinematics of the robot to the joint
angle configuration Θt.
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4.2.2 Estimation of an Initial Solution

To obtain a posture, which bears a high resemblance to
the one of the human and at the same time meets all the
mechanical constraints of the robot, the original joint an-
gle configuration is optimized using Levenberg- Marquardt
(LM) regarding the similarity measure as specified in equa-
tion 2. To avoid being trapped in local extrema, an initial
estimation Θinit is generated from the reference joint an-
gle configuration Θ̂t by first projecting on the bound con-
straints:

Θ̂i(t) =

⎧⎪⎨⎪⎩
Cimin

if Θ̂i(t) ≤ Cimin

Θ̂i(t) if Cimin
≤ Θ̂i(t) ≤ Cimax

Cimax if Θ̂i(t) ≥ Cimax

where Cimin
and Cimax

denote the lower and upper joint
angle bounds of joint i. If the value of Θ̂i(t) exceeds the
given bounds, the joint i is fixed at the closest of the two
boundaries. In addition to constraining, each non-fixed
joint angle of Θinit is altered by means of a vector δt ∈ R

n

with δi(t) = Θ̂i(t) − Θ̂i(t − 1). Thus, δt describes the
changes between two consecutive frames. As a result, a
candidate initial estimation Θj can be described as:

Θj
i = Θ̂i(t) + αiβi

with

αi =

{
1 if Cimin

≤ Θ̂i(t) ≤ Cimax

0 else

βi ∈ {−δi(t), 0, δi(t)}
Given n joints to control, in the worst case M = 3n candi-
dates need to be calculated and evaluated. The best initial
estimation satisfies the following equation:

Θinit = argmax
j=1,...,M

S(Θj)− ‖Θ̂t −Θj‖

Finding the best initial estimation causes some overhead
regarding processing time, but it is necessary to ensure that
the following optimization procedure will provide an opti-
mal solution.

4.2.3 Optimization Problem

Using the LM algorithm, the reference joint angle config-
uration Θ̂t concerning the similarity measure is optimized.
The corresponding optimization problem can be written in
the following form:

minS′(Θt) = 2− S(Θt)

subject to Cimin
≤ Θ̂i(t) ≤ Cimax

which is equivalent to the maximization of equation 2.
More practical details on the algorithm can be found in
[10].

5 Experiments

In this section, experimental results of the proposed sys-
tem with a marker-based human motion capture system are
shown. The hardware setup which was used to capture the
human motion consists of eight Vicon cameras. Since us-
ing a marker-based approach allows to capture a large set
of degrees of freedom, the number of active joint angle
adds up to 24 DoF (ten for each arm, three DoF for the
head and one DoF for the hip rotation). The first experi-
ment focused on the reproduction of reaching movements
on ARMAR-III in a human-centered environment by con-
straining the position of the TCP to a specific location. In
the second experiment, an object lifting movement is ana-
lyzed in terms of dynamics by using the MMM model to
obtain a executable motion on the ARMAR robot.

5.1 Experiment 1: Adapting the TCP Posi-

tion to Satisfy Reaching Requirements

In this experiment, a pre-captured reaching motion is op-
timized in terms of different TCP positions. The motion
is reproduced on ARMAR-III in simulation. The origi-
nal target position of the TCP in the global coordinate sys-
tem is located at (−542,−91, 23) whereas the units are
represented in mm. For different TCP target positions
T1 = (−300, 300, 100), T2 = (−400, 300, 100), and
T3 = (−400, 300, 100) motions are generated based on
the original one. In T4, the TCP position is kept unchanged
for comparison. Changing the desired TCP position leads
to an adaption of the joint angles in order to reach a po-
sition close to the target. The averaged joint angle errors
over all joints for T1, T2, and T3 are illustrated in figure
4 in radians.
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Figure 4: Joint error of the adapted motions T1 to T4.

The error rises for desired positions, which are farther
away from the original TCP position. Nevertheless, due to
the optimization procedure, the joint angle modifications
could be minimized, whereas the resulting TCP position
could not be aligned exactly with the desired target, but to
a close position. The corresponding TCP errors for T1,
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T2, and T3 are depicted in figure 5. This behaviour states
a tradeoff between exact reaching via inverse kinematics
and regarding the joint angle error a lossless one-to-one
mapping between both embodiments.
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Figure 5: Error between the original TCP position in
MMM and the TCP position scaled and transformed to the
ARMAR hip coordinate system.

5.2 Experiment 2: Analyzing and Con-

straining an Object Lifting Motion

In this experiment, an object lifting motion is transferred
to the proposed MMM model. The pre-captured motion
has an original length of about 2 seconds and the object
has a weight of 0.5 kg. In figure 6, torque trajectories for
each DoF of the left arm are illustrated which have been
obtained by applying Newton-Euler.
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Figure 6: Joint torque trajectories of the pre-captured ob-
ject lifting motion.

As seen in this figure, the shoulder torque reaches a peak
of about -90 Nm which is too large for execution on the
humanoid robot ARMAR-III. In order to properly reduce
the shoulder torque while preserving the human-like ap-
pearance, the motion must be slowed down properly. Ap-
plying constrained optimization, we attained a motion with

reduced shoulder torque that is 5.25 times slower than the
original motion. In figure 7, the joint torque trajectories
are presented.
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Figure 7: Joint torque trajectories of the object lifting mo-
tion that is slowed down by a factor of 5.25.

The absolute maximum torque is set up to 30 Nm accord-
ing to the mechanical limitations of the shoulder joint.
The determined motion can be transferred to the robot as
demonstrated in the first experiment.

6 Conclusion

In this work, we have investigated the problem of trans-
ferring a pre-captured human motion to the humanoid
robot ARMAR-III by applying an intermediate whole-
body model and a constrained large scale non-linear op-
timization. In order to determine gross dynamic aspects
of human motion, the mentioned reference model have
been enriched with body segment properties taken from
previous studies in biomechanics. Moreover, experiments
have been provided to demonstrate how pre-captured mo-
tions must be adapted satisfying pre-defined requirements.
Therefore, we have focused on reproducing positional
changes on the surface of the robot rather than changes in
joint angle space, so that human-like characteristics of the
pre-captured motion are maintained.
In the near future, we will focus on analyzing numerous
pre-captured human motion data with the proposed system
in order to develop more sophisticated motion pattern gen-
erators for various applications in robotics.
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