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Lúıs Almeida

Institute of Electronics and Informatics Engineering of Aveiro (IEETA),

University of Aveiro, Portugal
luis93.pa@gmail.com

Vı́tor Santos

Institute of Electronics and Informatics Engineering of Aveiro (IEETA),
Dept. of Mechanical Engineering, University of Aveiro, Portugal

vitor@ua.pt

João Ferreira

Institute of Systems and Robotics (ISR),
Dept. of Electrical Engineering, Superior Institute of Engineering of Coimbra, Portugal

ferreira@isec.pt

Received Day Month Year

Revised Day Month Year
Accepted Day Month Year

Biped humanoid robots that operate in real world environments need to be able to phys-

ically recognize different floors to best adapt their gait. In this work we describe the
preparation of a dataset of contact forces obtained with eight force tactile sensors for de-
termining the underlying surface of a walking robot. The data is acquired for four floors

with different coefficient of friction, and different robot gaits and speeds. To classify

the different floors, the data is used as input for two common computational intelli-
gence techniques (CITs): Artificial neural network (ANN) and extreme learning machine

(ELM). After optimizing the parameters for both CITs, a good mapping between inputs
and targets is achieved with classification accuracies of about 99%.

Keywords: Humanoid Robot locomotion; Instrumented System; Computational Intelli-

gence Techniques; Floor classification.

1. Introduction

Most walking robots, operating in real world scenarios, do not have a control system

with knowledge about the characteristics of the underlying surface. This information

is of critical importance for fine-tune the gait parameters to the floor requirements,

so that the humanoid robot can reach a properly and safely locomotion, with a

precise and robust control.

To this aim, the state-of-the-art literature describes mostly the use of 3D sen-
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sors, inertial measurements units, force/torque or tactile sensors to gather data

for further classification of the floors using, most commonly, mathematical and

learning-based algorithms. Although the majority of the work on floor classification

is presented for wheeled robots, mainly for outdoor environments, either through

data obtained with 3D sensors (e.g. 1−6), inertial measurement units (e.g. 7−14),

or multiple sensors fusion (e.g. 15−18), our interest in the literature is focused on

legged robots, more precisely humanoids.

In this scope, examples of vision-based approaches can be found in 19−21. These

works use a bag-of-words (BoW) model and a speeded up robust features (SURF)

to extract and treat the images features for further classification using support

vector machine (SVM). Even though using vision has the advantage of collecting

information from the floors before the locomotion action, the results can be unreli-

able. For example, two surfaces may look the same, but yet have a different friction

property, which leads to the need of two different humanoid gaits. We believe that

sensing through physical interaction is a unique and necessary approach to improve

humanoid robots mobility skills.

In 22 the authors used body-mounted inertial sensors in a small humanoid robot

to identify ten different kind of common floor surfaces on which the robot is stand-

ing in home environments. To build the dataset, four full body motions are executed

60 times for each type of floor, and using a decision tree classifier, they achieved a

precision of 85.7%. The highest misclassification is found for relatively hard floors,

because these floors are more similar to each other from a point of view of the prop-

erties that affect the body motions, unlike what happens with the soft ones. Other

work have shown the possibility of using this type of sensors, using data related to

three outdoor surfaces.23 They implemented a SVM algorithm and used 25% of the

data to test it, achieving a 93.8% overall accuracy.

In 24 they propose a classification of 5 terrain types, based on the force torque

sensor readings installed on the humanoid robot WALK-MAN ankle. A total of

1250 steps of the humanoid robot over the different floors are extracted and two

methods were used for data reduction: Fast Fourier Transform (FFT) and Discrete

Wavelet Transform (DWT). The learning procedure is performed using SVM over

a feature vector of 120 elements or 270 depending on the approach used to reduce

the steps data size, FFT or DWT, respectively. The results look more promising for

the DWT approach with a precision of about 95% vs. 91%.

In 25 six indoor surface types were distinguished by fusing data from multi-

ple built-in sensors of a Sony ERS-7, such as, force sensors, to collect the ground

contact forces, accelerometer, infrared range and motor force sensors. The devel-

oped random forest model allowed the classification of the different floors with a

cross-validation and accuracy of 96.2% and 94%, respectively, for one gait at a fixed

speed. Similarly, by fusing different sensors, a six-legged robot is able to recognize

12 surfaces with a 95% precision.26

We propose a novel method to classify four floors with different friction coefficient
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based only on the data obtained with eight force tactile sensors that are installed

in an instrumented shoe that we developed on previous work, to be used with the

humanoid robot NAO.27 To interpret and recognize the data, two popular compu-

tational intelligent techniques (CITs) are explored: artificial neural network (ANN)

and extreme learning machine (ELM). In order to obtain a more robust learning

classifier the data is also collected for several gaits and speeds.

