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Resumo O Projeto Humanóide da Universidade de Aveiro (PHUA) é a base desta
dissertação que tem como objetivo estudar a estabilização da cabeça de
um robô humanóide para efeitos de equilíbrio. Foram assim desenvolvidas
soluções integradas usando o Robot Operating System (ROS). Para estabi-
lizar a cabeça humanóide, foi estimado o vetor da gravidade (verticalidade)
usando dados visuais. Para o fazer, duas soluções distintas foram abordadas,
ambas baseadas na biblioteca Visual Servoing Platform (ViSP). Depois de
estimada a verticalidade, a cabeça humanóide (uma câmara montada numa
unidade roll-tilt) foi estabilizada recorrendo a um controlador proporcional-
derivativo (PD) de posição para o servomotor responsável pelo ângulo roll e
a um controlo PD de velocidade para o servomotor responsável pelo ângulo
tilt. Para fazer as experiências, o sistema foi montado num manipulador
robótico para permitir repetibilidade e controlo preciso de movimentos. A
análise dos resultados das experiências mostra que quer a estimação da
verticalidade quer a estabilização da cabeça humanóide foram tarefas re-
alizadas com sucesso. Esta análise permite também concluir que a taxa
de aquisição de imagem influencia os resultados, e que a limitada taxa do
sistema usado (cerca de 15 imagens por segundo) condicionou um pouco a
robustez dos resultados em situações mais exigentes.





Keywords Verticality Estimation; Head Stabilization; Humanoid Robotics; Feedback
Control; Visual Tracking.

Abstract The Humanoid Project of the University of Aveiro (PHUA) is the basis of
this dissertation, whose purpose is to study the effects of the stabilization
of a humanoid head in obtaining its equilibrium. Therefore, integrated
solutions using the Robot Operating System (ROS) were developed. To
stabilize the humanoid head, the gravity vector (verticality) was estimated
using visual data. In order to do so, two distinct solutions were approached,
both based on the Visual Servoing Platform (ViSP) library. After estimating
verticality, the humanoid head (a camera mounted on a roll-tilt unit) was
stabilized using a proportional-derivative (PD) controller for the position of
the servo responsible for the roll angle and a PD controller for the velocity of
the servomotor responsible for the tilt angle. To perform the experiments,
the system was mounted on a robotic manipulator to allow repeatability and
precise movement control. An analysis to the experiment results shows that
both the verticality estimation and head stabilization tasks were performed
successfully. This analysis also allows for the conclusion that the image
frame rate influences results, and that the limited frame rate of the system
used (about 15 frames per second) slightly conditioned the robustness of
results in more demanding scenarios.
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Chapter 1

Introduction

“The development of the automobile replaced the horse as a mobility tool, and the
development of humanoid robots offers the promise to replace humans as the bearer of
hard and dull tasks.” - Shuuji Kajita, Hirohisa Hirukawa, Kensuke Harada, Kazuhito
Yokoi. [1]

1.1 Background/Motivation
In a world where robotics is developing at an extraordinary rate, be it on a more

industrial or domestic environment, there are more and more reasons to explore and solve
the problems that are caused by this development. Solving these problems can bring
great benefits to the world’s economy if, for example, these problems are about industrial
robotics. However, if we focus on robots to be used in a domestic environment, their
main purpose would be to improve our day-to-day activities and to do it while interacting
with humans safely.

Humanoid robots (see Fig. 1.1) can be considered part of this domestic application,
and have been a point of interest for many decades. Although new applications for
this kind of robots are being found, interest in this topic began with the writing of
sci-fi stories, where androids and the moral intricacies regarding their existence were
the main plot. The first application of humanoid robotics was a military one, at the
DARPA Rescue Challenge in 2013 [2], where multiple teams of engineers built robots
with the purpose of entering highly hazardous environments and performing some kind
of complex task. However, if the cost of building a human-like robot goes down in the
near future, mass commercialization of humanoids does not seem like an impossibility
at all.

At the University of Aveiro, research on humanoid robots is present under the Hu-
manoid Project of the University of Aveiro (PHUA). This project comes from a partner-
ship between the Department of Mechanical Engineering (DEM) and the Department of
Electronics, Telecommunications and Informatics (DETI) and its purpose is to provide
students who join the Automation and Robotics Laboratory (LAR) with a way to learn
and practice in the areas of programming and robotics.

PHUA started in 2004 [4] and since then students have worked to find new and better
solutions, ending up with the structure shown in Fig. 1.2. This structure weighs about
6 kg, has a height of 667 mm and has 27 Degrees of Freedom (DoF), which allow it to

1



2 1.Introduction

Figure 1.1: Humanoid robots. Taken from [3].

perform a range of human-like motions. It also features a total of eight pressure sensors
under its feet (four for each), two cameras on its head and an Inertial Measurement
Unit (IMU), consisting of accelerometers, gyroscopes and magnetometers [5]. A haptic
interface was also developed, allowing the robot to be controlled using force feedback
[6]. Lately, students have tried to integrate visual and inertial data in order to assist
humanoid balance [7], and visual servoing using fixed targets [8].

Figure 1.2: Last iteration of the PHUA project. Taken from [9].

1.2 Problem description
The main problem with humanoid robots is associated with the ability to maintain

balance during both standing and walking. Since they have legs to emulate human

Jorge Manuel das Neves Martins de Sousa Master’s Dissertation



1.Introduction 3

motion, there is a lack of a fixed reference point in relation to their environment (as
opposed to other types of robots). Therefore it is difficult to determine the angular
position and velocity of humanoid robot’s joints at any given moment in time.

This problem has been approached in two ways by the PHUA project until now.
The way which has received the most attention to date consists of finding the Center of
Pressure (CoP) by using load cells under the robot’s feet, thus allowing to know where
the robot is falling towards (e.g., if more force is felt at the “toes” then the robot should
be falling to the front) [10].

This approach, however, has not been fully successful and therefore attention has
switched to another way of solving the problem, where the objective is to first stabilize
the head of the humanoid, so that afterwards it is easier to balance the whole robot. In
2016, this topic was approached by another author [7] but more work needed to be done
in order to understand if it is a viable way to approach the problem, or if there is yet
another way to achieve the humanoid’s balance.

1.3 Objectives
In order to achieve head stabilization, one must find the direction of the gravity

vector (verticality). To do so, an existing Pan-Tilt Unit (PTU) with a camera and 2
IMU’s installed [8] will be used to obtain visual and inertial data, as was done before
[7]. However, less focus will be given to inertial data since there was a great interest in
further exploring the benefits of visual servoing.

Regarding the visual data, it will be analyzed in a different way from what was done
before, since the other approach based on visual features proved to be of a limited use.

In summary, the objectives proposed for this dissertation are the following:

• Estimate the direction of the gravity vector using both visual and inertial data.

• Develop computational tools which will act on the camera support (PTU), based
on the previously estimated verticality, allowing it to remain stable.

• Explore and demonstrate the benefits of head stabilization when trying to achieve
a humanoid robot’s balance.

1.4 Related work
In this section, a short summary of the theses that support this work will be made

and there will also be a brief explanation of how their results will be used.

1.4.1 Visual Servoing of a Humanoid Head, by C. Sousa
The first thesis that this work will be based on was written by César Sousa in 2016

[8] and its main subject is the visual control of a humanoid head. This thesis’ main
objectives are twofold: to develop image analysis techniques for detection and following
of a static visual cue and to then try to control the camera so that even if exterior
disturbances were provoked, it would still fixate on the target.

A PTU with a mounted camera was developed and built during the writing of that
thesis and it will also be the one used for the current work. This PTU was meant to allow
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the camera to track the target and its joints were controlled so that when an external
disturbance was provoked (via a robotic manipulator) the camera would always point in
the direction of the target.

It was also in this thesis that the first interaction with Visual Servoing Platform
(ViSP) [11] was made, a modular C++ library which allows fast development of visual
servoing applications. Since it was first released to public in 2005, this library has evolved
immensely and its integration with the Robot Operating System (ROS) environment is
now easier than ever. Therefore, this library will also be explored when trying to estimate
verticality whilst using visual data.

1.4.2 Visual and Inertial Data Integration to Assist Humanoid Bal-
ance, by J.Peixoto

The second thesis that this work will be based on was also written in 2016 by João
Peixoto [7] and its main subject is the integration of visual and inertial data to assist
with humanoid balance. That thesis’ main objective was to combine the visual data
coming from the camera mounted in the previously mentioned PTU with the inertial
data coming from two different IMU’s, which were also installed on the PTU. The merged
data would then allow for an estimation of the humanoid head’s orientation, making it
possible to stabilize and achieve the humanoid’s balance in an easier way.

During that thesis’ writing, the author arrived at the conclusion that the method he
used to estimate verticality using local visual features couldn’t provide great accuracy,
although being well implemented. As such, an alternative to estimating verticality using
visual data must be found during this work. Multiple experiments were also made
with the IMU’s installed on the PTU, allowing for the estimation of the gravity vector,
although these measurements only provide accurate results when taken without external
disturbances.

Additionally, a ROS node to communicate with the robotic manipulators at LAR
was also developed, which will prove useful when conducting experiments to evaluate
this work’s solutions.

1.5 Balance in humans and humanoid robots

1.5.1 Human balance system

In order to understand the basics of balance and how to reach equilibrium on hu-
manoid robots, it is paramount to understand how humans can balance themselves.

The sense of balance is a result of three major groups of sensory information being
sent to the brain. These are sight, the vestibular system, and proprioception (body
awareness). Of these, the vestibular system is the one of most importance and, therefore,
will be explained in greater detail. The vestibular system is a region of the inner ear
where three semicircular canals filled with a fluid called endolymph are located (see Fig.
1.3). These canals are all perpendicular to each other and, at the base of each canal,
there is an enlarged portion called ampulla, which contains hair cells (the crista) that are
affected by movement. These hair cells are bent (sending a nervous impulse) when our
body starts or stops moving, and when it accelerates or decelerates, or when it changes
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direction. These canals function just as a modern day accelerometer does, helping us to
maintain equilibrium while moving. [12]

Also in the inner ear, there exist two membranous sacs called utricle and saccule
(see Fig. 1.3). Within them exist the same kind of hair cells embedded in a gelatinous
membrane with tiny crystals of calcium carbonate called otoliths. These otoliths are
pulled by gravity and bend the hair cells, allowing them to send nervous signals to the
cerebellum and giving us information about the orientation of our heads while standing
still. Another analogy can be made here with gyroscopes, which give us the orientation
of the gravity vector. [12]

In short, the otolith organs provide us information about the position of the body at
rest, while the semicircular canals give us informations about the body in motion. [12]

Figure 1.3: Physiology of equilibrium. (A) Utricle and saccule. (B) Semicircular canals.
Taken from [12].

