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Real-time LSTM-RNN Classification of Floors
with Different Friction Coefficients for a Walking
Humanoid Robot Wearing a 3D Force System

Luis Almeida, Vitor Santos, and Joao Ferreira

Abstract—In the study of biped humanoid robots it is crucial to
achieve high precision and robustness in locomotion. Humanoid
robots that operate in real world environments need to be able to
physically recognize different grounds to best adapt their gait with-
out losing their dynamic stability. This work proposes a technique to
classify in real time the type of floor from a set of possibilities learnt
off-line. Hence, the paper describes the collection and preparation
of a dataset of contact forces, obtained with a wearable instru-
mented system, mixed with the information of the robot internal
inertial sensor to classify the type of underlying surface of a walking
humanoid robot. For this classification, the data are acquired for
four different slippery floors at a rate of 100Hz and it is used as
input for a long short-term memory (LSTM) recurrent neural network
(RNN). After testing different learning models architectures and
tuning the models parameters, a good mapping between inputs
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and targets is achieved with a test classification accuracy greater than 92%. A real time experiment is presented to
demonstrate the suitability of the proposed approach for the multi-classification problem addressed.

Index Terms— Computational Intelligence Techniques, Floor classification, Humanoid Robot locomotion, Wearable

Instrumented System, LSTM

[. INTRODUCTION

The study of humanoids increasingly contributes to sev-
eral scientific areas of which it is possible to extrapolate
improvements to our lives, such as in walking rehabilitation,
dangerous works, or elderly assistance. To achieve a robot
capable of servicing and assisting people, first it has to be able
to perform fundamental locomotion tasks such as balancing
and walking [[1]]. Despite the progress and efforts made in
the past years, humanoid locomotion is still a challenging
problem without definitive solution. Developing a good system
that allows a biped robot to walk on unknown and diversified
floors, e.g. slippery floors, requires the system to be intelligent
and autonomous to adapt in real time so that the robot can
successfully overcome the barriers found during locomotion
tasks [2]]. In most of the bipedal locomotion approaches, hard
contacts with the ground are assumed, although, in real life
scenarios this is normally not accurate. Despite the several
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developments over the years, there are no explicit implemen-
tations which deal with the changing floor properties [3[]. This
oversight may lead to disastrous consequences, e.g. the biped
robot falls while walking on a non-modeled ground, most of
the times preventing the robot to continue its locomotion tasks.

Having an intelligent algorithm that allows the robot to
identify the terrain with good accuracy, using force sensors
installed on its feet or assembled under it, will give the
possibility to eliminate most of the falls while walking on
different surfaces [4, |5]. The increasing progresses made in
the areas of artificial intelligence and machine learning, lead
to a significant impact in this field. With the rise of techniques
such as neural networks, recurrent neural networks (RNNs),
deep learning and reinforcement learning, humanoids can now
perform tasks that previously seemed far-fetched.

In this work, the capabilities of a Long Short-term Memory
Recurrent Neural Network (LSTM-RNN) (first presented in
[6]) were analysed to classify the underlying surface of a
walking robot. To feed the network, a wearable instrumented
system assembled to a robot foot was used to measure the
ground reaction forces (GRFs), and the internal robot inertial
sensors were used to measure the body accelerations and
inclinations on different slippery floors. The choice of this type
of network was mainly due to its feedback loop which serves
as a kind of memory. This means that the past inputs leave
a footprint on the model that is expected to be an asset, e.g.,