Past works, show the successful application of ANNs 13,15, and, to our knowl-

edge, ELM is not yet explored for the humanoid floor classification problem.

The main contribution of this work is the validation that inexpensive tactile sen-

sors together with common, widely used learning-based algorithms can be used to

obtain reliable information which allows the correct classification of different floors,

thus improving humanoid robots mobility skills.

The reminder of the paper is divided as follows. Section II presents the materials

and methods for the data collection and manipulation. The CITs implementation

and experimental results are presented in Section III. Lastly, section IV presents

the conclusions and future challenges.

2. Materials and methods

On previous research we developed an ITshoe (Fig. 1) to be seamlessly installed

on a walking humanoid robot to measure real-time vertical and horizontal GRFs.27

The ITshoe has two main parts, outer shoe and inner shoe, and it is designed to

be used with the humanoid robot NAO. The inner shoe is used to link the robot’s

foot and the outer shoe, whereas the outer shoe is the instrumented part of the shoe.

The ITshoe is designed to measure and transmit raw data at a frequency of 100 Hz

and it is composed by a sensing unit (eight A301 flexiforce sensors), acquisition unit

(electrical conditioning and power supply), and a streaming unit (WiFi module).

Fig. 2 illustrates an example of the measured GRFs (normalized) for two steps of

a walking humanoid robot. The GRFs are divided into total normal force (vGRFs)

and total horizontal force (hGRFs). The hGRFs can be represented in the sagittal

and transverse plane as depicted in Fig. 1, and calculated as follows:

Fhst =

√
2

2
· [(S145 + S245)− (S345 + S445)], (1)

Fhtt =

√
2

2
· [(S245 + S445)− (S145 + S345)], (2)

where Fhst is the total horizontal force in the sagittal plane, Fhtt is the total

horizontal force in the transverse plane and S145 to S445 are the sensors used to

measure these tangential forces.

All datasets presented in this work are obtained with the ITshoe.
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fig1.jpg

Fig. 1. ITshoe schematic structure. The block (A) is the acquisition unit, the block (B) is the

streaming unit, and the block (C) is the sensing unit. The main elements of these units are subtitled
with numbers: 1- Battery; 2- Step-up voltage regulator; 3- Micro-controller; 4- Bi-directional level

converter; 5- WiFi module; 6- Force sensor. On the right side it is visible the position of the eight
force sensors and the reference axis used to decompose the tangential forces.27

2.1. Floor classification

In this study, we attempt to identify which one of four different candidate floors

the humanoid robot walked on, having as hypothesis that each ground type has

a particular signature when identified by the force sensors that measure the con-

tact forces between the biped feet and the ground. To further facilitate the data

collection in the laboratory, we built three shoe soles (using the materials: teflon,

aluminium and carpet) to be added to the ITshoe and used the ITshoe acrylic as
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fig2.png

Fig. 2. GRFs for a walking humanoid robot. Example of two measured steps represented as normal

and tangential forces.

the fourth material. Fig. 3 shows the shoe soles used in this work.

Their coefficient of friction (CoF) is measured against a melamine sheet (base

material) on which the robot walks with the distinct shoe soles. The friction coeffi-

cients of the testing materials are measured as follows: each shoe sole is positioned

on a ramp of the melamine material; the ramp is tilted until the shoe sole starts to

slide at a constant velocity; the tilting angle is measured; lastly, the CoF is calcu-

lated (equal to the tangent of the measured angle). Fig 4 illustrates the layout for

the data acquisition and CoF measurement.

The chosen floors (shoe soles) have different friction coefficients, ranging from

approximately 0.1 up to 0.5. We decided that the lower friction would be around

0.1 since the biped robot can not walk on more slippery floors, and above 0.5 we

considered that the robot can perform well balanced locomotion actions. Regardless

the friction range in study, in future work, we intend to extrapolate the results to

a wider range. Table 1 presents the measured CoF for the different materials.

Table 1. Shoe soles coefficient of friction.

Material Coefficient of Friction

Teflon-Melamine 0.11
Acrylic-Melamine 0.23

Aluminium-Melamine 0.35

Carpet-Melamine 0.52
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fig12.jpg

Fig. 3. Shoe soles materials. A- teflon; B- acrylic; C- aluminium; D- carpet; E- melamine sheet.

