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Resumo A locomoção de robôs humanoides em superfícies escorregadias apresenta
desafios significativos, exigindo soluções inovadoras para estabilidade e
adaptabilidade. Este trabalho de doutoramento é composto por três partes
integrantes que abordam coletivamente esses desafios, com cada parte con-
struindo sobre a anterior.
Parte I explora a medição crítica das forças de reação do solo em robôs
humanoides, fundamentais para a análise biomecânica e aplicações poten-
ciais na reabilitação da marcha humana. Um sistema inovador de sapato
instrumentado (ITshoe), económico e leve, é introduzido para a medição
em tempo real das forças de reação, melhorando a nossa compreensão da
locomoção do robô em diversas superfícies escorregadias.
Parte II aprofunda a tarefa vital do reconhecimento de superfícies para
robôs humanoides que navegam em ambientes do mundo real. Um con-
junto abrangente de dados, obtido através de sensores táteis de força em
várias superfícies, serve como base. Técnicas de inteligência computacional,
incluindo Artificial Neural Networks (ANNs), Extreme Learning Machines
(ELMs) e Long Short-Term Memory (LSTM) recurrent neural network, são
aplicadas para classificar diferentes superfícies. Experiências em tempo real
são apresentadas para demonstrar a adequação das abordagens propostas
para o problema de classificação múltipla abordado.
Parte III apresenta uma estratégia abrangente para melhorar a locomoção de
robôs humanoides em superfícies escorregadias. Esta estratégia incorpora
uma arquitetura de controlo baseada no Divergent-Component-of-Motion
(DCM) e um Embbed Yaw Controller (EYC) baseado num algoritmo PID.
Esta estratégia não aborda apenas o comportamento de deslize em super-
fícies de baixa fricção, mas também enfrenta padrões de locomoção não-
lineares, mesmo em pisos não escorregadios. Experiências extensivas de
locomoção demonstram melhorias significativas na estabilidade, redução do
consumo de energia e duração da tarefa.
As descobertas apresentadas nesta tese fornecem evidências convincentes
de uma locomoção adaptável de humanoides em superfícies escorregadias.
Estas experiências destacam o potencial de um sistema wearable para ap-
rimorar a interpretação das forças de reação do solo em conjunto com téc-
nicas de inteligência computacional. Além disso, demonstram a capacidade
do sistema de adaptar o controlador do robô, em conjunto com um con-
trolador PID, minimizando eficazmente o escorregamento em superfícies
classificadas.





Keywords Humanoid Robot, Locomotion, Force Sensors, Artificial Intelligence, Con-
trol, Improvement

Abstract Humanoid robot locomotion on slippery surfaces poses significant chal-
lenges, demanding innovative solutions for stability and adaptability. This
doctoral research comprises three integral parts that collectively address
these challenges, with each part building upon the last.
Part I explores the critical measurement of Ground Reaction Forces (GRFs)
in humanoid robots, crucial for biomechanical analysis and potential ap-
plications in human walking rehabilitation. A novel, cost-effective, and
lightweight instrumented shoe (ITshoe) system is introduced for real-time
GRF measurement, enhancing our understanding of robot locomotion across
diverse slippery surfaces.
Part II delves into the vital task of surface recognition for humanoid robots
navigating real-world environments. A comprehensive dataset, acquired
through force tactile sensors on varius floors, serves as the foundation.
Computational intelligence techniques, including artificial neural networks
(ANNs), extreme learning machines (ELMs) and Long short-term memory
(LSTM) recurrent neural network are applied to classify different surfaces.
Real-time experiments are presented to demonstrate the suitability of the
proposed approaches for the multi-classification problem addressed.
Part III presents a comprehensive strategy to enhance humanoid robot lo-
comotion on slippery surfaces. It incorporates a Divergent-Component-of-
Motion (DCM) based control architecture and an Embedded Yaw Con-
troller (EYC) based on a PID algorithm. This strategy not only addresses
slip behavior on low-friction surfaces but also tackles non-straight walking
patterns, even on non-slippery floors. Extensive locomotion experiments
demonstrate significant improvements in stability, reduced energy consump-
tion, and task duration.
The findings presented in this thesis offer compelling evidence of adaptable
humanoid locomotion on slippery surfaces. They underscore the poten-
tial of a wearable system to enhance the interpretation of ground reaction
forces (GRFs) in conjunction with computational intelligence techniques.
Moreover, they demonstrate the system’s ability to adapt robot controller,
coupled with a well-established PID controller, effectively minimizing slip-
periness on classified surfaces.
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Chapter 1

General Introduction

In the multifaceted world of robotics, engineers and researchers face a crucial challenge:

To develop a robust and efficient locomotion system for humanoid robots,
enabling them to seamlessly navigate and adapt to the intricate and

ever-evolving nature of complex environments.

These robots, designed to mimic the human form, strive to replicate our remarkable abil-
ities for movement and adaptability. However, achieving a robotic equivalent of human
locomotion is a complex task, requiring advanced technical knowledge, innovative design
approaches, and the application of robust mathematical models (Kajita et al., 2014; Vuko-
bratović and Borovac, 2004).

The ability for a robot to adapt dynamically to a variety of terrains and situations is
a critical capability. Just as humans do, humanoid robots need to adjust their locomotion
patterns to navigate different ground surfaces and overcome obstacles. This challenge
becomes even more significant considering the diverse tasks humanoid robots are assigned
to, ranging from assisting the elderly in their homes to aiding in disaster recovery missions
or exploring uncharted environments on Earth or even beyond (Xie et al., 2020).

At the heart of addressing this challenge lies the understanding and leverage of ground-
foot reaction forces, the forces exerted by the ground on the robot’s foot during locomotion.
As humans, we instinctively adjust our walking pattern based on these forces, enabling
us to traverse surfaces such as sand or ice with equal ease. By obtaining a detailed
understanding of these forces within the context of humanoid robots, it is possible to design
advanced control algorithms that can dynamically adjust the robot’s walking pattern in
real-time.

In the pursuit of this understanding, machine learning plays a significant role. By
employing machine learning algorithms, robots extract meaningful information from sen-
sory data, including visual images, depth maps, and force/torque measurements. This
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data-driven approach allows robots to perceive and interpret subtle nuances in their en-
vironment, enabling them to uncover patterns and correlations that contribute to stable
walking patterns. By harnessing this knowledge, it becomes possible to design or refine
advanced control algorithms that can dynamically adapt the robot’s walking pattern in
real-time, utilizing the insights gained from the ground-foot reaction forces.

In the context of the broader challenge, this PhD thesis research undertakes a specific
challenge, namely:

Enhancing Bipedal Locomotion on Slippery Environments.

Navigating and adapting to slippery surfaces present unique difficulties for humanoid
robots, requiring specialized control strategies and mechanisms to maintain stability and
ensure efficient locomotion. The objective of this research is to explore innovative ap-
proaches and techniques that can enhance the ability of humanoid robots to traverse and
maneuver on slippery terrains, contributing to advancements in the field of bipedal locomo-
tion. Figure 1.1 visually encapsulates the essence of this research objective. It illustrates
the challenge faced by the humanoid robot as it struggles to maintain a straight path on
increasingly slippery surfaces. Furthermore, this slipperiness poses a significant risk of
causing the robot to fall, underscoring the critical importance of addressing this issue.

Figure 1.1: Illustration depicting a humanoid robot’s locomotion on various surfaces with
progressively reduced coefficients of friction, without slip control and with control. The
performance can be assessed by measuring the deviation from the path’s mid-line across
the four experiments. In the first three without control, noticeable path deviations are
evident, while in the fourth, where control is incorporated, deviations are negligible.
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1.1 Hypotheses and Approach

To address this challenge, this research proposes three interconnected hypotheses, each
posing a specific question:

• Hypothesis 1: Can we create a wearable, sensor-equipped shoe for humanoid robots
that unobtrusively measures ground reaction forces, exhibits universal adaptability
across different robot designs, and can be seamlessly integrated without compromis-
ing the robot’s locomotion?

• Hypothesis 2: Can we utilize machine learning techniques to effectively distin-
guish between various types of slippery surfaces, leveraging the normal and tangen-
tial ground reaction forces data obtained from the wearable, sensor-equipped shoe
proposed in Hypothesis 1?

• Hypothesis 3: Can we enhance the robot’s control system by utilizing the floor-type
classification obtained through machine learning techniques, bolstering the walking
performance and ensuring the robot adheres to a specified trajectory, regardless of
the slipperiness of the ground?