When it comes to sight influencing balance, it can be said that it is only an acces-
sory to the vestibular system. However, since this work focuses mainly on estimating
verticality (and therefore reaching equilibrium) through visual data, the vision system
will also be explored.

In the eye, there are sensory receptors called rods and cones (see Fig. 1.4) which are
located in the retina. Rods detect only the presence of light, whereas cones detect colors.
Rods are also proportionally more abundant toward the periphery of the retina. This
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is why our best vision in dim light or at night, where colors can’t be seen, is periphery
vision. When light strikes the rods and cones, they send impulses through the optic nerve
to the brain that provide visual cues which identify how a person is oriented relative to
the environment. [12][13]

Figure 1.4: Microscopic structure of the retina. Taken from [12].

After information is gathered from the vestibular and sight systems (and also the
proprioceptive system which is not going to be explained), it is sent to the cerebellum,
which is responsible for the maintenance of posture and equilibrium through an invol-
untary process. The cerebellum then sends nervous signals to muscles all over the body
which maintain balance and also to muscles controlling the eyes, in what is known as
the Vestibulo-Ocular Reflex (VOR). This reflex helps stabilize gaze during active head
movements (e.g., running) and passive head movements (e.g., sitting on an accelerating
car). [13]

As an extra note, it is useful to know that disorientation occurs when the vestibular
organs, the eyes and the muscles and joints send conflicting information to the cere-
bellum. One example of this is when a person is sitting on a car which is accelerating
and deccelerating and reading a book at the same time. Since the eyes do not see any
difference between consecutive images but the vestibular system senses the movement of
the car, the cerebellum doesn’t know what signals to send to the body, since it doesn’t
know if it is standing still or moving. [13]
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1.5.2 Achieving balance in humanoid robots

Now that the basics of how humans perceive balance have been explained, this section
will try to describe previous works on the topic of balancing humanoid robots.

The large majority of humanoid robots us the concept of Zero Moment Point (ZMP)
as the base of their balance mechanisms. ZMP was first defined by Vukobratović and
it is the point where the resultant of the forces inflicted on the robot’s foot passes the
surface of the foot (see Fig. 1.5) [14]. It is therefore a criterion to judge if the contact
between the sole of the foot and the ground can be kept. The contact is kept if the ZMP
is an internal point on the sole. [1]

Figure 1.5: Zero Moment Point. Taken from [14].

If the robot is not moving, then the ZMP coincides with the projection of the Center
of Mass (CoM) of the robot onto the ground. Most humanoid robots use the concept of
ZMP to plan motion patterns that can make the robot walk while keeping the contact
between the sole of the supporting foot and the ground [1].

However, as was said before, this dissertation will focus on an approach different from
what has been done before, making it difficult to find similar applications implemented,
be it in the University of Aveiro, or all around the world. After extensive research,
only one paper [15] was found that also explored the benefits of head stabilization when
trying to achieve a humanoid robot’s balance. It states that stabilizing a humanoid
head during locomotion brings benefits when estimating the gravitational vertical. In
this paper, verticality was estimated using a damped inclinometer and an IMU and
results were obtained through the use of simulations. As such, it is possible to conclude
that there is room for further study in a real world application which could use other
methods (e.g. using visual data) to estimate verticality.
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Chapter 2

Experimental Infrastructure

In this chapter, the experimental infrastructure used throughout the dissertation will
be explained in detail, including hardware and software specifications.

At the beginning of this dissertation, all of the hardware was connected to each other
just as it was in [7] (Fig. 2.1). For a more detailed explanation of how the different
components were integrated with each other please refer to chapter 2 (Experimental
Tools and Setup) of that work. Some changes had to be made in order to fulfill this
work’s objectives and they are described in section 3.1.

The next two sections describe each of the components of the final solution.

Figure 2.1: Detailed view of the initial experimental infrastructure.
1 - FANUC manipulator; 2 - POLOLU-minIMU 9DOF v2; 3 - RAZOR 9DOF - SEN
10736; 4 - Arduino UNO R3; 5 - Firefly MV-03MTC - Pointgrey. Taken from [7].
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10 2.Experimental Infrastructure

2.1 Hardware

2.1.1 PointGrey Flea3 2.8 MP Color GigE Vision (Sony ICX687)

The camera which was already mounted on the PTU was a FFMV-03M2C-CS model
made by PointGrey. However, this camera is becoming obsolete, since the FireWire 1394a
communication protocol is not supported by modern day laptops anymore. As such, it
was decided a new camera had to be installed. The camera chosen was the Flea 3 GigE
(short name), one that was already available in LAR, therefore reducing monetary and
time costs. This camera is also made by PointGrey and is the model FL3-GE-28S4C-C
(Fig. 2.2). The main specifications of this camera are shown in table 2.1.

Figure 2.2: The PointGrey Flea3 GigE camera. Taken from [16].

Table 2.1: PointGrey FL3-GE-28S4-C specifications. Taken from [16].

Specifications Values
Max. Resolution 1928 x 1448
Frame rate 15 FPS
Chroma Color
Sensor name Sony ICX687
Sensor type CCD
Readout method Global shutter
Sensor format 1/1.8"
Pixel size 3.69 µm
Interface GigE
Power requirement 12-24 V
Power consumption (maximum) 2.5 W
Dimensions 29x29x30 (mm)
Mass 38 grams (without optics)
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2.1.2 HSR-5498SG Digital Robot Servo

The servomotors already present in the PTU were two Hitec HSR-5498SG Digital
Robot Servo (Fig. 2.3). Their specifications were thought to be sufficient for this work’s
needs, so they were not replaced. Their specifications can be found in table 2.2.

Figure 2.3: An HSR-5498SG Digital Robot Servomotor. Taken from [17].

Table 2.2: HSR-5498SG Digital Robot Servo specifications. Taken from [17] and [18].

Specifications Values
Control system Pulse width control (1500 µs neutral)
Operating voltage range 6.0 to 7.4 V
Operating temperature range -20° to 60°C
Test Voltage 6.0 V 7.0 V
Operating speed (No load) 0.22s/60° 0.19s/60°
Stall torque 11.0 kgf-cm 13.5 kgf-cm
Standing torque 10.6 kgf-cm/5° holdout 14.4 kgf-cm/5° holdout
Idle current 8 mA 10 mA
Running current (No load) 200 mA 240 mA
Stall current 1200 mA 1480 mA
Operating angle 0° to 180° (600 µs / 2400 µs respectively)
Motor type Cored Metal Brush / Nd magnet
Dimensions 40 x 20 x 37 mm
Weight 59.8 g
Gear material 1 metal-karbonite & 3 steel

2.1.3 Arduino UNO R3

To process the sensor readings coming from the IMU’s, an Arduino UNO R3 board
(Fig. 2.4) was used. Arduino is an open-source electronics platform, based on easy-to-
use hardware and software. There are many different Arduino boards, but all of them
are able to read inputs, make some decision based on those inputs, and then generate
output signals accordingly [19]. These boards are based on a microcontroller that can be
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12 2.Experimental Infrastructure

programmed with the Arduino programming language [20] using the Arduino Software
[21].

Figure 2.4: An Arduino UNO R3 board. Taken from [22].

The Arduino UNO R3 board comes with an ATmega328P microcontroller and it has
the following features [22]:

• 14 digital input/output pins (of which 6 can be used as PWM outputs);

• 6 analog inputs;

• 16 MHz quartz crystal;

• USB connection;

• Power jack;

• ICSP header;

• Reset button.

2.1.4 Inertial Measurement Units

With the IMU’s present in the PTU, it is possible to estimate its spatial orientation
just by analyzing the inertial data that these sensors output. PHUA has a total of nine
IMU’s distributed along its body. However, only two of these were used in this work,
since using any more would not be necessary.

A short introduction to each IMU present in the PTU is shown in the following pages.
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RAZOR 9DOF - SEN 10736

The 9DOF Razor IMU (Fig. 2.5) incorporates three sensors - an ITG-3200 MEMS
triple-axis gyro, an ADXL345 triple-axis accelerometer, and a HMC5883L triple-axis
magnetometer - providing a total of nine degrees of inertial measurement. All of the
sensors’ outputs are processed by an on-board ATmega328 microcontroller and then
output via RS232 serial communication [23].

Technical specifications:

• 3DOF gyroscope - ITG3200 [24]:
Measures up to ± 2000°/s;
16 bit resolution;
operating frequency of 30 kHz.

• 3DOF accelerometer - ADXL345 [25]:
Measures up to ± 16g;
13 bit resolution;
Operating frequency of 3.2 kHz.

• 3DOF magnetometer - HMC5883L [26]:
operating until ± 8 gauss;
12 bit resolution;
operating frequency of 400 kHz.

• ATmega328 incorporated micro-controller;

• RS232 communication;

• Dimensions: 28 x 41 mm;

• 3.5-16 VDC input.

Figure 2.5: A RAZOR
9DOF - SEN 10736 IMU.
Taken from [23].
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Pololu MinIMU-9 v2

The Pololu MinIMU-9 v2 (Fig. 2.6) is an even more compact IMU which contains an
L3GD20 3-axis gyroscope and a LSM303DLHC 3-axis accelerometer and magnetometer.
The outputs of these sensors can be obtained via an I2C interface and there are a total
of 8 of these modules distributed along PHUA’s body, in order to obtain the orientation
of each main body part separately [27].

Technical specifications:

• 3DOF gyroscope - L3GD20 [28]:
operating until ± 2000/s;
16 bit resolution;
operating frequency of 0.76 kHz.

• 3DOF accelerometer -LSM303DLHC [29]:
operating until ± 16g;
12 bit resolution;
operating frequency of 400 kHz.

• 3DOF magnetometer - LSM303DLHC [29]:
operating until ± 8 gauss;
12 bit resolution;
operating frequency of 400 kHz.