when the humanoid robot moves from one floor to another.
These networks are capable of recognizing temporal encrypted
patterns from dynamic data, which is what happens between
the interaction of the humanoid’s foot and the different floors;
indeed, humanoid walking can be considered a time-dependent
task. Additionally, our approach does not require a time
window for offline processing, hence, the classification can be
done online at every new robot step. The main contribution
of our work is the classification of slippery floors using a
novel instrumented system that can be adapted to different
humanoid robots. This classification will provide knowledge of
the characteristics of different floors on which the robot walks
to the humanoid controller, thus allowing it to adapt the robot
gait according to the different slippery floors requirements.
Several published works in the field of humanoid robots
show the applicability and capabilities of the LSTM-RNN
9, [13]). For example, in a LSTM-RNN model
was used to classify six different robot behaviours based on ten
robot joint time sequences. In it was used to generate a
robotic motion from the observations of the human movements
to achieve fast and responsive human robot collaborative tasks,
avoiding the trouble of solving an inverse kinematics or motion
planning problem. In kinect sensors were used to obtain
walking information of the human body under different slopes,
and the data collected are used to feed a LSTM neural network
to learn the degrees of freedom of multiple lower limb joints,
classify and recognize the different slopes and to compensate
the robot’s ankle joints based on the slope inclination. The
results show a robot NAO able to walk on different slopes. In
another example , the authors used a LSTM network to
classify motor fault in mobile robots achieving an accuracy of
87%. In the authors used the robot’s foot soles pressure
sensors and inertial measurement unit (IMU) to feed a LSTM
network. They used the sensors to calculate two-directions
center of pressure (CoP) and the IMU to obtain two-direction
acceleration. The authors report that the robot walking process
based on the LSTM output is better than when using a fixed
gait. Another example using pressure sensors data and a LSTM
network is addressed in [19]]. The authors used these sensors
to collect data while interacting with different daily objects.
The developed LSTM presented a 97.62% accuracy on the test
dataset, being that the authors expect that this good slippery
classification can improve the robot grasping skills, leading to
a better contact and smoother interaction/manipulation.
Different LSTM architectures and their combination with
other networks have also been increasingly studied and applied
in the humanoid field. In [20] the authors used a bidirectional
LSTM-based network which makes use of historical measure-
ments of system states to predict humanoid fall probability
in real-time. In a deep LSTM network was trained with
simulated data and fine-tuned on a set of real data to track and
identify Robots with identical appearance. Since the analysed
data are transmitted via Wi-Fi, some delay or even data loss are
expected, hence the importance of using a LSTM. Similarly,
in a deep network LSTM was also used, but here the
authors fed the network with acceleration signals and used it
to detect gait-phases of a walking human, presenting a F-score
higher than 92%. In [23]] a LSTM network was combined with

a convolutional neural network (CNN) to improve the human-
robot interaction. The CNN was used to extract visual features
and the LSTM network was used to find the relationship
between these features and six basic emotions. The humanoid
is able to adapt its response based on the human emotion
classified with the LSTM model.

Our approach is comparable to the floor classification prob-
lem addressed by [24] since a LSTM network is explored
to solve the problem, but the approaches differ because [24]]
uses the humanoid foot sinking state and the force reads
from a load cell embedded in the robot’s ankle to classify
deformable terrains, whereas we combine data from the robot
inertial sensor and eight force sensors to classify different
slippery floors. They achieved 95 % accuracy on average
during experiments.

The remainder of this work is divided as follows. Section II
presents the materials and methods for the data collection and
manipulation. The LSTM network implementation, tuning and
online experimental results are presented in Section III. Lastly,
Section IV presents the conclusions and future challenges.

[I. MATERIALS AND METHODS

In previous research activities , an instrumented system
was developed to be seamlessly assembled on the walking
humanoid robot NAO to measure real-time vertical and hori-
zontal ground reaction forces (GRFs). The GRFs are divided
into total normal force (VGRFs) and total horizontal force
(hGRFs). The developed system is a cost-effective, lightweight
and wirelessly instrumented shoe (ITshoe). The ITshoe used
on this work is presented in Fig. [T]

Fig. 1.
unit, the green block (B) is the streaming unit, and the blue block (C) is
the sensing unit. At the top, the image shows the position of the eight
force sensors and the reference axis used to decompose the tangential
forces.

ITshoe schematic structure. The red block (A) is the acquisition



The hGRFs can be represented in the sagittal and transverse
plane, as depicted in Fig. [I] and calculated as follows:

Fhy = [(S145 + 5245) — (S345 + S445)] (D

oSS

Fhy = . [(5245 -+ S445) - (5145 + 5345)], 2)

where F'hg, is the total horizontal force in the sagittal plane,
Fhyy is the total horizontal force in the transverse plane and
Slys to S445 are the four Flexiforce sensors, positioned at
45°, used to measure the tangential forces.