2.2. Data manipulation

The output signals from each one of the available sensors are sampled and stored

during real-time experiences for subsequent offline analysis. To get more represen-

tative and robust data we also decided to gather the data not only for the different

floors, but also for different robot gait parameters, such as different step length (0.02,

0.04, 0.06 [m]) and step frequency (0.2, 0.4, 0.6). For these parameters we decided to

use equally distanced values, being that for the higher limit of step length we chose

the maximum step length (0.06 m) of this robot, and the maximum frequency (0.6)

was chosen because larger values did not produce good enough locomotion actions,

therefore making it impossible to collect data. To summarize, the robot steps force
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fig3.jpg

Fig. 4. Layout for the data acquisition and CoF measurement. On the left side is the melamine

sheet on which ”n” robot steps are measured and the humanoid robot with the ITshoes, and on
the right side is presented the melamine ramp used to measure the CoF of the materials above

identified.

data is collected for all the 36 resulting combinations between the different floors

and the variable gait parameters (4x3x3). Roughly 100 steps are registered for each

combination.

Before classifying the floors with CITs, it is necessary to pre-process the raw

data. The following procedure describes the developed algorithm methodology to

extract the humanoid robot steps that are used as input for the different machine

learning approaches. The algorithm takes as input a matrix filled with raw data of

8 flexiforce sensors, and outputs the robot steps separately and normalized in the

range [-1,1], as follows:
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(i) Use the calibration curves to convert each sensor (S(i)) raw data into forces,

as described by the following equation:

F (i) = b(i)

R(i)( 1024
S(i)

)−1
× 1

m(i) ,

i ∈ {1, 2, ..., 8} ,
, (3)

where R is the voltage divider resistor, m and b are the calibration curve slope

and y-intercept respectively, and 1024 (210) refers to a 10-bit analog to digital

converter (ADC);

(ii) Obtain the start and end of each step: Fn(i) ≈ 0 (normal force = 0, robot foot

is in the air);

(iii) Normalize each force F(i) to be inside the range [-1,1];

(iv) Interpolate each step using a linear interpolation to guarantee that all steps

have the same size (this is a necessary stage since different gait parameters will

generate steps with variable sizes);

(v) Define Input variables for the CITs:

(a) Fn (Normal Force);

(b) Fhst (Tangential force in the sagital plane);

(c) Fhtt (Tangential force in the transverse plane);

(d) Fust (Equals to Fhst./Fn);

(e) Futt (Equals to Fhtt./Fn).

2.3. Data for CIT training, validation and testing

The input matrices have 100 lines, one for each point that represents a single step on

a specific floor with certain gait parameters, and N columns, where N represents the

number of steps collected for this study. We processed 80 steps for each combination

(gait parameters+floor), thus obtaining an input matrix of 100x2880. Fig. 5 shows

an example of the input data presented in the form of Fhst normalized between -1

and 1. The visible variation between steps of the same class is due to the diverse gait

parameters used in the data collection, as expected, a different gait configuration

will produce different contact forces.

Since we want to classify four different floors (classes), our target matrix has 4

lines by N number of steps, being that only one of the lines is filled with the value

1 and the others with the value 0 (e.g. [0,0,1,0]’, means that the target is the 3rd

floor). The data is prepared and randomly divided into three subsets: the training

set (50%), which is used for computing the gradient and updating the network

weights and biases; the validation set (25%) to measure network generalization and

to halt training when generalization stops improving; and the test set (25%) that

is used to compare different ANNs as well as evaluate the ability of the network to

correctly classify the floors. To make the classification process more accurate and

less biased, the 36 data sets are randomly splitted into the three subsets, to ensure
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fig4.png

Fig. 5. Example of the input dataset Fhst normalized. The chart shows 720 processed steps for

each floor.

that each has 25% of the data represented by each of the classes. Table 2 shows the

final dimensions of the input and target matrices.

Table 2. Dimensions of the input

and target matrices

Input Target

Training 100x1440 4x1440

Validation 100x720 4x720
Testing 100x720 4x720

3. CIT experimental results

As described in chapter I two CITs (ANN and ELM), implemented in MATLAB28

are explored to classify the different floors.
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3.1. ANN

The ANN studied consists of a generic feed-forward back-propagation neural net-

work with three layers: input, sigmoid hidden and softmax output layer. An example

of the studied ANN architecture can be seen in Fig. 6.