• I2C communication.

• Dimensions: 20.32 x 12.7 mm;

• 2.5-5.5 VDC input.

Figure 2.6: A Pololu
MinIMU-9 v2 IMU.
Taken from [27].

2.1.5 FANUC M-6iB/6S robotic manipulator

In order to perform experiments with high repeatability and great precision, a robotic
manipulator present in LAR was used. The manipulator used is a FANUC M-6iB/6S
(Fig. 2.7) and is part of the M-6iB series, comprised of small robots which are designed
to approximate the reach of an operator. The variant present in LAR (6S) features six
rotational joints (Fig. 2.8), each of them providing a different DoF, up to 6 kg of payload
at wrist, 951 mm of horizontal reach and a ±0.08 mm repeatability interval [30].
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Figure 2.7: A FANUC M-6iB/6S robotic manipulator. Taken from [31].

Figure 2.8: A schematic representing the 6 rotational joints of the FANUC M-6iB/6S.
Taken from [30].

More details about the communication between the computer controlling the exper-
iments and the robotic manipulator are present in section 2.2.6.
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2.2 Software

2.2.1 Development platform and programming languages

All of this dissertation’s work has been developed under the Ubuntu 16.04 LTS Open
Source Operative System, a Linux distribution based on the Debian architecture [32] and
most of the programming was done using the C and C++ programming languages.

2.2.2 ROS - Robot Operating System

The Robot Operating System (ROS) is an open source framework for writing robot
software created in 2007. Through its collection of tools, libraries, conventions and even
built-in applications, it aims to simplify the task of creating complex and robust robot
behavior across a wide variety of robotic platforms [33].

This allows for research groups around the world to participate in collaborative
projects, which are all built on the same environment, making the resulting applica-
tions more robust. Applications created in projects can be packaged and used by other
ROS users, allowing the community to save time costs developing what has already been
done. ROS applications can even be written in different programming languages, such
as C++, Python and Lisp, with experimental libraries being developed in Java and Lua
[34].

It is also a distributed and modular framework, which means that users can use as
much or as little of ROS as they desire [35].

What follows is a quick explanation of some keywords and concepts associated with
this framework, followed by a simple diagram (Fig. 2.9) which will be useful when trying
to understand the rest of this work [34]:

• Packages
Packages are the main units for organizing software in ROS. It is the smallest thing
you can build and release and in it there can be ROS runtime processes (nodes),
ROS-dependent libraries, datasets, configuration files, launch files, message files,
or anything else that is usefully organized together.

• Metapackages
Metapackages are a specialized type of Package which only serve to represent a
group of related other packages.

• Nodes
Nodes in ROS are the equivalent of processes in normal operating systems. As
was stated before, ROS is designed to be as modular as possible; Considering the
example of a typical robot control system, it is made of many nodes. One node
may control a laser range-finder, while another controls the wheel motors, another
performs localization, another performs path planning, and so on. A ROS node is
written with the use of a ROS client library, such as roscpp (for C++) or rospy
(for Python).
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• Messages
Nodes communicate with each other by publishing messages to topics. A message
is a simple data structure, which is comprised of fields with certain data types.
msg files are simple text files for specifying the data structure of a message sent
in ROS.

• Topics
In ROS, messages are routed via a transport system which uses publishing/sub-
scribing semantics. Nodes publish messages into a given topic. The topic is
simply a name that is used to identify the content of the message. A node which
is interested in a certain kind of data may subscribe to the appropriate topic.
There may be multiple concurrent publishers and subscribers for a single topic,
and a single node may publish and/or subscribe to multiple topics.

• Bags
Bags are a format for saving and playing back ROS message data. Bags are an
important mechanism for storing data, such as sensor data, that can be difficult
to collect but is necessary for developing and testing algorithms.

Figure 2.9: Two nodes subscribe the /example topic which contains a message of the
type std_msgs/String and was published by a third node. Taken from [36].

2.2.3 OpenCV

Open Source Computer Vision Library (OpenCV) is an open source computer vision
and machine learning software library, first released to the public in 2000. It is written
on the C++ language but can work with C++, C, Python, Java and MATLAB and sup-
ports Windows, Linux, Android and Mac OS. It contains functions and algorithms that
can help in many applications, like for example detecting and recognizing faces, identi-
fying objects, tracking camera movements and moving objects, extracting 3D models of
objects, and much more [37].

OpenCV has a modular structure, which means that it includes several shared or
static libraries. The following modules are available: core, imgproc, video, calib3d,
features2d, objdetect, highui, gpu and some other helper modules [38].

The modules used in this work were the following:

Jorge Manuel das Neves Martins de Sousa Master’s Dissertation



18 2.Experimental Infrastructure

core module

A compact module defining basic data structures, including the dense multi-dimensional
array Mat and basic functions used by all other modules.

imgproc module

An image processing module that includes linear and non-linear image filtering, ge-
ometrical image transformations (resize, affine and perspective warping, generic table-
based remapping), color space conversion, histograms, and so on.

calib3d module

Basic multiple-view geometry algorithms, single and stereo camera calibration, object
pose estimation, stereo correspondence algorithms, and elements of 3D reconstruction.

highui module

An easy-to-use interface for video capturing, image and video codecs, as well as
simple UI capabilities.

2.2.4 ViSP - Visual Servoing Platform

The Visual Servoing Platform (ViSP) is a modular cross platform C++ library,
which allows the prototyping and developing of applications using visual tracking and
servoing techniques, and was developed by the Inria Lagadic team. With this library, it
is possible to compute control laws that can be applied to robotic systems. It provides a
set of visual features that can be tracked using real time image processing or computer
vision algorithms [39].

It is divided into several modules as can be seen in figure 2.10. The modules which
were most used in this work were the me (moving edges) and vision modules, which are
described below [40].
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Figure 2.10: The ViSP software architecture. Taken from [40].

me module

This module provides real-time tracking of points normal to the object’s contours.
It allows for the tracking of lines and ellipses in pre-recorded video, or even a live feed
coming from a video camera [41]. The first attempt at estimating verticality through
visual data was made using this module at its base.

vision module

This module is able to compute a pose estimation (transformation matrix) or an
homography from points using a robust scheme. For this work the feature that was
used was the pose estimation feature [42]. By giving at least four points from an image
plane and their corresponding 3D coordinates, ViSP is able to estimate the relative pose
between the camera and the object frame. This pose is returned as an homogeneous
transformation matrix [43]. An application using this module was the second method
used to estimate verticality through visual data.

2.2.5 Arduino IDE and language

The Arduino IDE (Fig. 2.11) was the software used to write and upload code to the
Arduino UNO R3 board. The Arduino language is merely a set of C/C++ functions
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that can be called from the code. It basically acts as a simplified language adequate
to all levels of programmers. In every Arduino program there are two functions. The
setup() function is called when a program starts. It is used to initialize variables, pin
modes, start using libraries, etc. It will only run once, after powering up the board or
pressing the reset button. There is also a loop() function which continuously runs the
code inside it in each loop cycle.

Figure 2.11: A screenshot of the Arduino IDE window.

Like other languages, the Arduino language can be extended by a number of libraries.
The library that was primarily exploited in this work was the Servo library [44]. With it,
it is simple to set a servomotor’s shaft position and speed through the PWM outputs on
the Arduino board. However, it is not possible to read a servomotor’s current position
through the use of this library, as was thought to be possible at the beginning of this
work.

2.2.6 robCOMM - A Robot-Computer Interface

In order to control the FANUC M-6iB/6S manipulator remotely from a computer via
the TCP/IP protocol, the robCOMM server present in the manipulator’s controller was
used. This server allows the user to send and receive information between both devices.
This communication is made using a language developed in LAR, called robCOMM [45],
which for example allows the user to move the robotic manipulator to a given set of
joint/cartesian coordinates, read the current values of each joint, etc.

For a full list and explanation of the instructions available in this language, please
refer to [45] and [46]. The instructions used in this dissertation were the RUNTPP and
GETCRJPOS functions, which are described below.
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RUNTPP function

This function allows a remote device to command the manipulator to run a previ-
ously created program which is present in the controller’s memory.

Syntax: RUNTPP<CR>tpProgramName<CR>

where <CR> stands for the carriage return character and tpProgramName is the name
of the program the user wishes to execute.

This function returns either “0<CR>” if unsuccessful or “1<CR>” if successful.

GETCRJPOS function

This function returns the current joint configuration of the robotic manipulator to
the remote device.

Syntax: GETCRJPOS

This function returns <CR>...<CR> where “...” are the joint values followed by either
“0<CR>” if unsuccessful or “1<CR>” if successful.

2.2.7 Glade and GTK+ toolkit

Glade is a Rapid-Application Development (RAD) tool to enable quick & easy devel-
opment of user interfaces for the GTK+ toolkit and the GNOME desktop environment.
These interfaces are saved as an Extensible Markup Language (XML) file, and are dy-
namically loaded by applications using the GtkBuilder GTK+ object. By doing so, Glade
XML files are programming-language independent and the interfaces they contain are
generated at runtime [47].

In the semester previous to the one this work took place in, there was an assignment
for the “Projecto em Automação e Robótica” class whose purpose was the familiarization
with the hardware used in this dissertation. The assignment was to create a simple
graphical interface (Fig. 2.12) which would allow a user to control the position of the
servomotors in the already existing PTU and visualize the image obtained with the
camera placed on that said PTU.

Figure 2.12: A screenshot of the created user interface.

As such, Glade and the GTK+ toolkit were the tools used to create this interface,
along with the Arduino code which controlled the servomotors and code in the C language
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which was used to mainly handle the interface’s callbacks and to send the user’s desired
motor position to the Arduino board.
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Chapter 3

Proposed solution

This chapter describes the work that was specifically developed to fulfill this disser-
tation’s objectives, which include hardware modifications made to the existing PTU and
the tools and methods used to estimate verticality and then stabilize the PTU (humanoid
head).

3.1 Hardware modifications to the PTU
The existing PTU was built with the purpose to track a given target when the relative

position between the PTU and the target changes [8]. However, this objectives of this
work are different. After being able to estimate verticality using either visual or inertial
data, the goal is to stabilize the unit where the camera is mounted on, so that the
obtained image is aligned with the gravity vector (the ground would have to be parallel
to the x-axis of the image). As such, modifications to the existing PTU had to be made
to turn it into a Roll-Tilt Unit (RTU), since the degree of freedom associated with the
pan angle is irrelevant when trying to balance a humanoid robot.