The ITshoes are divided into three units (see Fig. [I):

Sensing unit - Composed of eight piezo-resistive A301
flexiforce sensors;

Acquisition unit - Deals with the electrical conditioning
and power supply;

Streaming unit - Receives the data across a serial com-
munication with the micro-controller and forwards it to
the server, through the ESP8266 Wi-Fi module.

The robot NAO also communicates with the server through
Wi-Fi and its main software is used to make it walk. The
high-level functions allow to define the walking distance and
gait configuration parameters, such as, step length, height,
frequency and torso translation along the X and Y axis. The
server runs the open-source system ROS that deals with all the
data flow and communications with the ITshoes and the Robot
(for further details, see ). The dataset used for this work
were recorded using the ITshoes sensors and the humanoid
robot NAO internal sensors at a frequency of 100 Hz.

A. Floor multi-classification problem

This work extends the study presented in to classify
different slippery floors on which the humanoid robot NAO
has to walk while wearing the ITshoes. Our hypothesis is
that each floor has a particular characteristic when identified
by the ITshoes force sensors together with the robot NAO
inertial unit, which is positioned in the center of the body of
the humanoid NAO, namely data from its 3-axis gyroscope,
acceleration and body inclination. Fig. [2|shows the layout used
to collect data for the addressed multi-classification problem.

Fig. 2. Layout for data collection with four different floors.

The system NAO+ITshoes is used to collect data while the
humanoid NAO walks on four different slippery floors: Poly-
tetrafluoroethylene (PTFE); Aluminium; Polyethylene high-
density (PE-HD); and Melamine floor. We only focused on

the slippery characteristic of these floors since the forces that
the humanoid NAO exert on these rigid and flat floors while
walking are not significant and do not produce meaningful
elastic or permanent deformation. However, our classification
can be associated with different material properties, and can
also be used to classify different floors such as deformable
floors. Table m presents the coefficient of friction (CoF) for
the different materials used as the walking floors. Acrylic is
the base material of the ITshoes.

TABLE |
FLOOR-SHOE COEFFICIENT OF FRICTION

Material Coefficient of Friction
Acrylic-Polytetrafluoroethylene (PTFE) 0.11
Acrylic-Aluminium 0.20
Acrylic-Polyethylene high-density (PE-HD) 0.26
Acrylic-Melamine 0.33

B. Data manipulation

Before classifying the floors using the LSTM-RNN, it is
necessary to pre-process the raw data. The following procedure
describes the developed algorithmic methodology to extract
the data that corresponds to the humanoid robot steps, and to
format its representation to be used as inputs for the learning
approach. The algorithm reads the recorded raw data from
the database and outputs only the data that corresponds to
moments when the robot’s foot is in contact with the floor.
The main steps of the algorithm are as follows:

(a) Use the calibration curves to convert each sensor (S(7))
raw data into forces, as given by:

b(i) 1

R() (1928 — 1) M)’
where R(i) is the voltage divider resistor, m(i) and
b(i) are the calibration curve slope and y-interception
respectively, and 1024 (210) refers to a 10-bit analog to
digital converter (ADC);

(b) Obtain the start and end of each step: the points where
Fn(i) ~ 0 (normal force ~ 0, robot foot is in the air);

(c) Use the indices ¢ for which F'n(i) # 0 to filter the data
points for all the recorded variables;

(d) Normalize each data point to be in the range [-1,1] ;
(e) Reshape the data according to the LSTM model needs.

F(i) = — ie{l,...8}, (3

C. Data for LSTM training, validation and testing

The resulting dataset for this work includes 27800 labeled
sequences. Each input sequence consists of 11 features, each
composed of 50 samples. Despite the fact that the measured
vertical forces are crucial for the data collection and manipula-
tion, these were not used as features to train the network due to
the dynamics involved in the robot step being so small that the
variability of the normal force sensors are of limited use [26].
The 11 selected features to represent the robot’s behaviour on
the different studied floors are as follows:

Fhg, Horizontal force in the sagittal plane (N);



Horizontal force in the transverse plane (N);
Gy Gyroscope X axis (rad/s);
Gy Gyroscope Y axis (rad/s);
G, Gyroscope Z axis (rad/s);

Ace,  Accelerometer X axis (m/s?);
Acc,  Accelerometer Y axis (m/s?);
Acc,  Accelerometer Z axis (m/s?);
BI, Body inclination X axis (rad);
BI, Body inclination Y axis (rad);
BI, Body inclination Z axis (rad).