Each hypothesis builds upon the previous one, forming a comprehensive research frame-
work (as depicted in Figure 1.2) that addresses the intricacies of humanoid locomotion and
adaptability on slippery floors. Through the exploration of these hypotheses, this research
endeavours to deepen our understanding and equip humanoid robots with the capability
to attain stable walking patterns while maximizing efficiency.

To achieve these objectives, the research will involve a rigorous analysis of scientific
papers to identify existing knowledge and gaps in the field. The construction of a wear-
able system will be undertaken to unobtrusively measure total ground reaction forces and
ensure adaptability across different robot designs. Furthermore, machine learning algo-
rithms will be explored to classify various categories of slippery surfaces based on the
ground reaction force data captured by the wearable system. Finally, the control system
of the robot will be enhanced using the floor-type classification obtained through machine
learning techniques to improve walking performance and ensure adherence to a specified
trajectory.

By addressing these hypotheses and employing a multidisciplinary approach that com-
bines theoretical analysis, experimental evaluations, and technological advancements, this
work aims to unlock new possibilities in humanoid robotics. The outcomes have the po-
tential to significantly contribute to the adaptability of humanoid robots on challenging
floors, specifically slippery surfaces, enabling them to navigate such environments with
enhanced stability, efficiency, and adaptability.
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Figure 1.2: Schematic illustration of the research framework for enhancing humanoid robot
locomotion on slippery surfaces.

1.2 Fundamental concepts of humanoid stability and loco-
motion

Humanoid stability and locomotion play a foundational role in robotics, driven by sev-
eral critical factors. First and foremost, stability is of utmost importance to ensure the
safety and integrity of humanoid robots, preventing falls and potential damage in com-
plex environments. Efficient locomotion enhances overall performance, enabling robots
to conserve energy, increase endurance, and minimize power consumption. Additionally,
humanoid stability and locomotion contribute to adaptability, empowering robots to nav-
igate diverse terrains, overcome obstacles, and engage with objects effectively. This is
pivotal if we aspire for robots to effectively and safely coexist alongside humans.

At the core of these principles lie key concepts that shape our understanding of hu-
manoid stability and locomotion. The ZMP is a critical parameter representing the point
on the ground where the net moment of inertial and gravity forces is zero, essential for
achieving balance control. By carefully controlling the motion of the ZMP and ensuring it
stays within the support polygon, humanoid robots can effectively resist external distur-
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bances and maintain a stable base of support. The support polygon refers to the convex
polygon formed by the contact points of the robot’s feet with the ground. It defines the
region on the ground that provides support to the robot’s body. By ensuring that the
ZMP remains within this polygon, the robot can maintain its stability and balance (Vuko-
bratović and Borovac, 2004). The Center of Mass (CoM) represents the average position
of the robot’s mass, playing a significant role in locomotion dynamics. The Center of
Pressure (CoP), on the other hand, represents the distribution of forces exerted by the
robot’s contact points with the ground. It provides information about the stability and
balance of the robot during locomotion and can be used to estimate the ZMP. Vukobra-
tovic and Juricic (1969) and Juricic and Vukobratovic (1972) introduced the concept of
ZMP in their pioneering work on biped gait synthesis and mathematical modeling. Their
research laid the foundation for ZMP-based control strategies, shaping the development
of stable walking patterns for humanoid robots. The Linear Inverted Pendulum Model
(LIPM) simplifies CoM dynamics, providing valuable insights into balance control and
facilitating the development of stable locomotion algorithms (Kajita et al., 2001).

Figure 1.3 provides a visual representation of a humanoid robot in a single-support
phase of its walking cycle. The figure shows the robot balancing on one foot, with the other
foot suspended in air. The LIPM is superimposed on the robot’s structure, highlighting
how the robot’s CoM projects down to the ground, forming the base of the pendulum. In
an ideal scenario, the ZMP aligns with the center of the foot in contact with the ground,
effectively serving as the point about which the entire system balances (note that foot slip
is not considered).

Figure 1.3: Illustration of the linear inverted pendulum model and ideal representation of
the ZMP inside the support polygon during a single-support phase of a walking humanoid.

5



Chapter 1. General Introduction

Balance control emerges as a critical aspect, requiring continuous adjustments in pos-
ture, foot placement, and CoM position to respond to external disturbances. The main
objective of the control in a walking humanoid is to guarantee zero moment point and
body posture to keep the dynamic balance (Ott et al., 2011). The key issue in the mat-
ter is to look for a fast algorithm that allows a control even if the robot is subjected to
impulsive disturbances caused by external force or unknown ground.

Gait generation focuses on generating coordinated leg movements that optimize effi-
ciency and stability during locomotion. It involves designing algorithms that determine
the trajectory and timing of leg movements to achieve stable and efficient locomotion. Gait
generation algorithms take into account factors such as step length, step width, walking
speed, and terrain conditions to adapt the walking pattern accordingly. These algorithms
may be rule-based or employ optimization techniques to find optimal gait parameters
(Gong et al., 2010).

The Whole-Body Control (WBC) unit coordinates multiple body parts, including arms,
legs, and torso, to accomplish tasks while preserving balance and adapting to dynamic en-
vironments. Whole-body control algorithms consider the dynamics and kinematics of the
robot, along with the desired task objectives and constraints. This field of research aims
to develop control strategies that enable humanoid robots to manipulate objects, per-
form dexterous tasks, interact with humans, and navigate through complex environments.
Recent advancements in whole-body control have explored the integration of force and
tactile sensing, as well as compliance control, to enhance the robot’s ability to interact
and collaborate with the surrounding world (Huang et al., 2023).

Trajectory planning also plays a vital role by generating smooth and feasible motion
paths for limbs or the entire body, considering physical limitations, task objectives, and
obstacle avoidance.

Advancements in these concepts have fuelled comprehensive research, leading to im-
proved stability, adaptability, and performance of humanoid robots. Researchers and
engineers leverage these principles to develop increasingly capable and versatile humanoid
systems capable of navigating challenging environments, interacting with objects, and
providing assistance in human rehabilitation contexts. By embracing and refining these
concepts, the field continues to push the boundaries of humanoid stability and locomotion,
opening new possibilities for real-world applications and human-robot interactions.

1.3 Instrumented systems used in the field of humanoid lo-
comotion

Much like humans who rely on their senses to adapt while walking, instrumented sys-
tems play a central and indispensable role in the field of humanoid locomotion, providing
valuable data and insights into the forces and movements involved in walking and maintain-
ing stability. These systems allow to accurately measure and analyse various parameters,
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contributing to a better understanding and optimization of humanoid locomotion.
One important aspect of instrumented systems used in humanoid locomotion is the

measurement of ground reaction forces. These forces result from the interaction between
the robot’s feet and the supporting surface. Force Torque (F/T) sensors are commonly
employed to measure these forces, capturing both their magnitude and direction. By
integrating F/T sensors into the robot’s feet or lower limbs, precise real-time measurements
can be obtained, facilitating a comprehensive understanding of the interaction between
the robot and the ground. On the other hand, flexible force sensors, such as flexiforce
sensors, are also used to measure and analyse the ground reaction forces. These thin and
flexible sensors not only detect pressure but also provide information on the magnitude and
distribution of forces exerted on the robot’s feet. By strategically placing flexiforce sensors
in various regions of the robot’s feet, researchers can gain comprehensive insights into the
ground reaction forces during walking, thereby enhancing their understanding of stability
and balance control in humanoid locomotion. While F/T sensors provide comprehensive
data, they can often be cost-prohibitive and may pose challenges in terms of integration.
In response to these challenges, an alternative approach utilizing strategically positioned
flexiforce sensors emerges as a practical solution. As depicted in Fig. 1.4, the placement of
these sensors at specific angles, such as at 0 degrees for vertical alignment and 45 degrees
for horizontal alignment, allows for a measurement of both the vertical and horizontal
components of ground reaction forces.

Figure 1.4: Schematic representation of strategic placement of FlexiForce sensors at 0
and 45 degrees for measurement of vertical and horizontal components of ground reaction
forces.

The 0-degree flexiforce sensors allows for the measurement of vertical forces exerted
by the robot’s feet on the ground. This information proves vital in assessing weight
distribution and overall stability during locomotion. On the other hand, the 45-degree
flexiforce sensor captures measurements of horizontal forces exerted on the robot’s feet.
These forces are crucial for evaluating the friction and traction between the robot and
the ground, especially in challenging conditions such as slippery surfaces. Precise mea-
surements of horizontal forces enable us to assess the robot’s grip and make appropriate
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adjustments to ensure stable locomotion across a wide range of terrains.
Moreover, flexiforce sensors offer several advantages over F/T sensors, including cost-

effectiveness and ease of integration. These sensors are thin and flexible, allowing for
effortless positioning on the robot’s feet without requiring significant modifications to the
robot’s structure. This versatility makes them a practical solution for acquiring force mea-
surements in humanoid locomotion research and applications. Despite their advantages, it
is important to note that flexiforce sensors may require more careful use and maintenance
compared to F/T sensors.