To tune and obtain the best ANN we developed many experiments, where we

varied (1) the number of hidden neurons, (2) the back-propagation mathematical

algorithms and (3) the way the inputs are presented to the network (as described

in chapter III). Each defined input matrix is trained using 5 different backpropaga-

tion algorithms: Scaled Conjugate Gradient (scg), Conjugate Gradient with Powell

(cgb), Resilient Back-propagation (rp), Variable Learning Rate Back-propagation

(gdx) and Polak-Ribiére Conjugate Gradient (cgp). Additionally, each algorithm is

trained 10 times for each number of hidden neurons ranging from 2 to 52. A total

fig5.png

Fig. 6. Neural Network architecture.

of 500 ANN are trained and tested for each training algorithm. The output of the

ANN is an array with 4 numbers between zero and one, being that each number

indicates the likelihood of the present floor being one of the four previously labelled

and trained, where a value of 0 means not likely and 1 means likely.
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After evaluating the performance results, with cross-entropy, for the various

tested algorithms, the following Fig. 7 shows the overall performance of the ANNs

for the diverse input variables, and only for the algorithm that best performed: gdx.

It is visible in the chart, that the performance increases significantly as the num-

ber of hidden neurons increases up to approximately 20. From here, the increasing

number of neurons does not affect the performance in more than 1%. In attempt to

avoid overfitting and bearing in mind that higher number of neurons almost does not

improves the performance, we decided that the optimal number of hidden neurons

for this network is 20. Observing the chart, can also be seen that the defined inputs

that outputs the best overall performance are the tangential forces in both sagittal

and transverse planes (Fhst and Fhtt). On the other hand, although the normal

forces are important to separate the robot steps, these are the ones that present the

poorer results. Additionally, the inputs defined as Fust and Futt present a lower

performance when compared with the Fhst and Fhtt, possibly due to the negative

effect of the normal forces.

The confusion matrix presented in Fig. 8 shows the testing accuracy for the

best obtained ANN using as input the tangential forces in the transverse plane. The

test confusion matrix show us that the network failed to correctly classify 24 out of

720 (3.3%) steps.

With knowledge of the best algorithm (gdx) and the best number of hidden

neurons (20) we decided to train a new network using both tangential forces in

order to improve the ANN accuracy. The new input matrix has 200 rows (100 for

the Fhst and 100 for the Fhtt) by 2880 columns. The following confusion matrix

presented in Fig. 9, shows that the testing accuracy increased 2.6% from 96.7% to

99.3%. It seems that the information from both tangential forces are relevant and

necessary to best classify the different floors.

3.2. ELM

The ELM consists in a single hidden layer feed-forward network with a more ef-

ficient learning algorithm, which randomly chooses hidden nodes and analytically

determines the output weights. One of the advantages of using ELM is its extremely

fast learning speed, that most real-time applications require.

For the ELM analysis we decided to only use the tangential forces as input

(200x2880) since it has been proven previously that these forces are the ones pre-

senting the best results. The ELM was trained with a number of hidden neurons

ranging from 100 to 600. In order to change the random variables value we decided

to run 10 ELM for each number of neurons. Similarly to the previous approach the

activation function used was the sigmoid function. Fig. 10 shows the training and

testing accuracy for the different number of neurons.

Although both training and testing accuracy increases with the increasing num-

ber of hidden neurons, for a number of neurons bigger than 400, it can be seen that

the testing accuracy stagnates around 97%. As result, we propose the optimized
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fig6.png

Fig. 7. ANN overall performance for the diverse input variables.

ELM with 400 hidden neurons. With this ELM architecture we obtained a testing

accuracy of 98.5%. Fig. 11 shows the confusion matrix for the chosen ELM network.

The test confusion matrix show us that the network failed to correctly classify 11

out of 720 (1.5%) steps.

3.3. ANN vs ELM: Classification time

For further application of the CITs in real-time it is important to compare both CITs

not only by their final accuracy but also by their real required time for classification.

As previously described the data is recorded at a rate of 100hz which means that if

we need to take an action (e.g. adapt the humanoid robot gait based on the detected

floor information so that the next robot step is optimized for the current floor), we

have to do it in less than 10ms.

The previous results show that the ANN presents better classification accuracy

when compared with the ELM, however the ANN takes about 145 times longer than

the ELM to classify a floor. Using the software MATLAB28, the ANN requires about
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fig7.png

Fig. 8. Best ANN testing confusion matrix using the tangential forces in the transverse plane as

input for the network.

fig8.png

Fig. 9. Best ANN testing confusion matrix using both tangential forces as input for the network.

Fig. 10. ELM training and testing classification performance.

15ms to classify a single humanoid robot step. We expect that the application of this

ANN using a computer programming language (e.g. C) will lead to a considerable

reduction of the required time. In case of the necessary time still exceeds 10ms, the

ELM appears as the best suitable solution for this problem.
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fig10.png

Fig. 11. ELM testing confusion matrix using both tangential forces as input for the network.