By making the roll and tilt angles variable, it would then be possible to send com-
mands to the servomotors present in the RTU so that the camera (and the image it
records) would be aligned with the gravity vector.

Therefore, a structure made of aluminum was designed in order to change the degrees
of freedom of the unit where the servomotors were mounted. This part had to fix itself
on the previously designed parts and it was made to be as light and as short as possible,
so that the torque the servomotors had to apply would be minimum. The camera’s
optical axis was also made to intersect both of the servomotor’s axis (see Fig. 3.1), so
that when the motors apply a rotation, the camera would stay in the same place. The
technical drawings associated with this alteration are present in Appendix A (PTU to
RTU transformation section).
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Figure 3.1: Visual representation of the axes in the RTU. “Axis1” corresponds to the
roll servo axis and the camera’s optical axis and “Axis2” corresponds to the tilt servo
axis.

It is important to note that from this point on in the dissertation, the unit where the
camera is mounted will now be called a RTU instead of a PTU. Besides this transfor-
mation from a PTU to RTU, some of the mechanical parts had to be replaced, because
some screw threads were deteriorated from excessive use. To rebuild these parts, the
drawings on Appendix A of [8] were used.

3.2 ROS packages
The developed software was organized in different ROS packages, so that if another

work needs to only use a specific part of the solution, it is possible to do it. Note that
many ROS packages used in this dissertation are needed for the remaining packages to
work and are therefore considered dependencies.

What follows is a list of the packages, and a brief explanation of the nodes developed
specifically by the author of this work:

head_stabilization package

This package contains the motor_control node which subscribes a ROS topic with
the measured error in position and performs calculations based on a Proportional-
Derivative (PD) control to command the RTU’s servomotors to a certain angular posi-
tion, with a given angular speed. It also reads the motors’ current position and publishes
it to a ROS topic.

The package also contains the pose_estimation node, which subscribes to ROS
topics containing coordinates of a chessboard square’s corners, if there is a chessboard
present in the camera image. It then calculates the geometrical transformation between
the camera in the RTU and a chessboard present in the camera’s image, allowing the
user to know the chessboard’s roll and tilt angles relative to the camera.

image_converter package

This package contains the image_converter node which subscribes to an image
message and performs an undistortion of the image, based on the parameters found
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when previously calibrating the camera. It also detects the presence of a chessboard
in the image and calculates the chessboard square’s corner positions. It then publishes
some of these point coordinates into different ROS topics, which can then be used by
other nodes to, for example, initialize tracking operations.

movingedges package

This package contains the movingedges node which also subscribes to ROS topics
containing the coordinates of a chessboard which is present on the camera image. It
then performs the tracking of a line made by the connection of these points, allowing
the user to know the chessboard’s roll angle. It then publishes this angle into another
ROS topic.

3.3 Analyzing an image to estimate verticality
After some time was spent studying the problem at hand it was possible to conclude

that there are mainly two ways to estimate verticality through an image.
The first way implies doing image analysis when nothing is known about the objects

in the scene. However, this comes with a problem: if there are no special features to
analyze in the image (e.g. the robot is staring at a blank wall), then there is no way
to actually perform an estimation of verticality. In the previous example, the robot
may even be falling to its side, but since there is nothing worth analyzing on the image
captured by the camera, one would have to resort to inertial data in order to prevent
the robot’s fall.

The second way implies having a known object present in the image and also to
know the object orientation in relation to the environment. This was the way explored
in this dissertation and in order to do so a chessboard previously used to perform camera
calibrations was the object used (Fig. 3.2).

Figure 3.2: The chessboard used as a known object. Taken from [48].

If, for example, the chessboard is aligned with the ground in the real world, then it is
easy to also know the camera orientation in relation to the ground. To do it, one would
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just have to obtain the chessboard orientation in relation to the camera by analyzing
the image, and the camera orientation to the ground would be that same value.

In order to obtain the chessboard orientation, two methods were used (section 3.5).
This is because the first method would only be able to obtain the roll orientation while
the second method made it possible to obtain both the roll and tilt orientation of the
chessboard, and therefore the camera roll and tilt orientation too.

3.4 Image acquisition and preprocessing
In order to obtain images from the camera in a format which is transferable in the

ROS framework, a node built in a previous work [49] was used. This node is called
Point_Grey and its source file is pointgrey_fl3-ge-28s4-c_driver.cpp located in
the pointgrey_fl3_ge_28s4_c ROS package.

This node also configures the camera’s parameters, therefore allowing the user to
choose the desired image format. The parameters used in the work where this node was
created also fit the needs of this dissertation, so they were kept the same. As such, the
video mode used was mode 1 with a 964x728 resolution which allows for a maximum of
14 frames per second (FPS) [50](page 77).

After retrieving the next image frame into an OpenCV image, this node converts it
to a ROS image message using the cv_bridge ROS package (Fig. 3.3). The resulting
image message is published on a topic named /RawImage, which can then be used by
other nodes to acess the image and analyze it.

Figure 3.3: cv_bridge application example. Taken from [51].

Since both of the methods used to estimate verticality need some information of
where the chessboard is in the image in order to be initialized, the image processing
needed to obtain the chessboard corners is performed on the image_converter node,
described next.

image_converter node

The source file of this node is image_converter.cpp and it is located in the
image_converter ROS package. Its main function is to provide other nodes with the
coordinates of the internal chessboard corners present in an image so they can begin
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tracking (or other functions). In order to do so, it subscribes to the previously men-
tioned /RawImage topic, which contains the image captured by the camera in the ROS
image message format. Then it converts that image message back into an actual OpenCV
image, using the cv_bridge ROS package once again. Firstly, the image was undistorted
based on the intrinsic parameters and distortion coefficients of the camera. To obtain
these values, the camera was calibrated using the camera_calibration ROS package
(Fig. 3.4). In order to perform this calibration, the tutorial found in [52] was used. The
results of the calibration are shown in Table 3.1;

Figure 3.4: A screenshot of the camera calibration process. Taken from [49]
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Table 3.1: Intrinsic parameters and distortion coefficients obtained from camera calibra-
tion.

Parameters Values (in pixels)
fx 503.406178
fy 504.095921
cx 488.641027
cy 362.208972
Distortion coefficients Values
k1 -0.301046
k2 0.069974
p1 0.000667
p2 -0.000580
k3 0.000000

where fx and fy are the focal length in pixels;
cx and cy are the optical centers in pixels;
k1, k2 and k3 are radial distortion coefficients;
and p1 and p2 are tangential distortion coefficients.

After removing the distortion with the undistort() OpenCV function, the image
was converted from the RGB to the grayscale space so that the findChessboardCorners()
OpenCV function could be used.

Syntax: bool findChessboardCorners(InputArray image, Size patternSize, Out-
putArray corners, int flags)

Parameters: • image is an 8-bit grayscale or color image.;
• patternSize is the number of points per row and column of the
chessboard in the CvSize format;
• corners is the output array where the corner coordinates are
stored;
• flags is an integer which determines if certain optional operations
are performed.

This function outputs a non-zero value if all the corners are found, and zero otherwise.
After using the findChessboardCorners() function, a simple representation of the

most important points are displayed on the screen (Fig. 3.5).
The points are then published into separate topics, each topic containing the x and

y coordinates of a corner. These topics contain a ROS message of the type Num, which
was created specifically for this work. Its definition is made in the Num.msg file, located
in the msg folder of the image_converter package. Messages of this type can contain
two numbers of the built-in float64 type, which are equivalent to a double in the C++
language.

The process described above is repeated for every new frame that arrives from the
/RawImage topic.
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Figure 3.5: The chessboard points used to initialise both tracking methods.

3.5 ViSP tracking methods

3.5.1 Line Tracking method

The first method of verticality estimation consists of using the line tracking capabili-
ties of the ViSP library. ViSP contains a tracker for moving edges which can track either
lines or ellipses. To initiate line tracking, it is necessary to provide two points belonging
to the line to be tracked. ViSP allows for these points to be provided manually with the
user’s interaction (selecting the two points with the mouse in a screenshot of the camera
feed) or automatically by providing the coordinates in the image of these two points.
The points used were points one and two present in Figure 3.5. These two points form
a line in the chessboard (which is made of the sides of the chessboard squares) and the
tracking itself is done on the movingedges node, described next.

movingedges node

The source file of this node is movingedges.cpp and it is located in the movingedges
ROS package. Its main function is to track a line present in an image and publish that
line orientation to be used by other nodes.
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The tracking is made by first subscribing to the /RawImage topic and then initializing
the moving edges parameters with the lines of code shown in code snippet 3.1.

Code snippet 3.1: Moving edges parameters initialization

vpMe me;
me. setRange (10);
me. setThreshold (45000) ;
me. setSampleStep (3);
int nbLines = 1;
vpMeLine line[ nbLines ];

where me is the moving edges object of the vpMe class;
setRange is a method of the vpMe class which sets the seek range (in pixels) on both
sides of the tracked line;
setThreshold is a method of the vpMe class which determines if the moving edge is
valid or not;
setSampleStep is a method of the vpMe class which sets the minimum distance (in
pixels) between two line points.
nbLines is the number of lines to track;
line is the tracker object of the vpMeLine class;

The values used above were the ones that delivered the best results after testing
a wide range of different values. After initializing the moving edges parameters, the
tracker is initialized with the instructions presented in code snippet 3.2.

Code snippet 3.2: Line tracker initialization

line [0]. setMe (&me);
line [0]. setDisplay ( vpMeSite :: RANGE_RESULT );
do{

cout << "Didn ’t find the chessboard points , retrying .." <<
endl;

usleep (1000000) ;
} while ( (pt1.get_i () ==0 && pt1.get_j () ==0) && (pt2.get_i () ==0 && pt2.

get_j () ==0) );

line [0]. initTracking (I,pt1 ,pt2);

line [0]. display (I, vpColor :: red) ;

In code snippet 3.2, the first two lines associate the tracker object with the moving
edges parameters and allow it to display additional information on the image. After-
wards, the node awaits the reception of the coordinates of the points used to initialize
the tracking, since without them, the tracker object wouldn’t start and the node would
shutdown.