Furthermore, Inertial Measurement Units (IMUs) are employed in instrumented sys-
tems to monitor the orientation and movement of humanoid robots. IMUs consist of
accelerometers, gyroscopes, and sometimes magnetometers, collectively providing infor-
mation on the robot’s acceleration, angular velocity, and orientation in three-dimensional
space. Integrating IMUs into the robot’s body allow to track the robot’s movements, de-
tect deviations from the desired path, and make necessary adjustments to maintain stable
locomotion.

Figure 1.5 shows an example of a F/T, flexiforce and IMUs sensor. The amalgama-
tion of F/T sensors, flexiforce sensors, and IMUs within instrumented systems facilitates
comprehensive measurements of ground reaction forces, pressure distribution, and robot
orientation. The sensors mentioned above are essential for the development of humanoid

(a) Force torque sensor. (b) Flexiforce sensor. (c) Inertial measurement unit.

Figure 1.5: Illustration of common sensing systems employed in humanoid locomotion for
accurate measurement and control.

robots, and they have been used in the development of almost every humanoid robot,
including Atlas, iCub, and NAO.

While other sensors, such as cameras and LiDAR, are also important, they are not the
focus of this work.

1.4 The Significance of Computational Intelligent Tech-
niques in Humanoid Robotics

Computational intelligent techniques play a central role in extracting valuable insights
from data across various domains, and their significance is particularly pronounced in
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the field of humanoid robotics. These techniques, driven by advanced computational
algorithms and models, have the ability to analyse and interpret complex sensor data, en-
abling humanoid robots to make informed decisions and adapt their locomotion strategies
accordingly.

In the realm of humanoid robotics, computational intelligent techniques have transfor-
mative applications. They empower robots to process sensory information from multiple
sources, such as cameras, force sensors, and IMUs sensors, to gain a comprehensive un-
derstanding of their environment. By leveraging this data, humanoid robots can navigate
and interact with their surroundings in a more intuitive and adaptive manner. When it
comes to locomotion on different types of floors, such as surfaces with varying coefficients
of friction, computational intelligent techniques become even more essential. The accu-
rate interpretation of data related to ground reaction forces, IMUs readings, and other
relevant parameters becomes crucial for maintaining stability, preventing slips and falls,
and optimizing locomotion performance.

By analysing foot contact forces, computational intelligent techniques provide hu-
manoid robots with valuable information about the interaction between their feet and
the surface. This data allows them to adjust their gait, joint torques, or control actions to
ensure optimal stability and balance on surfaces with different frictional properties. For
example, on slippery floors with low coefficients of friction, the robot can adapt its move-
ments to reduce the risk of slipping, while on surfaces with high coefficients of friction, it
can optimize its foot placement to maximize traction and efficiency.

Moreover, computational intelligent techniques enable real-time analysis of IMUs data,
which provides information about the robot’s orientation, acceleration, and angular veloc-
ity. By monitoring these parameters, humanoid robots can detect changes in the surface
conditions and dynamically adjust their locomotion strategies. For instance, if the coef-
ficient of friction suddenly decreases on a previously stable surface, the robot can react
swiftly by modifying its joint torques or adopting a different walking pattern to maintain
balance and prevent falls.

1.5 Advancements in Humanoid Control

Humanoid robots, designed to mimic human form and behaviour, require sophisticated
control systems to achieve stable and efficient locomotion. The field of humanoid robotics
has seen significant advancements in the development of controllers that enable these
robots to perform complex tasks, navigate diverse environments, and adapt to changing
conditions. Humanoid controllers serve as the underlying framework that orchestrates the
robot’s movements, ensuring coordination, balance, and responsiveness.

At the core of humanoid controllers is the principle of dynamic stability. Unlike static
stability, which focuses on maintaining balance while stationary, dynamic stability refers
to the ability of a robot to maintain balance while in motion. Achieving dynamic stability
in humanoid locomotion is essential for navigating challenging terrains, performing agile
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movements, and recovering from external disturbances. Humanoid controllers employ
advanced algorithms and control strategies to enable the robot to dynamically adjust its
posture, joint angles, and motor torques to maintain stability.

There are various approaches to designing humanoid controllers, each with its own
strengths and limitations. One common approach is based on the concept of whole-body
control, which considers the robot as a unified system rather than a collection of individual
joints and limbs. Whole-body control aims to coordinate the movements of all the robot’s
body parts to achieve stable and coordinated motion. This approach often incorporates
dynamic modelling, optimization techniques, and feedback control to generate desired
trajectories and achieve stability (Sentis and Khatib, 2006).

Another approach is behaviour-based control, which focuses on organizing the robot’s
actions into modular behaviours or skills. These behaviours can be designed individually
and then combined to generate complex movements and tasks. Behaviour-based controllers
provide a flexible and modular framework, allowing for easy adaptation and reconfiguration
of the robot’s actions based on the task and environment (Katić and Vukobratović, 2003).

Furthermore, humanoid controllers can incorporate machine learning techniques to
enhance their adaptability and responsiveness. Machine learning algorithms can be used
to learn from sensory data and optimize control policies, enabling the robot to adapt its
movements based on real-time feedback and environmental conditions.

Several notable examples highlight the capabilities and advancements in humanoid
controllers. One example is the ZMP controller, which utilizes the concept of the ZMP to
achieve dynamic stability (Sayari et al., 2019). The ZMP controller calculates the point
on the ground where the total moments acting on the robot’s body are balanced, ensuring
stability during walking and other locomotion tasks.

Another example is the Model Predictive Control (MPC) approach, which uses dy-
namic models of the robot and the environment to predict future states and optimize
control actions accordingly (Koenemann et al., 2015). MPC controllers enable real-time
adjustment of control parameters and generate robust and stable locomotion patterns.

Additionally, bio-inspired controllers draw inspiration from biological systems and prin-
ciples to achieve humanoid locomotion. These controllers aim to replicate the neural and
musculoskeletal structures found in humans, allowing for more natural and human-like
movements (Colasanto et al., 2015).

These examples illustrate the diverse approaches and techniques employed in humanoid
controllers to achieve stable and adaptive locomotion. By combining principles of dy-
namic stability, whole-body control, behaviour-based control, and incorporating machine
learning, humanoid controllers continue to advance the capabilities of humanoid robots,
enabling them to perform complex tasks, navigate challenging environments, and interact
with the world in a more human-like manner.
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1.6 Humanoid Locomotion in Slippery Environments

This section offers an in-depth analysis of existing studies concerning humanoid loco-
motion across unstructured environments, with an emphasis on navigating slippery ter-
rains. The robotic capacity to traverse unregulated or unpredictable environments is vital
for their practical utility in real-world contexts (Chen and Goodwine, 2020). The present
review dissects the progress, challenges, and ongoing research covering multiple dimen-
sions of humanoid movement in such conditions. It encompasses aspects like deciphering
and manipulating ground reaction forces, harnessing learning techniques to interpret and
extract meaningful patterns from such data, and the creation of advanced controllers to
refine humanoid mobility.

It’s noteworthy that this PhD thesis includes dedicated literature reviews within each
chapter, supplementing the comprehension of various factors contributing to the enhance-
ment of humanoid locomotion. These reviews, together, furnish a thorough understanding
of the discipline and its developments, offering useful perspectives for the research pre-
sented in this thesis.

Over the past decade, impressive improvement have been made in establishing resilient
bipedal robot locomotion. This advancement has been steered by the synergistic blend
of theoretical modeling and analysis via hybrid systems, application of sophisticated non-
linear control methodologies, and meticulous consideration towards mechanical design and
hardware implementation (Ma et al., 2019).

Bipedal locomotion, as grounded in paradigms like ZMP (Vukobratović and Borovac,
2004) and spring-loaded inverted pendulum Spring-loaded Inverted Pendulum (SLIP)
models (Schwind, 1998), relies on a fundamental assumption of zero foot slippage. In
this framework, the robot foot is regarded as an immovable pivot point, functioning ef-
fectively within the controlled environment of a laboratory with adequate floor friction.
However, this approach falls short when faced with the complexities of natural outdoor
terrains, which often present a medley of surfaces characterized by slipperiness, slight
unevenness, or irregularities.