3.4. Step percentage reduction

The previous approach allows only the correction of the robot gait, for the require-

ments of the different floors, after it performs a complete step. To ensure that the

humanoid robot does not lose its stability before we adapt its gait, we also developed

a study where we attempted to reduce the required time for the floor classification

problem. For this purpose we evaluated the ability of the network to classify the

different floors using only a percentage of the robot step data points. Multiple net-

works were fed with a decreasing percentage of data points that represent the robot

step, and simulated using the optimal parameters described previously. The results

are presented on Fig. 12.

Looking at the results, it can be seen that the network has a good accuracy

with a loss of less than 2% even for steps represented only by 40% of the data

points. For steps represented by 60% of the data points the network performance

decreases by approximately 0.5%. It is seen that, without compromising much the

performance we can use a percentage of the robot step to classify the floor and

thus control the robot stability much earlier than what was allowed by the previous

approach. Additionally, if the decrease in the network accuracy affects the results

in real time, a new network can use the chosen percentage of data points to predict

the next ones so that the accuracy increases again.

4. Conclusions

In this paper, we have addressed the problem of floor classification with a biped

robot based only on the ITshoe force data and a learning-based analysis.

The 2880 labelled steps of a walking biped robot over four different floors are

used to train and test two CITs. The comparison between the ANN and ELM

performed in this study, suggests that the ANN is the best CIT to classify the
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fig11.png

Fig. 12. ANN testing performance for different percentage of step data points.

different floors considering that the time required for classification is lower than

10ms. The ANN outperform the ELM with a final testing accuracy of 99.3% vs.

98.5%.

In the near future we expect that the application of this CITs in real-time, will

not only help to classify the present floor but also, lead to a more efficient gait, since

a controller can be developed to optimize the robot gait based on the classified floor.
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Lúıs Almeida obtained a 5-year degree in Mechanical Enginee-

ring in 2016, at the University of Aveiro, Portugal, where he

later, started to pursue his PhD in Mechanical Engineering in

2018. He participated in a research project and some conferences

in the area of humanoid robotics. His current research inter-

ests include humanoid robots locomotion and control, human-

robot interaction and computational intelligent techniques.

vs.png

Vı́tor Santos obtained a 5-year degree in Electronics Enginee-

ring and Telecommunications in 1989, at the University of

Aveiro, Portugal, where he later obtained a PhD in Electrical

Engineering in 1995, and the Habilitation in Mechanical En-

gineering in 2018. He was awarded fellowships to pursue re-

search in mobile robotics during 1990-1994 at the Joint Re-

search Center, Italy. He his currently Associate Professor at the

University of Aveiro and lectures courses related to advanced perception and

robotics, and has carried out research activity on mobile robotics, advanced per-

ception and humanoid robotics. At the University of Aveiro he has coordinated

the ATLAS project for mobile robot competition that achieved 6 first prizes in the

annual Autonomous Driving competition and has coordinated the development of

ATLASCAR the first real car with autonomous navigation capabilities in Portugal.

He is one of the founders of the Portuguese Robotics Open in 2001 where he main-

tained active participation for more than 12 years. He his also co-founder of the

Portuguese Society of Robotics, and participated several times in its management

since its foundation in 2006. His current interests extend to humanoid robotics and

the application of techniques from perception and mobile robotics to autonomy and

safety in Autonomous Driving and Driving Assistance systems.

João P. Ferreira received his BSc degree in Electri-

cal Engineering in 1999, Master in Industrial Automation in

2002 and PhD in Instrumentation and Control in 2010 from the

Univ. of Coimbra. Currently, he is a Professor of the Electrical

Engineering Department at the Superior Institute of Engineer-

ing of Coimbra, Coordinator of specialization course of Indus-

trial Automation, Robotics and Maintenance and Researcher at

the Institute of Systems and Robotics of Univ. of Coimbra. He has coordinated

and participated in several funding projects in the area of humanoid and medical

rehabilitation robotics, with more than sixty scientific publications in international

journals/conferences, over than two hundred participations as a reviewer of scientific

manuscripts and have a national patent (no. 108143). His research interests include

humanoid robots, human gait, rehabilitation robotics and artificial intelligence and

its application.


	Introduction
	Materials and methods
	Floor classification
	Data manipulation
	Data for CIT training, validation and testing

	CIT experimental results
	ANN
	ELM
	ANN vs ELM: Classification time
	Step percentage reduction

	Conclusions