The data are prepared and randomly divided into three subsets:
the training set (60 %), which is used for computing the
gradient and updating the network weights and biases; the
validation set (20 %) to measure network generalization and
to halt training when generalization stops improving, and the
test set (20 %) that is used to compare the different LSTM
networks, as well as evaluate the ability of the network to
correctly classify the floors. To make the classification process
more accurate and less biased, a 10-fold cross validation is
applied to the data so that the LSTM model is trained 10 times,
each time with a different train/test split. Table [II] shows the
final dimensions of the input and target matrices.

TABLE Il
DIMENSIONS OF THE INPUT AND TARGET MATRICES
Input Target
Training (16680, 50, 11) (16680, 1, 4)
Validation (5560, 50, 11) (5560, 1, 4)
Testing (5560, 50, 11) (5560, 1, 4)

Fig. 3 illustrates the 50 chosen samples of the normal force
component from a full humanoid robot step. All the selected
features for this classification problem use also 50 samples
corresponding to the same time steps.
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Fig. 8. lllustration of the 50 chosen samples of the normal force of a

robot step to be used on the classification of the robot walking floor.

[1l. LSTM-RNN EXPERIMENTAL RESULTS

Recurrent Neural networks (RNNs) are the feed-backward
version of the conventional feed-forward neural networks.
They have a cyclic connection architecture that allows them
to update their current state based on past states and current
input data. The standard RNN topology suffers from the van-
ishing gradient [27]]. To overcome this problem, Schmidhuber
and Hochreiter 6] developed the Long Short Term Memory
(LSTM) unit presented in Fig. [}
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Fig. 4. LSTM cell structure[28].

The LSTM unit, also known as “memory block™ enables
the network with the capacity to store and access information
over long periods of time. LSTMs achieve this through their
3-gate architecture, which consists of an input, forget and
output gates. The input gate decides which input information
will be used to update the memory state. The forget gate
decides which information to keep or erase from the memory
block. Finally, the output gate decides based on the current
input and the stored memory which information to output.
The LSTM models developed in this work were built using
the open source neural network library Keras, running on top
of the machine learning platform TensorFlow. The API Keras
is written in Python. Several LSTM networks configurations
were implemented to classify the different floors from the
input layer of 11 features and 50 time steps. The base model
used to start training was a LSTM layer with a sigmoid
activation function and 50 hidden neurons, a fully-connected
output layer with activation function “’softmax”, and 4 hidden
neurons corresponding to the four floors to be classified.
The optimizer used in all the training trials was the Adam
optimizer [29] because of its ability to converge quickly while
traditionally performing better than most other optimizers [30}
31]. Additionally, an early stop strategy is applied to the
training process to halt it when the loss of the model stops
improving. The loss of the model was evaluated using a
categorical cross-entropy function, calculated according to (@)

M

L== yoclog(po.) )
c=1

where M is the number of classes (different floors), yo .
indicates if the class label c is the correct classification for
the observation o, and p, . is the predicted probability of the
observation o is of class c. Before tuning the LSTM model
hyper parameters, a dropout layer was added to the model
since it is commonly used to fight over-fitting and to improve
the model performance. This layer is used as a regularization
method were input and recurrent connections to LSTM units
are probabilistically excluded from activation and weights
updates while training a network. It randomly sets input units
to 0 with a chosen frequency fy (fraction of the input units to
drop) at each step during training time. Inputs not set to zero



are scaled up by 1+ (1— f4) such that the sum over all inputs
is unchanged. Fig. [5| exemplifies the dropout behaviour for a
standard neural network with two hidden layers.

Fig. 5. Dropout behaviour. On the left it is visible a standard neural
network and on the right an example of the same network after applying
dropout. The units presented with a cross have been dropped [32].

Multiple LSTM models architectures were implemented and
trained with a varying number of hidden neurons, different
activation functions, batch sizes, learning rates and dropout
probabilities. Table [[T] shows the evaluated range for some of
these parameters as well as the chosen value that produced the
overall best results.