If the point coordinates are received, the tracking is initialized and the tracking
results are displayed on the image with a red color (Fig. 3.6).
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Figure 3.6: Results of the ViSP line tracking method.

The angle that the tracked red line does with the x-axis is equal (in absolute value)
to the roll orientation of our camera. The roll angle is then published to a ROS topic
named /angle which contains a message of the Num type, defined previously in the
image_converter package.

3.5.2 Pose Estimation method

The second method of verticality estimation consists of using the pose estimation
capabilities of the ViSP library. ViSP contains a module that can estimate the pose (i.e.
geometrical transformation) of an object in relation to the camera which is recording the
tracked object. To initiate pose estimation, it is necessary to provide four points that
belong to the plane of the object and their real world coordinates as well. The points
used were points three, four, five and six present in Figure 3.5. The method itself is
applied on the pose_estimation node, described next.

pose_estimation node

The source file of this node is pose_estimation.cpp and it is located in the
head_stabilization ROS package. Its main function is to estimate the pose of the
chessboard present in LAR (since the 3D coordinates stored belong to this chessboard
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in particular) in relation to the camera which is recording it. It then publishes that
chessboard’s roll and tilt angles into a ROS topic.

The pose estimation is made by first subscribing to the /RawImage topic and then
initializing some variables, as shown in code snippet 3.3.

Code snippet 3.3: Variable initialization for pose estimation method

// Parameters of our camera
vpCameraParameters cam (503.406178 , 504.095921 , 488.641027 , 362.208972)

;

// The pose container
vpHomogeneousMatrix cMo;

std :: vector <vpPoint > point;
double W = 0.37;
double H = 0.27;
point. push_back ( vpPoint (-W, -H, 0) );
point. push_back ( vpPoint ( W, -H, 0) );
point. push_back ( vpPoint ( W, H, 0) );
point. push_back ( vpPoint (-W, H, 0) );

To perform a pose estimation, the intrinsic camera parameters are necessary, as well
as inputting four real world coordinates of chessboard corners. The points that are
input here must correspond to the points whose pixel coordinates are supplied by the
image_converter node. Since the chessboard measures about 74 centimeters horizon-
tally from point 3 to point 4 and about 54 centimeters vertically from point 3 to point 6,
and we want the object reference frame to be in the center of the chessboard, the points
were created as shown in code snippet 3.3. Point 3 (from Fig. 3.5) is going to correspond
to point[0], whose coordinates are (-0.37,-0.27). Point 4 corresponds to point[1] and so
on. An important thing to note is that points 3 and 4 have corresponding negative
y-axis values because it is a common conception that the y-axis grows from the top to
the bottom in an image.

The cMo vpHomogeneousMatrix object is the homogeneous matrix where the pose
estimation is going to be stored. After these variable initializations, the computePose()
function is called as shown in code snippet 3.4.

Code snippet 3.4: Call of the computePose() function

computePose (point , dot , cam , first_time , cMo);
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The computePose() function is defined as shown in code snippet 3.5.

Code snippet 3.5: Definition of the computePose() function

void computePose (std :: vector <vpPoint > &point , const std :: vector <
vpImagePoint > &dot , const vpCameraParameters &cam , bool first_time ,

vpHomogeneousMatrix &cMo){
vpPose pose; double x=0, y=0;
for ( unsigned int i=0; i < point.size (); i ++) {

vpPixelMeterConversion :: convertPoint (cam , dot[i], x, y
);

point[i]. set_x(x);
point[i]. set_y(y);
pose. addPoint (point[i]);

}

if ( first_time == true) {
vpHomogeneousMatrix cMo_dem ;
vpHomogeneousMatrix cMo_lag ;
pose. computePose ( vpPose :: DEMENTHON , cMo_dem );
pose. computePose ( vpPose :: LAGRANGE , cMo_lag );
double residual_dem = pose. computeResidual ( cMo_dem );
double residual_lag = pose. computeResidual ( cMo_lag );
if ( residual_dem < residual_lag )

cMo = cMo_dem ;
else

cMo = cMo_lag ;
}
pose. computePose ( vpPose :: VIRTUAL_VS , cMo);

}

In short, this function converts each of the four points from pixel coordinates to
meters by using vpPixelMeterConversion::convertPoint(), updates each points real
world coordinates and adds them to the pose object of the vpPose class. After all
points are added to the pose object, the pose is estimated, and is stored in the cMo
homogeneous matrix. If it is the first time this function is called, a first estimation
of the pose is made by two different approaches: the vpPose::DEMENTHON and the
vpPose::LAGRANGE approaches. The approach which produces the best result, (mea-
sured by vpPose::computeResidual()) will be the one chosen as the first estimation.

After the pose estimation has been made, the results are displayed in the screen (Fig.
3.7) and the roll and tilt angles of the chessboard are extracted from the pose matrix
and published on a ROS topic named /angle which contains a message of the Num type,
defined previously in the image_converter package.
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Figure 3.7: Results of the ViSP pose estimation method.

3.6 Stabilizing the RTU (Humanoid Head)
After obtaining an estimation of the roll and tilt camera angles in relation to the

ground, it is necessary to stabilize the RTU using the mounted servomotors. The initial
approach was to control both of the servomotors and read the inertial sensors through
the same Arduino board. However, when implementing a solution with the Arduino
Servo library, it was discovered that the read() function only returned the value of
the last call to write(). As such, it doesn’t return the actual current position of the
servomotor, which is absolutely necessary for a robust control algorithm. Additionally,
when receiving the inertial readings through serial communication, there seemed to be
some spike in voltage in the PWM pins, which would make the servomotors jitter for an
instant.

With the problems described above, it was decided to use the same infrastructure
that was previously used to control the servomotors. All the details on how to connect
each component to each other are described in section 3.1 of [53], while all the functions
used to control the servomotors (e.g. read position, set position, read servo ID, set
speed...) were developed by the same author in a ROS package named hitec5980sg,
available in LAR toolkit v4 [54]. Two functions that are important for the understanding
of this work will now be described:
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Syntax: short unsigned int hitec_5980SG::SetPosition(int id,int position)

Parameters: • id is the id of the servomotor;
• position is the position value to which the user wants to send the
servo to (600-2400).

The SetPosition() function returns a response from the servo, if the message was well
received, or 0xFFFF if an error ocurred.

Syntax: short unsigned int hitec_5980SG::SetSpeedPosition(int id,int speed)

Parameters: • id is the id of the servomotor;
• speed is the speed value the user wants the servo to go with to
the next position (0-255).

The SetSpeedPosition() function returns a response from the servo, if the message was
well received, or 0xFFFF if an error ocurred. This response also includes the current
position of the servomotor.

Before beginning to describe the node that implements the stabilization process itself,
it is important to introduce some specific characteristics of these servomotors and their
range of motion. The servomotor responsible for altering the roll angle has a full span
of 180°. However, the functions developed in the hitech5980sg package only accept
position values from 600 µs to 2400 µs (pulse width control). The 600 µs position
corresponds to the -90° position and 2400 µs corresponds to +90° position. This means
that a 1° increase signifies an increase of 10 units in the servomotors own unit system.
Furthermore, the servomotor responsible for altering the tilt angle only has about 40° of
range motion, counting from the +90° position, which means that its position values can
range from 2000 µs to 2400 µs. This happens because of the way that the servomotor
is installed in the RTU and reducing the position values any further would imply that
some parts collide with each other, which is not admissible.

It was also intended that both servos could be operated at the same time, for sta-
bilizing movements which were composed of both a roll and a tilt component at the
same time. However, this proved impossible since with the current RTU setup, the roll
servomotor also rotates the tilt servomotor. To better understand this problem, three
representations of the camera in a scene with a global reference frame are shown in
Figure 3.8. When the tilt servo is actuated and the roll servo is on a non-zero position,
the camera’s optical axis leaves the y = 0 plane, which is undesirable. As such, the
stabilization process can only be done to one servo at a time.
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Figure 3.8: An explanation to why a change in both the roll and tilt angles makes the
camera’s optical axis leave the y=0 plane.

To further explain the stabilization process implemented in the motor_control node,
it will be described next.

motor_control node

The source file of this node is motor_control.cpp and it is located in the
head_stabilization ROS package. Its main function is to stabilize the RTU by con-
trolling the servomotors’ position and speed. It then publishes both of the servomotor’s
current positions into a ROS topic. It has a roll and a tilt mode, depending on the angle
which is going to be stabilized.

A first version of this node implemented a control algorithm with just a propor-
tional component. However, this proved to be insufficient as will be concluded in the
experiments in section 4.2.2. Nevertheless, a short explanation of how it worked will be
described in the following paragraph.

First, this node retrieves the roll and tilt angle errors from the /angle ROS topic,
and then a calculation of the roll motor’s position setpoint is done, as shown in equation
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(3.1).

θ1
setpoint = θ1

error × 10 + θ1
current (3.1)

In equation (3.1), θ1 stands for the position of the motor which is responsible for the roll
angle stabilization. In an example where the current motor position is 1600 µs and the
roll error is -10°, the resulting setpoint would be 1500 µs, which would mean that the
servo was on its 10° position and the setpoint is now 0°. After this setpoint was calcu-
lated, if the setpoint was within admissible position values (600 µs to 2400 µs), the servo-
motor was simply sent to the resulting position via the hitec_5980SG::SetPosition()
function.

This first control method worked well for slower motor speeds, but when setting motor
speeds higher, overshoots would occur, resulting in general instability of the image (See
section 4.2.2 for more details).

To solve these problems, a more refined control algorithm had to be implemented.
As the final solution to the RTU stabilization problem, a PD control algorithm was used.
Some small tests were made to see if an integrative component should be used, however
it always resulted in a worse response from the system.

To determine the position setpoint for the servo responsible for the roll angle (using
the roll mode), equation (3.2) was used.

θ1
setpoint = (θ1

Pterm + θ1
Dterm) × 10 + θ1

current (3.2)

In equation (3.2), θ1
Pterm is calculated using equation (3.3) and θ1

Dterm is calculated using
equation (3.4).