In the context of humanoid robots, the issue of foot slippage is typically treated either
as an external disturbance to be preemptively addressed during gait planning (Kajita et
al., 2004) or as a dynamic challenge necessitating real-time detection and recovery through
feedback control (Vazquez and Velasco-Villa, 2013).

Enhancing the locomotion of humanoid robots involves a continuous sequence of inter-
actions between the robot’s feet and its environment. Within this context, the accurate
detection of foot contacts assumes a pivotal role in several aspects of locomotion control
(Koolen et al., 2016; Herzog et al., 2016; Neunert et al., 2018), including gait planning
(Aceituno-Cabezas et al., 2018; Winkler et al., 2018; Hereid et al., 2018), base state es-
timation (Bloesch et al., 2013b; Rotella et al., 2014; Sushrutha Raghavan et al., 2018;
Piperakis et al., 2019), and Center of Mass (CoM) estimation (Rotella et al., 2015; Piper-
akis and Trahanias, 2016; Piperakis et al., 2018). Consequently, to achieve truly agile and
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dexterous locomotion, it becomes imperative to achieve precise contact status estimation.
In the realm of contact detection, current methods can be broadly categorized into two

primary groups:

• Direct Measurement Approaches

These approaches directly utilize measurements of ground reaction wrenches. In the
literature, researchers have employed various algorithms for the precise analysis of
GRFs. These include the utilization of F/T sensors (Fallón et al., 2014; Kuindersma
et al., 2016), contact/pressure sensors (Piperakis et al., 2018; Bloesch et al., 2013a),
IMUs sensors (Maravgakis et al., 2023) or a combination of F/T sensors with IMUs
data (Lin et al., 2021).

• Kinematics and Dynamics-Based Approaches

These methods leverage principles of kinematics and dynamics to estimate the GRFs,
which are then used to infer the contact status. In the literature, authors estimate the
GRFs by capitalizing on the kinematics and dynamics of the robots, each employing
different methods for estimation (Ortenzi et al., 2016; Hwangbo et al., 2016; Neunert
et al., 2017; Camurri et al., 2017; Lin et al., 2021).

Various methodologies are employed to decipher GRFs and estimate the contact be-
tween the robot and the floor. These methods encompass a range of techniques, including
Schmitt-Trigger (Fallón et al., 2014; Piperakis et al., 2018; Kuindersma et al., 2015),
Kalman filtering (Bloesch et al., 2013b; Bloesch et al., 2013a), clustering using fuzzy
c-means algorithms (Rotella et al., 2018), probabilistic frameworks incorporating hid-
den Markov models (Hwangbo et al., 2016), deep learning-based approaches (Lin et al.,
2021; Piperakis et al., 2022), and unsupervised learning frameworks (Rotella et al., 2018;
Hoepflinger et al., 2013).

In this study, we acknowledge the temporal evolution within the field, particularly
the growing trend towards machine learning techniques. Subsequently, we harness the
potential of neural networks for performing this classification, as detailed in the following
sections of this thesis.

Comprehensive investigations into slip dynamics are relatively limited in the current
research landscape. The majority of existing studies pertaining to low-friction foot contact
primarily concentrate on preemptive slip avoidance (Ferreira et al., 2020; Khadiv et al.,
2017). Explicit examinations of slipping dynamics are predominantly oriented towards the
domain of human locomotion (Mihalec et al., 2022; Trkov et al., 2019; Chen et al., 2015),
with a few noteworthy exceptions.

In Mihalec and Yi (2023), the authors presented a motion planning methodology that
hinges on a two-mass Linear Inverted Pendulum (Two-Mass Linear Inverted Pendulum
(TMLIP)) model, in conjunction with a frictional Whole-Body Operational Space
(FWBOS) full-body recovery control strategy, visually depicted in Figure 1.6 and Figure
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1.7. Specifically, Figure 1.6 illustrates the schematic representation of the TMLIP model
and the utilized full-body model, while Figure 1.7 offers insight into the control diagram
employed. This strategy aimed to calculate joint torques to counteract the effects of

Figure 1.6: Left: schematic of the TMLIP model. Center: bipedal robotic walker. Right:
schematic of a 5-link full body model (Mihalec and Yi, 2023).

Figure 1.7: Control diagram for walking. Slip changes the results of TMLIP and FWBOS
calculations (Mihalec and Yi, 2023).

slip dynamics during locomotion. Notably, when the robot operated on surfaces with
extremely low friction, it encountered challenges in maintaining gait balance. However,
the authors asserted that, despite these challenges, their controller exhibited superior
performance when compared to conventional controllers. Specifically, it outperformed
them in terms of maintaining balance over time and achieving greater walking distances.

In Radosavovic et al. (2023), the authors devised a sim-to-real learning based method
for enabling real-world humanoid locomotion. The core component of their controller
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is a causal Transformer, which underwent training through autoregressive prediction of
forthcoming actions based on a historical record of observations and actions, as visually
illustrated in Figure 1.8. This approach underwent reinforcement learning training within

Figure 1.8: Causal Transformer model trained by autoregressive prediction of future ac-
tions from the history of observations and actions. (Radosavovic et al., 2023).

a simulation environment and was subsequently deployed without any further adaptation
("zero-shot"). Their model underwent comprehensive evaluation within a high-fidelity
simulation environment and showcased remarkable success in deployment across various
types of floors. Notably, it faced challenges in the most demanding scenario, characterized
by a surface with significantly lower friction, and did not excel in this particular case.

In Lee et al. (2022), the authors introduced strategies for stabilizing slippery mo-
tion within a Whole-Body Control (WBLC) framework, focusing on known and unknown
slip scenarios. They used CoM re-planning based on parameter estimation and online
weight adaptation to address unknown slip, improving stability. While effective in simu-
lations, potential challenges include traction loss, parameter estimation inaccuracies, and
instability, requiring further investigation. Real-world implementation remains untested,
presenting additional hurdles like kinematic singularities and dynamics errors that need
to be addressed in future research.

For instance, in Frizza et al. (2022), an alternative perspective is offered, wherein the
focus shifts towards modifying the robot’s feet rather than altering the robot’s gait or
controller. They conducted experiments utilizing a compliant sole with variable stiffness
(Figure 1.9), which resulted in notable improvements compared to the robot’s flat feet
with fixed stiffness.

Despite the different approaches explored in this context, it is evident that slip dy-
namics remain a challenging problem with limited research efforts, stressing the need for
further attention and exploration.
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(a) Simplified model of the complaint foot.
(b) Deformable foot model used in dynamic
simulations.

Figure 1.9: Variable stiffness feet for humanoid walking. The plantar arc is composed
of ten blocks representing the ten phalanxes, connected between each other by rotational
joints with viscoelastic elements. The plantar arch is connected with the frontal and
backward arch through rotational passive joints (Frizza et al., 2022).

1.7 Brief Research Journey

My research journey began at the Institute of Electronics and Informatics Engineering
of Aveiro (IEETA) and the Laboratory for Automation and Robotics (LAR) housed within
the Mechanical Department of Aveiro University. This journey commenced with the cre-
ation of an innovative instrumented system, aptly named ITShoe, which was carefully
developed for the precise measurement of GRFs experienced by a walking humanoid on
a diverse array of surfaces. Notably, our focus lay on those surfaces characterized by low
friction coefficients. We are sincerely grateful for the support provided from the Fundação
para a Ciência e Tecnologia (FCT) through their funding of the project titled ’Automatic
Adaptation of Humanoid Robot Gait to Different Floor-Robot Friction Coefficients,’ with
the project reference number PTDC/EEI-AUT/5141/2014.

This inaugural phase of my research represented a holistic undertaking, encompassing
the entire spectrum of activities involved in the development of the ITShoe, from concep-
tualization and design to material selection, construction, and the intricacies of setting
up electronics. The overarching goal was to ensure the seamless and real-time measure-
ment and transmission of force data. This pioneering phase culminated in the collection
of valuable data using the robot+ITShoe architecture.