TABLE IlI
RANGE OF NETWORK PARAMETERS EVALUATED.
Range Best
Hidden neurons 50 - 500 300
Learning rate 0.00001 - 0.1  0.0001
Batch size 10 - 500 256
Dropout probability 0.1-0.5 0.2

Fig. |6| shows the optimized model obtained for this multi-
classification problem using the chosen best parameters. This
model has three layers: a LSTM layer with 300 hidden neurons
and “tanh” activation functions, a dropout 0.2 layer and a
fully-connected layer with four hidden neurons and “’softmax”
activation functions.

LSTM 300
(tanh)

Dense 4
(softmax)

Ouput
Layer

Input

Layer +—{ Dropout 0.2 —j

Fig. 6. Optimized LSTM model.

Figure [7] presents the optimized model accuracy/epochs.
This model presents a 96.31 % and 89.63 % training and
validation accuracy, respectively.
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Fig. 7. LSTM model, Accuracy vs Epochs.

Table [IV] presents the classification report of this LSTM
model where the metrics Precision, Recall and F1-score are

TABLE IV
LSTM MODEL CLASSIFICATION REPORT.
Precision  Recall Fl-score  Samples
Acrylic-PTFE 0.98 1.00 0.99 1620
Acrylic-Aluminium 0.88 0.92 0.90 1510
Acrylic-PE-HD 0.93 0.84 0.89 1290
Acrylic-Melamine 0.93 0.89 0.91 1140

used to evaluate the model’s capability of correctly classifying
the different floors.

Figure[§]presents the confusion matrix obtained the applying
the network to the testing set. From there it can be seen that
the model was able to correctly classify 92.09 % of the test
set data (confusion matrix true positives plus true negatives
divided by total of samples), which are data never presented to
the network before. Overall, the differences between the high
scores achieved for the first class compared to the other classes
can be justified not only because of the uneven distribution of
the four classes, but also because the floor properties, more
specifically the CoF of the first class differs more from the
remainder. The gap between the CoF for the remainder classes
is similar and, as it can be seen, the results for these classes
are very balanced.

10,
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PTFE Aum. PE-HD Melam.

Target Class

Fig. 8. Confusion matrix of the testing dataset.

[V. ONLINE EXPERIMENT

After training and improving the LSTM network, a real-time
experiment of the NAO robot walking on different floors, as
illustrated in Fig.[9] was carried out to validate the model. The
gait parameters for the walk are as follows: 0.02 m step length;
0.02m step height; 50% of robot’s maximum step frequency;
and 0.1 rad torso rotation around Y.

Fig. 9. Layout for the real-time on-line experiment.

Figure plots the classification results of the LSTM
network, and at the top, some snapshots of the experiment
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Fig. 10. Individual results on floor classification of NAO walking experiment in real-time using 50, 40 and 30 timesteps. At the top, some snapshots
of NAO walking on the different surfaces are presented, and their corresponding output is presented, at the bottom, on the charts for each foot/shoe.
o Left ITshoe(50); @ Right ITshoe(50); [ Left ITshoe(40); B Right ITshoe(40); A Left ITshoe(30); A Right ITshoe(30); - - - Real floor on which the
robot walks (it is 1 when walking on the current floor).

are shown. In this experiment, the robot walked 1.80 meters
on the four floors starting on the PTFE floor and ending
on the melamine surface. It is important to mention that we
considered as being the correct floor on which the robot walks
when the front part of the robot foot is at least 0.04 m over
that floor. The detailed results show that the network, although
not always with 100% certainty, classified correctly (with
a confidence always larger than 50 %) the different floors
for the vast majority of the robot’s steps. Fig. [IT] presents
the confusion matrix for this experiment, where the LSTM PTFE  Alum. PE-HD Melam.
model classified correctly 87 of the 90 (=97 %) robot steps.
Indeed, the network correctly classified all the steps on the
PTFE and PE-HD floors, and misclassified only two steps  Fig. 11. Gonfusion matrix of the real-time experiment.
on the aluminium floor and one step on the melamine floor.
Overall, it can be seen that the LSTM model is suitable for

PTFE

Alum.