θ1
Pterm = Kp × θ1

error (3.3)

θ1
Dterm = Kd × (θ1

error − θ1
prev−error) (3.4)

In equation (3.4), θ1
prev−error is the roll error that happened in the previous iteration

of the control sequence. Kp and Kd are the proportional and derivative coefficients, and
their best values, after extensive testing (section 4.2.3), are Kp = 0.7, Kd = 0.15 when
using the line tracking method and Kp = 0.5, Kd = 0.4 when using the pose estimation
method.

The servo responsible for the roll angle was then sent to this setpoint, if the set-
point was within admissible position values (600 µs to 2400 µs), using the aforemen-
tioned hitec_5980SG::SetPosition() function, with its maximum speed set by the
hitec_5980SG::SetSpeedPosition() function.

For the control of the servo which is responsible for the tilt angle, a PD control
algorithm was also used, but this time the control variable would be the servomotor’s
speed and not its position. This is because when trying to apply equation (3.2) to the
tilt servo, it would not always respond. A probable cause for this is the excessive torque
it had to do in order to lift the camera, since the distance between the camera’s center
of gravity and the servo axis (moment arm) was too big, despite the efforts to minimize
such distance.

The solution to this problem is sending the servo to one of its extreme positions
(2000 µs or 2400 µs), depending on the sign of the tilt error, but with a varying velocity,
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depending on the magnitude of this error. To determine the speed setpoint for the servo
responsible for the tilt angle (using the tilt mode), equation (3.5) was used.

θ̇2
setpoint = (θ̇2

Pterm + θ̇2
Dterm) × 12.75 (3.5)

In equation (3.5), θ̇2
Pterm is calculated using equation (3.6) and θ̇2

Dterm is calculated using
equation (3.7). The 12.75 constant originates from the fact that it was intended that if
the tilt error was equal to 20° the servo speed should be 255. Therefore, if Kp = 1, and
θ̇2

Dterm = 0 then θ̇2
setpoint = 255.

θ̇2
Pterm = Kp × θ2

error (3.6)

θ̇2
Dterm = Kd × (θ2

error − θ2
prev−error) (3.7)

Since this is a totally different kind of control, the Kp and Kd are expected to change.
Their best values, after extensive testing (section 4.2.3), are Kp = 0.12, Kd = 0.1.

After all the control algorithm steps are done, the node sends the current motor
positions to a ROS topic named current_motor_position which contains a message of
the Num type, defined previously in the image_converter package.

In order to change the mode in which this node operates, the user should to go to
its source file and change the mode string variable’s value to either “roll” or “tilt” and
compile the package once again. The corresponding Kp and Kd must also be assigned.
To make this task easier, a commented version of these changes is present on the file.

3.7 Controlling the robotic manipulator
To perform the experiments described in chapter 4, it was necessary to control the

FANUC robotic manipulator. To do so, the fanuc_control ROS package, developed in
[7] was used and slightly altered. This package integrates the robCOMM language (sec.
2.2.6) used to communicate with the manipulator’s controller with the ROS framework.
This makes it possible to publish the current value of the robot’s joints to a ROS topic,
which in turn allows the use of this data as an extremely precise ground truth for
conducting experiments.

The only alteration made to the package was to insert the names of the console
programs which contain the instructions to move the robot in each experiment into the
fanuc.cpp file. When a different experiment is to be conducted, it is necessary to change
the tppname variable’s value accordingly and then compile the package again.

The fanuc_control node publishes the cartesian coordinates of the robot’s end
effector into the fanuc_cart ROS topic and the robot’s joint values into the fanuc_joint
ROS topic.
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Chapter 4

Experiments and results

In this chapter, an explanation of the experiments conducted during this disserta-
tion in order to evaluate the estimation of verticality and the stabilization of the RTU
(humanoid head) will be presented, along with their respective results.

4.1 Using rosbag and roslaunch

In each experiment, data was recorded with a frequency of 100 Hz into a .bag
file using the rosbag package [55] and then converted into a .csv file using a python
executable named bag2csv.py [56].

In order to run these experiments in a more controlled fashion, two .launch files
were created. These use the roslaunch tool [57] to launch the ROS nodes used
in each experiment, as well as a rosbag node, which subscribes to all topics and
records the data into .bag files. These files are named chessboard_rosbag.launch
and chessboard_v2_rosbag.launch and can be found on the launch folder of the
head_stabilization package.

4.2 Experiments with chessboard mounted on the manip-
ulator arm

In this section, the experiments performed with the chessboard mounted on the
manipulator arm will be described. After this description, the experiment results will be
analyzed through the use of descriptive statistics (e.g. averages, standard deviations),
plots and summary tables. Any unreasonable spikes in the servomotor position line of
these plots is due to a malfunction of the servomotors when trying to read their current
position and was not an actual position that the servo passed through.

This process of experiment description and subsequent result analysis will be repeated
for each different experiment.
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4.2.1 Line tracking evaluation

Experiment description

The first experiment was one that could evaluate the robustness of the line tracking
method and that could also verify its viability when tracking objects travelling/rotating
at high speeds. In these experiments, the chessboard had to be mounted on the manip-
ulator and, to do so, more mechanical parts had to be designed and built. The drawings
of these parts are in Appendix A (Chessboard connection to manipulator).

A Teach Pendant (TP) program named JS_ROLL containing movement instructions
for the FANUC robotic manipulator was created (Fig. 4.1) in order to perform experi-
ments where the roll angle would vary. These movements had to be able to demonstrate
the aforementioned capabilities of the tracking method and are described next.

Figure 4.1: The JS_ROLL TP program.

The first line of the program commands the manipulator with the chessboard mounted
on it to align its end-effector axis with the camera’s optical axis, making the chessboard
look like it is facing the camera and in an horizontal position (Fig. 4.2). The next line
then applies a rotation to the sixth joint of the manipulator (See Fig. 2.8), so that a 45°
clockwise rotation is observed. The third line then applies a 90° rotation on the same
joint but in the opposite direction, so that the chessboard passes its initial position and
rotates 45° counterclockwise. Finally, the manipulator is sent to its initial position and
stops its movement.
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Figure 4.2: The initial position of the chessboard.

Figure 4.3: The RTU mounted in a tripod during experiments.
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Whilst the manipulator is moving the chessboard, the RTU will be mounted on a
tripod two meters in front of it (Fig. 4.3). The drawings of the mechanical parts designed
to mount the RTU on the tripod are in Appendix A (RTU connection to tripod). No
stabilization will occur yet, since the purpose of this experiment is to first verify if this is
a viable method to track the chessboard. The range of motion applied to the chessboard
also attempts to simulate the variation in the roll angle that the camera would observe
when a humanoid robot is falling to its side. Several maximum speeds were applied to
the manipulator’s movements to test the limits of the line tracking method.

In total, 30 trials were made, divided equally between three different angular speed
values. These values are expressed relative to the maximum joint velocity achievable by
the manipulator and are the following: 5% (0.63 rad/s), 15% (1.88 rad/s) and 30% (3.77
rad/s).

Result analysis

To better demonstrate the results of this experiment, the plots of example trials run
at each of the different manipulator speeds are shown in figures 4.4, 4.5 and 4.6 and a
summary of these results is present in table 4.1. The error in these trials was considered
to be the difference between the measured angle and the robot’s joint position. The
descriptive statistics that were gathered in these trials are the mean of the absolute value
of the error (E), the maximum error (Emax) and the standard deviation (σ) calculated
using the population formula.

Figure 4.4: A plot of a trial run to evaluate line tracking by varying the roll angle. 5%
manipulator speed used. E = 2.14°, Emax = 5.52° and σ = 1.32°.
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Figure 4.5: A plot of a trial run to evaluate line tracking by varying the roll angle. 15%
manipulator speed used. E = 7.39°, Emax = 14.11° and σ = 4.34°.

Figure 4.6: A plot of a trial run to evaluate line tracking by varying the roll angle. 30%
manipulator speed used. E = 11.78°, Emax = 36.35° and σ = 10.34°.
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Table 4.1: Line tracking evaluation results.

Descriptive statistics Manipulator speed
5% 15% 30%

E 2.14° 7.39° 11.78°
Emax 5.52° 14.11° 36.35°
σ 1.32° 4.34° 10.34°

By analyzing the data from the trials run at 5% manipulator speed, it is possible to
conclude that the line tracking method works great at low angular speeds. When using
greater manipulator speeds, however, the error starts to become larger, as can be seen
in the trials run at 15% manipulator speed.

The fastest speed used in these trials was 30% of the manipulator’s max speed. The
results got even worse, indicating that the line tracking is indeed affected greatly by the
speed of objects being tracked.

Overall, the line tracking method performed well since an angular speed of 3.77 rad/s
(30% manipulator speed) is faster than what is thought to be needed for this work. A
humanoid robot would never fall to its side that quickly unless if being pushed very
hard. As such, it was assumed that a manipulator speed of 15% should be used for the
rest of the experiments.

With a quick glance at each of the different plots we can also see that there is a
“shift to the right” in the joint position line which increases because the delay between
the chessboard moving and the tracking algorithm performing its calculations becomes
more apparent. This delay is caused by the low frame rate of the camera mounted in
the RTU, and is the main reason for the line tracking becoming worse at high angular
speeds.

4.2.2 Proportional control of RTU

Experiment description

After being able to estimate verticality by using the line tracking method, an exper-
iment whose purpose was to evaluate the quality of the control algorithm with just a
proportional component (Sec. 3.6) was designed. It is very similar to the line tracking
evaluation experiment, with the only difference being that the servomotor responsible for
the roll angle in the RTU is now being actuated to “follow” the chessboard’s movements.

To verify if the distance from the RTU to the chessboard had any influence in the
results of the control algorithm, the tests were also repeated with a one meter distance
between them.

In total, 30 trials were made, 15 of them with a two meter distance and the other
15 with a one meter distance. These 15 trials were divided as follows: five trials for a
manipulator speed of 5% (0.63 rad/s) and a servomotor speed of 10/255 (actual physical
value depends on servomotor load and was not calculated/measured); five trials for a
manipulator speed of 15% (1.88 rad/s) and a servomotor speed of 10/255; and five trials
for a manipulator speed of 15% (3.77 rad/s) and a servomotor speed of 32/255.
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Result analysis

To better demonstrate the results of this experiment, the plots of example trials run
at a 2 meter distance between RTU and chessboard are shown in figures 4.7, 4.8 and
4.9. Since the plots from trials run at a 1 meter distance are very similar, these will not
be shown. A summary of these results is present in table 4.2. This time, the error in
these trials was considered to be the difference between the servomotor position and the
robot’s joint position.