Subsequently, I seized the opportunity to further expand my horizons by joining the
esteemed Institute Mihailo Pupin in Belgrade, Serbia. Here, I ventured into the field of
machine learning, exploring a variety of tools and algorithms, with the objective of finding
the most efficient and accurate approach to interpret the force data. My progress was
guided and enhanced by the expertise of my dedicated supervisor at the institute. During
my three-month stay at the Institute Mihailo Pupin, I actively participated in an ongoing
research project focused on the adaptation of the NAO humanoid robot’s gait. Moreover,
I had the opportunity to contribute to the scientific paper (Franco G. Almeida, 2018),
which significantly enriched my research experience.
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Upon returning to the LAR, the research journey continued to evolve as various com-
putational intelligence techniques were explored, aiming to refine the data interpretation
process. Progressive enhancements were introduced to both data gathering and analysis
methodologies. Once the capability to classify different floors in real-time was achieved
with the actual robot, a new chapter in the research journey was embarked upon.

I joined the Robotic Laboratory at Carlos III University of Madrid, and for four
months, my focus shifted towards advancing the control mechanisms of humanoid robots.
Here, collaboration with a different humanoid robot, TEO, provided valuable experience
in both simulated and real-world environments.

Ultimately, my path led me back to Aveiro University, where the improved robot control
system was integrated with the humanoid robot that had been a constant companion
throughout the thesis. I owe a debt of gratitude to ISR for their support and provision of
the robot for the duration of my research. By incorporating the controller into a simulated
environment, we successfully unified all the work undertaken thus far. Moreover, we
developed a controller that dynamically adapted its parameters based on the classification
of the walking surface, thus enhancing the humanoid’s gait on slippery floors.

1.8 Thesis Organization

This thesis focuses on improving the adaptability of humanoid locomotion on slippery
floors. The primary objective is to acquire real-time knowledge of these challenging sur-
faces in order to enable effective control of humanoid robots and ensure their successful
navigation through such obstacles. This goal is achieved by addressing the initial hypothe-
ses presented.

The thesis is structured into several chapters, including a general introduction (Chapter
1), one conference paper and three journal papers (Chapters 2-5), and a comprehensive
discussion encompassing concluding remarks and future work (Chapter 6).

This thesis is structured into three interrelated parts that collectively tackle the chal-
lenge of enhancing humanoid locomotion adaptability on slippery floors:

• Part I (Chapter 2): This part is dedicated to the development of a wearable 3D
force system known as Instrumented Shoes (ITshoes). The primary objective is to
create a robust and versatile instrument that can accurately measure the ground
reaction forces experienced by a walking humanoid robot. The ITshoes are designed
to seamlessly integrate with various robot designs, although the manufactured units
are specifically tailored for the NAO humanoid, while minimizing any disruption
to the robot’s locomotion. By precisely capturing the ground reaction forces, this
system lays the foundation for subsequent analysis and control strategies.

• Part II (Chapters 3-4): Building upon the data obtained from the ITshoes,
this part focuses on the application of machine learning algorithms to address the
challenge of classifying different types of slippery floors. The goal is to leverage the
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ground reaction force data collected by the ITshoes to train and deploy machine
learning models capable of accurately identifying and categorizing various slippery
surface conditions. This classification system provides valuable real-time information
about the ground conditions, empowering the robot to make informed decisions and
adapt its locomotion accordingly.

• Part III (Chapter 5): The emphasis of this part lies in enhancing the humanoid
controller by leveraging the real-time knowledge of the floor conditions obtained
from Part II. By incorporating the classified floor types into the control system,
improvements can be made to optimize the robot’s locomotion and ensure its adher-
ence to the specified task. The control system is designed to dynamically adjust the
robot’s gait, balance, and motion planning based on the identified floor condition.
These enhancements aim to maximize walking stability, efficiency, and adaptability,
particularly when navigating slippery surfaces.

The chapters (Chapters 2-5) in this thesis encompass the research conducted during the
PhD program and adhere to a coherent structure. Each chapter of this thesis corresponds
to a scientific paper that has already been published, with the exception of chapter 5,
which is currently under submission. As a result, every chapter includes an abstract, an
introductory section that offers a comprehensive review of the state-of-the-art, details on
the methodology employed (which may also be referred to as ’materials and methods’),
presentation of the obtained results, discussion of the findings, and concluding remarks.
Chapters in Parts I and II are supported by extensive experimental data collected from
the physical system, providing a robust foundation for the research. In contrast, Part III,
while featuring some physical developments, primarily relies on simulation due to hardware
limitations in controlling the actual robot.
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2.1 Abstract

The measurement of ground reaction forces (GRFs) is crucial in the biomechanical
analysis of gait and other motor activities. Current humanoid robots mimic some of
the biological adaptation methods found in humans. Therefore, studying the GRFs in
these robots allows not only to improve their overall performance, but also to extrapolate
possible techniques for human walking rehabilitation. The balance of a humanoid robot
may be compromised when it walks and, even more, when it walks across multiple grounds
with different frictions. This paper presents a system to be seamlessly installed on a
walking humanoid robot to measure normal and tangential ground reaction forces. The
proposed solution is a cost-effective, lightweight and wirelessly instrumented shoe (ITshoe)
for real-time measuring of the GRFs.

2.2 Introduction

Walking robots compete to mimic some of the biological adaptation methods found
in humans. Studying these humanoid robots grants the possibility to deduce methods for
human walking rehabilitation. During walking, the impulsive force between the stance foot
and the ground may affect the stability and reliability of biped robots seriously. Bearing in
mind the need to reach a properly and safely humanoid robot locomotion, with a precise
and robust control, it is crucial to measure the contact force between its feet and the
ground.

This work is part of a project entitled "Automatic adaptation of an humanoid robot
gait to different floor-robot friction coefficients", that aims to achieve adaptive humanoid
robot walking through several types of floors. Following this idea, the principal aim of
this work is the development of a system capable of detecting and analysing the complete
ground reaction forces (GRFs). The major requirements for such a system are small weight
and size, self-contained and no impediment of functional mobility.

The current work presents a novel instrumented shoe (ITshoe) capable of measuring
the three components of the GRFs. The solution detects and wirelessly transmits the
GRFs in real-time, it is customizable for different robots, it allows more parameters than
integrated solutions in robots, and it can be easily installed independently of the robot
control. The ITshoe is designed to be used with the humanoid robot NAO and has two
main parts: Outer Shoe (OSh) and Inner Shoe (ISh). The OSh is the instrumented part
of the shoe, whereas the ISh is the link between the robot’s foot and the OSh.

The remainder of the paper is divided as follows. Section II presents a review of
modern developments connected to this work, such as commonly used sensors and existing
instrumented systems. The developed prototype is presented in Section III. The system’s
architecture is outlined in Section IV. GRFs experiments and results are discussed in
Section V. Finally, Section VI presents the conclusions and future challenges.
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2.3 Related Work

Multiple systems have been developed for GRFs estimation, being commonly used
in two major fields: robotics and biomechanics. Most of today’s humanoid robots are
equipped with force sensing capabilities at the feet for stability purposes, based on com-
mercial or custom-made solutions. Besides being expensive, commercial solutions adopted
are tailored to specific needs in which the main concern is to provide an accurate estimate
of the robot’s center-of-pressure (CoP). Kim and Yoon (2009) developed an intelligent
foot for a humanoid robot using two manufactured six-axis force/moment sensors (twelve
sensors). The developed foot operates similarly to a human foot, but it turns out to be a
little unpractical and an expensive solution, since it requires a challenging process to be
used with existing humanoids. On the other hand, Şafak and Baturalp (2010) use four
force sensitive resistors Force Sensitive Resistors (FSRs) to build a foot contact sensor for
a biped robot. Although, no trials have been performed, over numerical simulations the
authors achieved a viable method to monitor postural stability of biped robots.

Systems that allow quantitative analysis of human gait are normally classified into:
ground mounted force platforms and wearable instrumented systems (e.g. shoes and in-
soles). Force plates have the disadvantage of limiting the number of steps that can be
done and are expensive, hence, the increasing advantage of using portable instrumented
systems. These systems are usually designed with strain gauges, piezoelectrics, force sen-
sitive resistors (FSR) or 3- to 6-axis transducers. Different wearable systems have been
designed and developed over the recent years in order to measure the GRFs, to estimate
the coordinates of the CoP and to monitor gait events, see for example (Crisóstomo et al.,
2017; Park et al., 2016; Figueiredo et al., 2017; Zhang et al., 2017). However, most of the
solutions are designed to be used directly with humans, and few allow the measurement
of the complete GRFs.