Output Class

PE-HD

. 0.0% .
Melam. 0 0 0

Target Class



this multi-classification problem. The model presented requires
approximately 541 milliseconds to classify one input in real
time (from data collection to obtaining a network output).
Since the data are recorded at 100 Hz and we are using the
first 50 data points (500 milliseconds) to feed the model, it
means that the model classification time (41 milliseconds)
represents only 7.5% of the total time required for this
multi-classification problem. Basically, after one robot step we
need to wait 41 milliseconds before taking the procedures to
optimize the next step. In the future, if we need to decrease
the overall required time, we can focus on strategies to reduce
the data points used to feed the model. We tested the LSTM
network’s ability to classify correctly the different slippery
floors using less timesteps and the results are shown in Fig.
[I2] We observed for example that the network test accuracy
exhibits a loss of less than 4 % and 9 % when using 40 and 30
timesteps, respectively. In Fig. [10]it is visible that the network
was still able to correctly classify most of the steps during
the online experiment, using the 40 and 30 timesteps model,
although with less confidence when compared with the 50
timesteps model. Fig. |13 and [14] show the confusion matrices
for these two networks with less timesteps. The LSTM model
with 40 timesteps classified correctly 86 of 90 robot steps,
that is, one more misclassified step when compared to the 50
timesteps model, and the LSTM model using 30 timesteps
only classified correctly 80 of 90, seven less than the original
50 timesteps model. In conclusion, it is possible to reduce the
timesteps used to classify the different floors and still have a
model able to classify correctly most of the robot’s steps.
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Fig. 12.  LSTM network testing accuracy using different sizes of
timesteps.

In order to assess the relative importance of the variables in-
volved in this process of floor identification, different training
strategies were done using different sets of input variables,
namely with horizontal forces only, robot own IMU only,
and the combination of both. Fig. [I3] shows the average test
accuracy of the LSTM model when using only the horizontal
forces (HFs), only the IMU data and lastly, both together
(HFs+IMU) as was used throughout this work. We can already
observe that the data coming from the ITShoes has a much
larger performance in the classification than the IMU data
alone, but we also observed that when we put together the
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Fig. 13. Confusion matrix of the testing dataset using 40 timesteps.
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Fig. 14. Confusion matrix of the testing dataset using 30 timesteps.

data coming from the ITshoes and the IMU, the classification
results further improve about 8 %.
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Fig. 15. LSTM average test accuracy when using only the Horizontal

Forces (HFs), only the data coming from the robot’s IMU and all the
features (HFs+IMU) as described in sub-section[[I-C]

V. CONCLUSIONS

This work addresses a multi-classification problem using a
LSTM recurrent neural network model based on the ITshoes
force data together with the robot internal inertial sensor data.
A dataset of 27800 labelled steps of a walking biped robot
over four different floors were collected and used to train,
validate and test the multiple learning models. After several
attempts to optimize the LSTM base model, and after tuning
its parameters, we achieved a network capable of classifying
the different floors with an accuracy of approximately 92 %.
The developed online experiment also validated the LSTM-
RNN approach to this classification problem, as it correctly



classified 87 out of 90 robot’s steps. For future work we will
develop a thorough study of the impact of the data coming
from the ITShoes and the IMU to validate the importance of
the wearable instrumented system. Additionally, in the future it
is expected to use this classification to optimize the humanoid
robot controller, since it will be easier to achieve an efficient
and stable humanoid gait if its controller has information about
the floor where it walks on. Following this idea, we also expect
that this network can be adapted to be used with different
classes by analysing how close a new input will be from one
of the studied classes. In fact, we observed that even in cases
where classification shows smaller confidence in one material,
the next best option is, most often, a material with a neighbor
friction coefficient. This shows that this solution is able to
detect properly the closest friction coefficient from the set
of possibilities trained. So, if enough materials are used to
represent the required resolution of friction coefficients, the
robot will be able to assess with adequate accuracy the interval
of values for the friction coefficient where it is walking on,
thus allowing the decision of measures to take to improve
walking control. Although this classification is focused on the
friction property of the materials, we will also consider to
study other characteristics such as damping and stiffness not
only to have a richer set of parameters to adapt the robot
controller but also to broaden the possibility to detect different
floors, i.e deformable floors.

When we classify the different but known floors we know
in advance the floor properties/characteristics and the main
challenge where more characteristics of the floors can be
handy will be in the future when we try to interpolate this
known properties with the classification of unknown floors.
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