Figure 4.7: A plot of a trial run to evaluate proportional control using line tracking by
varying the roll angle. 5% manipulator speed and 10/255 servo speed. 2 meters distance.
E = 3.21°, Emax = 9.90° and σ = 2.49°.
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Figure 4.8: A plot of a trial run to evaluate proportional control using line tracking
by varying the roll angle. 15% manipulator speed and 10/255 servo speed. 2 meters
distance. E = 22.83°, Emax = 54.47° and σ = 17.42°.

Figure 4.9: A plot of a trial run to evaluate proportional control using line tracking
by varying the roll angle. 15% manipulator speed and 32/255 servo speed. 2 meters
distance. E = 10.73°, Emax = 28.96° and σ = 8.09°.
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Table 4.2: Proportional control of RTU results.

Descriptive statistics Manipulator speed–Servo speed
5%–10 15%–10 15%–32

E 3.45° 24.58° 13.83°
1 meter Emax 9.80° 59.42° 36.68°

σ 2.29° 19.50° 9.56°
E 3.21° 22.83° 10.73°

2 meters Emax 9.90° 54.47° 28.96°
σ 2.49° 17.42° 8.09°

From the trials run at 5% manipulator speed and 10/255 servomotor speed, it is
possible to conclude that results were as expected when running at low angular speeds.
When using a manipulator speed of 15%, whilst maintaining the servo speed at 10/255,
the error increased dramatically, as was predicted, because the RTU could not keep up
with the chessboard’s movement because of its low motor speed. A servo speed of 32/255
was then used with the same manipulator speed to try and diminish this error. This
specific value was used because as can be seen in Fig. 4.9, a servo speed this high begins
to introduce instability to the system.

By analyzing table 4.2, it is also possible to conclude that there is not much difference
between the results of experiments made at 1 meter distance and 2 meter distance.
However, since 2 meter results were slightly better, this was the distance used for the
remaining experiments.

After these trials, it was possible to conclude that a better alternative had to be
found when it comes to the control algorithm used, and so work was done in order to
implement a PD control algorithm.

4.2.3 PD control of RTU

Experiment description

After testing the limits of the proportional control algorithm, the PD control al-
gorithm (Sec. 3.6) was also evaluated. For all experiments evaluating PD control, a
servomotor speed of 255 (maximum speed) was used on roll angle experiments and the
distance between RTU and chessboard was always two meters. For experiments where
the roll angle was being tested, the manipulator maximum angular velocity used was
15% (108°/s) and for experiments where the tilt angle was being tested, a velocity of 5%
(20°/s) was used.

Trials were made using both of the tracking methods described. To show the pro-
gressive tuning of the PD control’s parameters when used in conjunction with the line
tracking method, 15 trials were made with a manipulator speed of 15% (108°/s). Five
trials were run with these parameters: Kp = 0.3,Kd = 0; five with Kp = 0.7,Kd = 0.15;
and five with Kp = 0.8,Kd = 0.15. The same TP program (JS_ROLL) was used.

To better visualize the software architecture used during the trials with the line
tracking method to stabilize the RTU, a diagram (Fig. 4.10) containing the relevant
ROS nodes and topics was created using the rqt_graph tool [58].
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Figure 4.10: An overview of the ROS nodes and topics running during experiments on
RTU stabilization using the line tracking method.

To show the progressive tuning of the PD control’s parameters when used in conjunc-
tion with the pose estimation method, 15 trials were run when altering the chessboard’s
roll angle and 15 more when altering the chessboard’s tilt angle. From the roll angle
experiments, five trials were run with Kp = 0.2,Kd = 0; five with Kp = 0.5,Kd = 0.4;
and five with Kp = 0.7,Kd = 0.4.

To perform experiments which test the control on the tilt angle, a second TP program
was created named JS_TILT (Fig. 4.11).

Figure 4.11: The JS_TILT TP program.

The first line of the program sends the manipulator to the same initial position as
in the other experiments. The second line applies a rotation to the manipulator’s fifth
joint, with a value of 20°, making the chessboard tilt upwards. On the third line of the
program, a rotation of 40° is applied to the same joint, but in the opposite direction,
making the chessboard go to its initial position and then tilt 20° downwards. Finally
the manipulator returns to its initial position and stops its movement.

The servomotor speed used on the tilt experiments was variable (Sec. 3.6). Five
trials were run with Kp = 0.01,Kd = 0; five with Kp = 0.1,Kd = 0.1; and five with
Kp = 0.12,Kd = 0.1.

The software architecture used during the trials which used the pose estimation
method to stabilize the RTU can be seen in Fig. 4.12.
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Figure 4.12: An overview of the ROS nodes and topics running during experiments on
RTU stabilization using the pose estimation method.

Result analysis

To better demonstrate the results of this experiment, the plots of example trials run
with the line tracking method are shown in figures 4.13, 4.14 and 4.15 and a summary
of these results is present in table 4.3.

Figure 4.13: A plot of a trial run to evaluate PD control using line tracking by varying
the roll angle. 15% manipulator speed. Kp = 0.3,Kd = 0. E = 13.83°, Emax = 36.68°
and σ = 9.56°.
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Figure 4.14: A plot of a trial run to evaluate PD control using line tracking by varying
the roll angle. 15% manipulator speed. Kp = 0.7,Kd = 0.15. E = 7.79°, Emax = 24.12°
and σ = 6.90°.

Figure 4.15: A plot of a trial run to evaluate PD control using line tracking by varying
the roll angle. 15% manipulator speed. Kp = 0.8,Kd = 0.15. E = 7.68°, Emax = 21.93°
and σ = 6.93°.
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Table 4.3: PD control of RTU results. Trials run with the line tracking method.

Descriptive statistics Controller parameters
Kp = 0.3 Kp = 0.7, Kd = 0.15 Kp = 0.8, Kd = 0.15

E 14.19° 7.79° 7.68°
Emax 38.06° 24.12° 21.93°
σ 12.02° 6.90° 6.93°

The first trials started with only a small proportional coefficient and had a large
error because the control algorithm was not responsive enough. After boosting the pro-
portional component, instability and loss of the tracked chessboard was reached around
the 0.8 to 0.9 values. The proportional component was assigned a final value of Kp = 0.7
and a derivative component was introduced with a value of Kd = 0.15.

Although the error still diminishes slightly when using Kp = 0.8 and Kd = 0.15, as
can be seen on the plot of the example trial using these values (Fig. 4.15), the instability
that this increase in the proportional component causes is too much to be considered.
If these values were used, the chessboard being tracked would be lost more than half of
the times that the experiment was run.

By analyzing table 4.3, it is possible to conclude that when applying a PD control
with the final controller parameters, and still using the line tracking method, results
were better than when using the proportional control algorithm (table 4.2).

After arriving at the final PD control parameters when using the line tracking method
and varying the roll angle, the tilt angle also needed to be somehow tracked. It was at this
point in the work that research was done to find the pose estimation method. Following
the implementation of this method, three more types of trials were conducted for each
angle to be altered. The PD control’s parameters had to be re-tuned to this kind of
tracking method, as it has totally different characteristics.

The plots of example trials run with the pose estimation method while varying the
roll angle are shown in figures 4.16, 4.17 and 4.18 and a summary of these results is
present in table 4.4.

Jorge Manuel das Neves Martins de Sousa Master’s Dissertation



52 4.Experiments and results

Figure 4.16: A plot of a trial run to evaluate PD control using pose estimation by varying
the roll angle. 15% manipulator speed. Kp = 0.2,Kd = 0. E = 19.99°, Emax = 54.63°
and σ = 16.93°.

Figure 4.17: A plot of a trial run to evaluate PD control using pose estimation by varying
the roll angle. 15% manipulator speed. Kp = 0.5,Kd = 0.4. E = 9.93°, Emax = 31.90°
and σ = 9.42°.
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Figure 4.18: A plot of a trial run to evaluate PD control using pose estimation by varying
the roll angle. 15% manipulator speed. Kp = 0.7,Kd = 0.4. E = 16.33°, Emax = 37.18°
and σ = 10.51°.

Table 4.4: PD control of RTU results. Trials run with the pose estimation method while
varying the roll angle.

Descriptive statistics Controller parameters
Kp = 0.2 Kp = 0.5, Kd = 0.4 Kp = 0.7, Kd = 0.4

E 19.99° 9.93° 16.33°
Emax 54.63° 31.90° 37.18°
σ 16.93° 9.42° 10.51°

The first trial run whilst using the pose estimation method to measure a change in
the roll angle was made with Kp = 0.2 and no derivative component, following the same
train of thought as the previous experiments. Once again, the control algorithm is not
responsive enough and as such, the error values are rather large. After extensive testing,
the final values reached for the PD control’s parameters when using the pose estimation
method were Kp = 0.5 and Kd = 0.4. A plot of an example trial with these values can
be seen in Fig. 4.17.

The last trials varying the roll angle are meant to show that when using values greater
than the ones that were established, besides not yielding far better results, when the
RTU was reaching its final position it could become unstable, balancing back and forth
without ever stabilizing. An example of a trial of this type is shown in Fig. 4.18.

By analyzing table 4.4 we can see that the best results are obtained with the final
values of Kp = 0.5 and Kd = 0.4. However, these are worse than the results shown in
table 4.3, which were acquired using the line tracking method. This is thought to be
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because of the update rate of the pose estimation method being visibly lower than the
one of the line tracking method.

The plots of example trials run with the pose estimation method while varying the
tilt angle are shown in figures 4.19, 4.20 and 4.21 and a summary of these results is
present in table 4.5.

Figure 4.19: A plot of a trial run to evaluate PD control using pose estimation by varying
the tilt angle. 5% manipulator speed. Kp = 0.01,Kd = 0. E = 8.62°, Emax = 25.72°
and σ = 7.84°.
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Figure 4.20: A plot of a trial run to evaluate PD control using pose estimation by varying
the tilt angle. 5% manipulator speed. Kp = 0.1,Kd = 0.1. E = 3.51°, Emax = 13.13°
and σ = 3.87°.