Zhang et al. (2017) features a fully-portable instrumented insoles capable of mea-
suring spatio-temporal gait parameters and CoP trajectories during walking and running
assignments, using a multi-cell piezoresistive sensor. Crea et al. (2014) presents a pressure-
sensitive foot insole for real-time monitoring of plantar pressure distribution during walk-
ing. The system includes 64 pressure-sensitive elements and a electronic board to acquire
and transmit the data through bluetooth with a sampling frequency of 100 Hz. The pro-
posed solution is developed to do a gait analysis based only on the vertical ground reaction
forces (vGRFs) and the coordinates of the CoP. The estimation of the vGRFs showed a
high qualitative correlation despite the significant difference in terms of actual values mea-
surements against a force-platform. Lincoln et al. (2012) designed a low-cost silicone insole
capable of measuring the complete three dimensional reaction force vector. The developed
sensor features a error within 10% and appears to have a temperature dependency. Many
solutions within this theme are developed, but none seems suited to be adapted and used
with different humanoids.
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2.4 ITshoe Prototype Design

Fig. 2.1 schematically illustrates the design of the ITshoe. It has a total weight of
210 g (approximately 4% of the humanoid robot NAO weight) and dimensions measuring
125 mm × 65 mm × 18 mm to accommodate all the necessary hardware. The shoe is
divided into two parts: OSh (Fig. 2.1a) and ISh (Fig. 2.1b). The OSh is the instrumented
part of the shoe and the ISh is used to change the robot foot geometry allowing a tight
fit with the robot’s foot, thus ensuring a correct and complete force transfer between the
foot and the OSh.

The building material used in the manufacture of the ITshoe is acrylic since it presents
low density (1.18 g/cm3) together with an acceptable modulus of elasticity (3.2 GPa). In
addition, the acrylic allows the user to verify whether the hardware is well positioned
after a specific experience, thanks to its transparency, and it is also an excellent electrical
insulator.

(a) OSh. (b) ISh.

Figure 2.1: ITshoe model. The position of the force sensor that measures the tangential
and the normal forces is represents by the numbers 1 and 2, respectively (left).

2.4.1 ITshoe structure

The ITshoe presented in Fig. 2.2 is divided into three units: sensing, acquisition and
streaming. The sensing unit is composed of piezo-resistive A301 flexiforce sensors (Fig. 2.2
block C, number 6): 4 with a standard force of 4.44N for the measurement of tangential
forces (positioned at 45◦) and 4 with a standard force of 111N to register the normal
forces. The sensors have a reported typical linearity of ±3%, a repeatability of ±2.5% and
a hysteresis of ±4.5% of the full scale output (Tekscan Inc., 2017). When compared to
similar low price sensors (e.g. interlink FSR), they have a shorter response time, a better
linearity, and offer the possibility of registering larger forces (Lebosse et al., 2011). Over
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the sensitive area of these sensors is added a semi-sphere to ease the force transfer.

Figure 2.2: ITshoes schematic structure. The green block (A) is the acquisition unit,
the red block (B) is the streaming unit, and the blue block (C) is the sensing unit. The
main elements of these units are subtitled with numbers: 1–Battery; 2–Step-up voltage
regulator; 3–Micro-controller; 4–Bi-directional level converter; 5–WiFi module; 6–Force
sensor.

The acquisition unit (Fig. 2.2 block A) is responsible for the data acquisition. This
unit deals with the electrical conditioning (Fig. 2.2, number 3 and 4) and the power
supply (Fig. 2.2 number 1 and 2). The voltage dividers assembled in the PCB allow the
connection of the sensors to the micro-controller. The ADC has a 10-bit resolution and
625 kHz frequency to convert the force signals into digital information. To synchronize
and adjust the operating voltage level of this unit, a logic level bi-directional converter is
used. The entire system is powered by a small 750 mAh Li-Po battery through a voltage
regulator.

The streaming unit receives the data across a serial communication with the micro-
controller and forwards it to the server, through the ESP8266 module (Fig. 2.2, number
5). The PCB added to the ITshoe incorporates a voltage regulator LM2937 to match the
ESP8266 required power 3.3 V.
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2.4.2 Sensor calibration

To ensure more accurate readings, a calibration procedure upon the sensors is required.
The calibration procedure starts by conditioning the sensors and applying 110% (or slightly
more) of the maximum test load onto the sensor for approximately 3 seconds. After
repeating this conditioning process, different weights are applied on the sensor and, using
a multimeter, the resistance is recorded. The plot in Fig. 2.3 shows the calibration line
obtained for one of the 4.44 N standard force sensors, where it is visible that there is a
linear evolution between the force applied to the sensor and its conductance.
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Figure 2.3: Force sensor calibration line.

Besides calibration, the sensors were also tested for their dynamic response. This
concern occurs because the reaction forces that arise when a biped robot walks are variable,
thus emerging the necessity to validate the dynamic response of the sensors. Hence, an
experiment was conducted to analyze the sensors’ dynamic response by using a mechanical
testing machine Shimadzu MMT-101N. With this machine, a 4 N force was applied to the
sensor with 3 different velocities (50, 25 and 12.5 N/s).

Fig. 2.4 shows the sensor responses for the applied forces. For the lower velocity, the
sensor maximum force detected exceeds 3% the applied force, while for the higher velocity
the sensor is not able to reach the maximum applied force (5.5% error). Indeed, there is a
slight delay or saturation of the dynamic response of the sensors for some velocities, but
those deviations are not expected to compromise the suitability of the sensors to monitor
robot locomotion. Actually, and as might have been expected due to the piezoelectric
nature of the sensors, their response improves with higher velocities, thus seeming quite
adequate to catch the finer, or higher frequency, transitory force reactions.
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Figure 2.4: Flexiforce sensor dynamic response.

2.5 System Architecture

The proposed system architecture (Fig. 2.5) aims to create a data provider–data pro-
cessor system in which the data provider is a measurer module responsible for measuring
data regarding all components of GRFs for each robot foot separately. This module is
also responsible for relaying this information to the data processor. The data processor is
accountable for storing, processing and presenting such data.

Figure 2.5: System basic architecture.

The data provider is assembled by two major modules: the control module and the
capture module. The control module is responsible for all the initial settings required,
from the time the data provider runs until it connects to the data processor. Firstly,
starts by setting the WiFi module using AT commands. These commands allow the
WiFi module to establish a connection with the data processor and further define the
protocol as UDP. The capture module implements the capture process, being responsible
for measuring data from all the sensors synchronously. The module operates based on
a timer, ensuring periodic data acquisition for each sensor. The diagram in Fig. 2.6
illustrates the acquisition process.

The data processor is also formed by two major modules: the storage and the analysis
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Figure 2.6: Acquisition process. F = Force applied to the sensor; S = Sensor; Rv =
Resistance variation; M = capture Module; T = Timer.

modules. On the one hand, the storage module receives, stores, and displays the gathered
data for further analysis. Essentially, in ROS environment, two functions (nodes) are used
to receive and print the raw data. The data processor is configured to work as an access
point (AP) creating a wireless local area network (WLAN). It waits for the ITshoe to be
connected and starts receiving UDP messages. Well-formed messages are processed and
made available for display, and also stored in a comma separated format file for further
analysis by external applications. The second function subscribes the received message
and generates a graphic environment (Fig. 2.7) that facilitates the understanding of the
data evolution, as well as the CoP behaviour.

On the other hand, the analysis module implements a data analysis interface in order
to convert the raw data into forces and to extract relevant information. The proposed
system is designed to measure and transmit raw data at a frequency of 100 Hz.

Figure 2.7: Graphical representation of the force values (example using the LITshoe). 1-
ITshoes; 2- Humanoid robot NAO.
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2.6 Experiments and Results

This section describes the experiments and data acquisition results. The raw data
upload rate is evaluated, and the GRFs are detected during two humanoid robot situations:
static position and locomotion for two different grounds.

2.6.1 Data upload rate percentage loss

The ITshoes were turned on and data was collected for one hour; table 2.1 shows the
data upload percentage loss for that time interval. By observing the results, it can be
concluded that the developed ITshoes have a very good upload rate since the data loss is
negligible. The loss of data can be justified with the instability of the WiFi module.

Table 2.1: Data upload rate percentage loss for both ITshoes.

Bytes sent Bytes received Data loss [%]

Left ITshoe 360000 359894 0.03
Right ITshoe 360000 359783 0.06

2.6.2 Detection of the vGRFs for a static robot position

Fig. 2.8 illustrates the position of the humanoid robot where the vGRFs (sum of the
values measured by the four sensors responsible to measure this component of the GRFs)
are gathered. As can be seen in Fig. 2.9, despite the visible differences between the total
forces measured by the two ITshoes, the sum 53.19(32) N ends up to be close to the robot
weight: 5.4 kg, approx. 52.96 N.

2.6.3 Detection of the total GRFs during robot locomotion on two dif-
ferent floors

For this trial, the data is collected with the humanoid robot NAO walking on two
different floors: laboratory floor and carpet. The total GRFs are divided into vertical
ground reaction forces vertical Ground Reaction Forces (vGRFs), and horizontal ground
reaction forces horizontal Ground Reaction Forces (hGRFs). The measured vGRFs are
illustrated in Fig. 2.10. In order to have a better perception of the measured values, only
three random steps are shown.

It is noticeable that the step force patterns from grounds A and B are distinct. On
the other hand, for each ITshoe (left and right) and type of ground (A and B), the step
patterns are visually quite similar among them. These observations are very interesting
since they open the way for automatic detection of grounds based solely on the reaction
force patterns. If precise absolute values for each foot are of concern, it may be required
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Figure 2.8: Robot in a static position.
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Figure 2.9: vGRFs for a robot static position. Left instrumented shoe (LITshoe) normal
force (red), right instrumented shoe (RITshoe) normal force (green), and total (SITshoe)
normal force (blue).

to have an additional calibration process by means of a ground truth source (e.g., a force-
sensing platform).

The hGRFs can be represented in the sagittal and in the transverse axis as depicted
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Figure 2.10: vGRFs for a walking humanoid robot on two different grounds. Excerpt of 3
steps for each ITshoe. A–laboratory ground; B–carpet.

in Fig. 2.11. Since the horizontal sensors are strategically positioned at 45◦, it is quite
simple to write the equations that represent the forces in these axis.

Figure 2.11: hGRFs axis detail. S1_45 to S4_45 represent the four horizontal force
sensors.

The total horizontal force in the sagittal and transverse plane can be calculated as
follows:

Fhst =
√

2
2 [(S1 + S2) − (S3 + S4)] (2.1)
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Fhst =
√

2
2 [(S2 + S4) − (S1 + S3)] (2.2)

where Fhst is the total horizontal force in the sagittal plane, Fhtt is the total horizontal
force in the transverse plane, and S1 to S4 are the sensors used to measure the tangential
forces.

Fig. 2.12 and Fig. 2.13 illustrate the hGRFs. The data corresponding to the moment
when the foot is in the air (swing foot) was removed from the plots.
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Figure 2.12: hGRFs in the sagittal plane for a walking humanoid robot on two different
grounds. Excerpt of 3 steps for each ITshoe. A–laboratory ground; B–carpet.
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Figure 2.13: hGRFs in the transverse plane for a walking humanoid robot on two different
grounds. Excerpt of 3 steps for each ITshoe. A–laboratory ground; B–carpet.
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Relatively to the hGRFs in the sagittal plane, a similarity between the data from
the LITshoe and the RITshoe is visible for both grounds. This pattern may be useful
to recognise different robot walking situations, since the robot balance will tightly affect
these forces. The hGRFs in the transverse axis, between the LITshoe and the RITshoe,
seems to be opposite but similar in absolute value. This behaviour appears to be correct
since the positive direction in this axis for the RITshoe is the negative direction for the
LITshoe as stated in Fig. 2.11.

All these indicators suggest that automatic detection of different floors, among other
studies in gait analysis and expectedly also ground friction coefficients, can be done by
observing the ground vertical and horizontal reaction forces using these instrumented
shoes. Automatic separation of steps from full sequence of data is fairly easy since the
alternation of the stance and swing foot is detectable by the activity of normal forces.

Anyway, with combined or separate steps, the next challenge is to process data and
conclude about the floor the robot is walking on. Several tools appear, and some have ac-
tually been preliminary tried, suited for that task, such as temporal and spectral analysis,
or even machine learning techniques.

2.7 Conclusions and Future Work

This paper presents a system that is able to measure the GRFs, in real-time, of a
walking humanoid robot. The ITshoe is a cost-effective, self-contained and low-power
battery-powered device that does not affect the balance of the robot. The ITshoe design
simplifies its use with a variety of humanoid robots, since it only requires a change in its
coupling geometry, that can be extracted from the robot foot in question. Nevertheless,
more research, refinements and extensions are desired to improve its functionality and
accuracy.

Using computational techniques models, either in spectral analysis or machine learning,
in the near future, it is expected to be possible to distinguish different floors by analysing
the patterns, obtained by the force sensors, for different grounds. Additionally, it is also
expected that this data can be used for several other studies within this theme, to improve
the performance and balance of biped humanoid robots.
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Chapter 3. Learning-based Analysis of a New Wearable 3D force
System Data to Classify the Underlying Surface of a Walking

Robot
3.1 Abstract

Biped humanoid robots that operate in real world environments need to be able to
physically recognize different floors to best adapt their gait. In this work we describe
the preparation of a dataset of contact forces obtained with eight force tactile sensors
for determining the underlying surface of a walking robot. The data is acquired for four
floors with different coefficient of friction, and different robot gaits and speeds. To classify
the different floors, the data is used as input for two common computational intelligence
techniques Computational Intelligence Techniques (CITs): Artificial neural network Arti-
ficial Neural Network (ANN) and extreme learning machine Extreme Learning Machine
(ELM). After optimizing the parameters for both CITs, a good mapping between inputs
and targets is achieved with classification accuracies of about 99%.

3.2 Introduction

Most walking robots, operating in real world scenarios, do not have a control system
with knowledge about the characteristics of the underlying surface. This information is
of critical importance for fine-tune the gait parameters to the floor requirements, so that
the humanoid robot can reach a properly and safely locomotion, with a precise and robust
control.

To this aim, the state-of-the-art literature describes mostly the use of 3D sensors,
inertial measurements units, force/torque or tactile sensors to gather data for further
classification of the floors using, most commonly, mathematical and learning-based algo-
rithms. Although the majority of the work on floor classification is presented for wheeled
robots, mainly for outdoor environments, either through data obtained with 3D sensors,
e.g. (Winkens et al., 2017; El-Kabbany and Ramirez-Serrano, 2010; Laible et al., 2013;
Woods et al., 2013; Manduchi et al., 2005; Abbas et al., 2013), inertial measurement units,
e.g. (Lomio et al., 2019; Oliveira et al., 2017; Brooks and Iagnemma, 2005; Weiss et al.,
2006; Giguère and Dudek, 2009a; Giguère and Dudek, 2009b; Bai et al., 2019; Tick et al.,
2012), or multiple sensors fusion, e.g. (Ojeda et al., 2006; Brooks and Iagnemma, 2012;
Weiss et al., 2008; Wietrzykowski and Skrzypczynski, 2018), our interest in the literature
is focused on legged robots, more precisely humanoids.

In this scope, examples of vision-based approaches can be found in (Filitchkin and Byl,
2012; Zenker et al., 2013; Zhu et al., 2019). These works use a bag-of-words (BoW) model
and a speeded up robust features (SURF) to extract and treat the images features for
further classification using support vector machine Support Vector Machine (SVM). Even
though using vision has the advantage of collecting information from the floors before the
locomotion action, the results can be unreliable. For example, two surfaces may look the
same, but yet have a different friction property, which leads to the need of two different
humanoid gaits. We believe that sensing through physical interaction is a unique and
necessary approach to improve humanoid robots mobility skills.
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In Matsumura et al. (2014), the authors used body-mounted inertial sensors in a small
humanoid robot to identify ten different kind of common floor surfaces on which the robot
is standing in home environments. To build the dataset, four full body motions are ex-
ecuted 60 times for each type of floor, and using a decision tree classifier, they achieved
a precision of 85.7%. The highest misclassification is found for relatively hard floors, be-
cause these floors are more similar to each other from a point of view of the properties
that affect the body motions, unlike what happens with the soft ones. Other work have
shown the possibility of using this type of sensors, using data related to three outdoor
surfaces. In Bermudez et al. (2012), the authors implemented a SVM algorithm and used
25% of the data to test it, achieving a 93.8% overall accuracy.

In Walas et al. (2016), the authors propose a classification of 5 terrain types, based
on the force torque sensor readings installed on the humanoid robot WALK-MAN ankle.
A total of 1250 steps of the humanoid robot over the different floors are extracted and
two methods were used for data reduction: Fast Fourier Transform (FFT) and Discrete
Wavelet Transform (DWT). The learning procedure is performed using SVM over a feature
vector of 120 elements or 270 depending on the approach used to reduce the steps data
size, FFT or DWT, respectively. The results look more promising for the DWT approach
with a precision of about 95% vs. 91%.