Figure 4.21: A plot of a trial run to evaluate PD control using pose estimation by varying
the tilt angle. 5% manipulator speed. Kp = 0.12,Kd = 0.1. E = 9.33°, Emax = 41.60°
and σ = 12.59°.
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Table 4.5: PD control of RTU results. Trials run with the pose estimation method while
varying the tilt angle.

Descriptive statistics Controller parameters
Kp = 0.01 Kp = 0.1, Kd = 0.1 Kp = 0.12, Kd = 0.1

E 8.62° 3.51° 9.33°
Emax 25.72° 13.13° 41.60°
σ 7.84° 3.87° 12.59°

Although the tilt servo uses a different kind of PD control (velocity control)(sec.
3.6), the procedure for its tuning is the same. The first component to introduce was the
proportional component with aKp = 0.01 and to demonstrate that the control algorithm
is not responsive enough the results of an example trial can be seen in Fig. 4.19.

The final values reached for the PD control when varying the tilt angle were Kp = 0.1
and Kd = 0.1. A plot of an example trial with these values can be seen in Fig. 4.20.
This plot also shows the problem that was the origin of having to use a different kind of
control for the servo responsible for the tilt angle. As is seen in the servomotor position
line, it is impossible to do a PD control where the control variable is the servo’s position
if the current position of the servo is retrieved so badly. This mostly happens with the
tilt servomotor for reasons explained in section 3.6.

From Kp = 0.12 and onwards, high instability occurred when the RTU was reach-
ing its final position and once again, the servo would go back and forth, without ever
stabilizing.

By analyzing table 4.5, it is possible to see the progressive tuning of the tilt angle
servo’s speed PD controller’s parameters. The best results are obtained with Kp = 0.1
and Kd = 0.1 and values higher than this resulted in an instability position of the RTU
at the end of experiments.
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4.3 Experiments with RTU mounted on the manipulator
arm

4.3.1 Experiments description

After all of the experiments where the chessboard was mounted on the manipula-
tor arm were done, the RTU was mounted on the manipulator (Fig. 4.22) to see if
the response to the manipulator’s movements was similar. To mount the RTU on the
manipulator, some of the previous mechanical parts designed were used, with the only
extra alteration being two threaded holes on the RTU support.

Figure 4.22: The RTU mounted on the manipulator arm.

In these experiments, the control method used was solely the PD control method but
both tracking methods were tested. To do so, five trials were run with the line tracking
method where Kp = 0.6,Kd = 0.15; five trials with the pose estimation method for the
roll angle where Kp = 0.6,Kd = 0.4; and five trials with the pose estimation method for
the tilt angle where Kp = 0.08,Kd = 0.02.

The distance to the chessboard was still two meters for all trials and servomotor
speed was 255 for experiments where the roll angle was being tested. Additionally, two
TP programs were created, called JS_ROLL2 and JS_TILT2. These are the same as the
TP programs explained above, only with an offset on the fifth axis of the manipulator
in order to start the experiments with the RTU leveled with the ground.

4.3.2 Result analysis

The plots of example trials run with the RTU mounted in the manipulator are shown
in figures 4.23, 4.24 and 4.25 and a summary of these results is present in table 4.6.
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Figure 4.23: A plot of a trial run to evaluate PD control using line tracking by varying
the roll angle. 15% manipulator speed. Kp = 0.6,Kd = 0.15.E = 7.54°, Emax = 22.35°
and σ = 7.81°.

Figure 4.24: A plot of a trial run to evaluate PD control using pose estimation by varying
the roll angle. 15% manipulator speed. Kp = 0.6,Kd = 0.4. E = 13.64°, Emax = 31.05°
and σ = 9.96°.

Jorge Manuel das Neves Martins de Sousa Master’s Dissertation



4.Experiments and results 59

Figure 4.25: A plot of a trial run to evaluate PD control using pose estimation by varying
the tilt angle. 5% manipulator speed. Kp = 0.08,Kd = 0.02. E = 2.01°, Emax = 5.88°
and σ = 1.52°.

Table 4.6: Results of experiments performed with the RTU mounted on the manipulator.

Descriptive statistics Controller parameters
Kp = 0.6, Kd = 0.15

E 7.54°
Line tracking - Roll Emax 22.35°

σ 7.81°
Controller parameters

Kp = 0.6, Kd = 0.4
E 13.64°

Pose estimation - Roll Emax 31.05°
σ 9.96°

Controller parameters
Kp = 0.08, Kd = 0.02

E 2.01°
Pose estimation - Tilt Emax 5.88°

σ 1.52°

A plot of an example trial where the line tracking method was used can be seen in
Fig. 4.23. The PD control’s parameters had to be slightly adjusted to avoid instability
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and the final values were Kp = 0.6 and Kd = 0.15.
Regarding the pose estimation trials, the PD control’s parameters were also changed

when compared to the previous values where the chessboard was mounted on the ma-
nipulator. When varying the roll angle, the values used were Kp = 0.6 and Kd = 0.4
and a plot of an example trial run with those values can be seen in Fig. 4.24.

When running the tilt trials, the values Kp = 0.08 and Kd = 0.02 were used. A plot
of an example trial run with those values can be seen in Fig. 4.25.

Overall, these results proved to be similar to what happened when the chessboard was
mounted on the manipulator and the RTU was mounted on the tripod, and confirm that
no vibrations or disturbances coming from the manipulator interfere with the tracking
or stabilization processes.

By analyzing table 4.6, it is possible to see that although needing a small alteration
in the PD values, the results are very similar to what happened in the experiments where
the chessboard was mounted on the manipulator, with a slight increase in the mean error
in the pose estimation - roll experiment.
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Chapter 5

Conclusions and future work

In this chapter, the main conclusions that have come from the work done in this
dissertation will be presented, along with proposals of future work in the area that can
be integrated into PHUA.

5.1 Conclusions
Regarding the accomplishment of this dissertation’s objectives, it can be said that

only some of them were accomplished. When it comes to estimating the direction of
the gravity vector using both visual and inertial data, the first main objective of this
dissertation, more focus was put into using visual data, as was planned. However, to
test if the inertial sensors were still working properly in case this is to be addressed in a
future work, the Arduino board was connected to the computer and the relevant ROS
nodes developed previously in [5] were compiled. The Arduino code which would read
the sensor’s values was also uploaded to the board and it was possible to visualize the
inertial readings in real-time on the computer screen.

Both the roll and tilt components of the gravity vector were estimated successfully,
by using two methods based on tracking an object present in the image frame.

The first method used (referred to as the line tracking method), tracks a line formed
by the squares of a chessboard who was placed in front of the camera mounted in the
RTU (humanoid head). This method is able to provide the angle of this line, which in
turn allows the estimation of the roll component of the gravity vector, provided that the
orientation of the chessboard in relation to the environment is known.

The second method used (referred to as the pose estimation method), estimates the
pose (position and orientation) of the chessboard mentioned in the previous paragraph
in relation to the RTU, which provides both the roll and tilt components of the gravity
vector, if the pose of the chessboard relative to the environment is known.

The second objective of this dissertation, which was to develop computational tools
which would act on the RTU, based on the previously estimated verticality and allowing
it to remain stable, was also fulfilled. The final solution involved a PD controller whose
control variable was the position of the servo responsible for the roll angle of the RTU
and a PD controller whose control variable was the speed of the servo responsible for the
tilt angle of the RTU. Although stabilization for both the roll and tilt components of the
RTU could not be performed at the same time, it was successfully done separately. This
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is because the existing infrastructure was not suitable for this purpose (more details in
section 3.6 - Fig. 3.8), as it was thought to be in the beginning of this work.

Concerning the third and final objective of the dissertation, which was to explore and
demonstrate the benefits of head stabilization when trying to achieve a humanoid robot’s
balance, it can be said that it was not completely fulfilled. Although the benefits of head
stabilization were explored, they could not be demonstrated since the PHUA platform
was not functional at the time of this work. The humanoid robot was undergoing repairs
by volunteers at LAR, but these were not finished in time to allow the demonstration of
the benefits of head stabilization.

The experiments carried out during the dissertation helped show the progressive
tuning of each of the PD controller’s parameters and allowed for the evaluation of the
line tracking method. Thinking back, if a change was to be made to the experiments,
it would be the addition of a new experiment to evaluate the pose estimation method.
Since this method was implemented after experiments regarding the RTU’s stabilization
had begun, the importance of such an experiment was overlooked. As a final remark
to the experiment’s results, it was also possible to conclude that when stabilization was
done using the line tracking method to estimate the gravity vector’s roll component,
results were slightly better than when using the pose estimation method. This was
thought to be due to the decreased update rate of the pose estimation method when
compared to the line tracking method.

One of the biggest challenges surpassed during this dissertation was to gather and
apply all the knowledge and methods used in previous works, which dated back to the
creation of LAR and the PHUA project itself. Another topic that should be mentioned
is the possible inadequacy of the camera’s frame rate to perform tracking operations.
Although the camera used has a great resolution, a maximum frame rate of 15 frames
per second is too low to perform real-time stabilization of a humanoid robot. The
servomotors used also did not perform fully as expected, as one of them showed problems
when returning its current angular position when requested.

As a final note, it is important to say that the FANUC robotic manipulator used
proved invaluable when providing a ground truth for the experiments that were carried
out.

5.2 Future work
This dissertation allowed the development of the work started in previous theses on

a vision-based balance system. However, there are many more tasks that need to be
done in order to integrate this new balance system into the PHUA project, and some
are listed below:

• Analyze if the pose estimation tool of the ViSP library can be used more effectively
(i.e. increase its update rate);

• Combine the estimation of the gravity vector using visual data with an estimation
using inertial data when it is not plausible to use visual data (e.g. poor lighting,
movements that are too sudden, etc.)

• Further tune the PD controller’s parameters used to stabilize the humanoid head.
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• Obtain a camera which is more suitable for stabilization purposes (i.e. higher
frame rate) and install it in the humanoid head.

• Verify if it is viable to install a mini-computer on the PHUA robot (e.g Rasp-
berry Pi), which would perform all calculations regarding its balance, and other
operations, thus making the robot more autonomous.

• Demonstrate the benefits of head stabilization when trying to achieve a humanoid
robot’s balance.
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Technical Drawings

PTU to RTU transformation
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72 A.Technical Drawings

Chessboard connection to manipulator

Note: The “Chessboard back - part 1” drawing was rescaled to fit onto an A4 page.
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RTU connection to tripod
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