In Kertesz (2016), six indoor surface types were distinguished by fusing data from
multiple built-in sensors of a Sony ERS-7, such as, force sensors, to collect the ground
contact forces, accelerometer, infrared range and motor force sensors. The developed ran-
dom forest model allowed the classification of the different floors with a cross-validation
and accuracy of 96.2% and 94%, respectively, for one gait at a fixed speed. Similarly,
by fusing different sensors, a six-legged robot is able to recognize 12 surfaces with a 95%
precision (Walas, 2015).
We propose a novel method to classify four floors with different friction coefficient based
only on the data obtained with eight force tactile sensors that are installed in an instru-
mented shoe that we developed on previous work, to be used with the humanoid robot
NAO (Almeida et al., 2018). To interpret and recognize the data, two popular compu-
tational intelligent techniques (CITs) are explored: artificial neural network (ANN) and
extreme learning machine (ELM). In order to obtain a more robust learning classifier the
data is also collected for several gaits and speeds.

Past works, show the successful application of ANNs (Bai et al., 2019; Ojeda et al.,
2006), and, to our knowledge, ELM is not yet explored for the humanoid floor classifica-
tion problem.

The main contribution of this work is the validation that inexpensive tactile sensors
together with common, widely used learning-based algorithms can be used to obtain reli-
able information which allows the correct classification of different floors, thus improving
humanoid robots mobility skills.

The reminder of the paper is divided as follows. Section II presents the materials and
methods for the data collection and manipulation. The CITs implementation and experi-
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mental results are presented in Section III. Lastly, section IV presents the conclusions and
future challenges.

3.3 Materials and methods

On previous research we developed an ITshoe (Fig. 3.1) to be seamlessly installed on
a walking humanoid robot to measure real-time vertical and horizontal GRFs (Almeida
et al., 2018).

The ITshoe has two main parts, outer shoe and inner shoe, and it is designed to be

Figure 3.1: ITshoe schematic structure. The block (A) is the acquisition unit, the block
(B) is the streaming unit, and the block (C) is the sensing unit. The main elements
of these units are subtitled with numbers: 1- Battery; 2- Step-up voltage regulator; 3-
Micro-controller; 4- Bi-directional level converter; 5- WiFi module; 6- Force sensor. On
the right side it is visible the position of the eight force sensors and the reference axis used
to decompose the tangential forces.(Almeida et al., 2018)

used with the humanoid robot NAO. The inner shoe is used to link the robot’s foot and
the outer shoe, whereas the outer shoe is the instrumented part of the shoe. The ITshoe is
designed to measure and transmit raw data at a frequency of 100 Hz and it is composed by
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a sensing unit (eight A301 flexiforce sensors), acquisition unit (electrical conditioning and
power supply), and a streaming unit (WiFi module). Fig. 3.2 illustrates an example of
the measured GRFs (normalized) for two steps of a walking humanoid robot. The GRFs
are divided into total normal force (vGRFs) and total horizontal force (hGRFs). The
hGRFs can be represented in the sagittal and transverse plane as depicted in Fig. 3.1,
and calculated as follows:

Fhst =
√

2
2 · [(S145 + S245) − (S345 + S445)], (3.1)

Fhtt =
√

2
2 · [(S245 + S445) − (S145 + S345)], (3.2)

where Fhst is the total horizontal force in the sagittal plane, Fhtt is the total horizontal
force in the transverse plane and S145 to S445 are the sensors used to measure these
tangential forces.

All datasets presented in this work are obtained with the ITshoe.

Figure 3.2: GRFs for a walking humanoid robot. Example of two measured steps repre-
sented as normal and tangential forces.
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3.3.1 Floor classification

In this study, we attempt to identify which one of four different candidate floors the
humanoid robot walked on, having as hypothesis that each ground type has a particular
signature when identified by the force sensors that measure the contact forces between the
biped feet and the ground. To further facilitate the data collection in the laboratory, we
built three shoe soles (using the materials: teflon, aluminium and carpet) to be added to
the ITshoe and used the ITshoe acrylic as the fourth material. Fig. 3.3 shows the shoe
soles used in this work.

Their coefficient of friction Coefficient of Friction (CoF) is measured against a melamine
sheet (base material) on which the robot walks with the distinct shoe soles. The friction
coefficients of the testing materials are measured as follows: each shoe sole is positioned
on a ramp of the melamine material; the ramp is tilted until the shoe sole starts to slide
at a constant velocity; the tilting angle is measured; lastly, the CoF is calculated (equal to
the tangent of the measured angle). Fig 3.4 illustrates the layout for the data acquisition
and CoF measurement.

The chosen floors (shoe soles) have different friction coefficients, ranging from approx-
imately 0.1 up to 0.5. We decided that the lower friction would be around 0.1 since the
biped robot can not walk on more slippery floors, and above 0.5 we considered that the
robot can perform well balanced locomotion actions. Regardless the friction range in
study, in future work, we intend to extrapolate the results to a wider range. Table 3.1
presents the measured CoF for the different materials.

Figure 3.3: Shoe soles materials. A- teflon; B- acrylic; C- aluminium; D- carpet; E-
melamine sheet.
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Figure 3.4: Layout for the data acquisition and CoF measurement. On the left side is the
melamine sheet on which "n" robot steps are measured and the humanoid robot with the
ITshoes, and on the right side is presented the melamine ramp used to measure the CoF
of the materials above identified.

Table 3.1: Shoe soles coefficient of friction.

Material Coefficient of Friction

Teflon-Melamine 0.11
Acrylic-Melamine 0.23
Aluminium-Melamine 0.35
Carpet-Melamine 0.52

3.3.2 Data manipulation

The output signals from each one of the available sensors are sampled and stored
during real-time experiences for subsequent offline analysis. To get more representative and
robust data we also decided to gather the data not only for the different floors, but also for
different robot gait parameters, such as different step length (0.02, 0.04, 0.06 [m]) and step
frequency (0.2, 0.4, 0.6). For these parameters we decided to use equally distanced values,
being that for the higher limit of step length we chose the maximum step length (0.06 m)
of this robot, and the maximum frequency (0.6) was chosen because larger values did not
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produce good enough locomotion actions, therefore making it impossible to collect data.
To summarize, the robot steps force data is collected for all the 36 resulting combinations
between the different floors and the variable gait parameters (4x3x3). Roughly 100 steps
are registered for each combination.

Before classifying the floors with CITs, it is necessary to pre-process the raw data.
The following procedure describes the developed algorithm methodology to extract the
humanoid robot steps that are used as input for the different machine learning approaches.
The algorithm takes as input a matrix filled with raw data of 8 flexiforce sensors, and
outputs the robot steps separately and normalized in the range [-1,1], as follows:

(i) Use the calibration curves to convert each sensor (S(i)) raw data into forces, as
described by the following equation:

F (i) = b(i)
R(i)

(
1024
S(i)

)
− 1

× 1
m(i) , (3.3)

where R is the voltage divider resistor, m and b are the calibration curve slope and
y-intercept respectively, and 1024 (210) refers to a 10-bit analog to digital converter
(ADC).

(ii) Obtain the start and end of each step: Fn(i) ≈ 0 (normal force = 0, robot foot is
in the air).

(iii) Normalize each force F(i) to be inside the range [-1,1].

(iv) Interpolate each step using a linear interpolation to guarantee that all steps have
the same size (this is a necessary stage since different gait parameters will generate
steps with variable sizes).

(v) Define Input variables for the CITs:

(a) Fn (Normal Force).

(b) Fhst (Tangential force in the sagittal plane).

(c) Fhtt (Tangential force in the transverse plane).

(d) Fust (Equals to Fhst/Fn).

(e) Futt (Equals to Fhtt/Fn).

3.3.3 Data for CIT training, validation and testing

The input matrices have 100 lines, one for each point that represents a single step
on a specific floor with certain gait parameters, and N columns, where N represents the
number of steps collected for this study. We processed 80 steps for each combination
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(gait parameters+floor), thus obtaining an input matrix of 100x2880. Fig. 3.5 shows an
example of the input data presented in the form of Fhst normalized between -1 and 1. The
visible variation between steps of the same class is due to the diverse gait parameters used
in the data collection, as expected, a different gait configuration will produce different
contact forces.

Since we want to classify four different floors (classes), our target matrix has 4 lines

Figure 3.5: Example of the input dataset Fhst normalized. The chart shows 720 processed
steps for each floor.

by N number of steps, being that only one of the lines is filled with the value 1 and the
others with the value 0 (e.g. [0,0,1,0]’, means that the target is the 3rd floor). The data is
prepared and randomly divided into three subsets: the training set (50%), which is used
for computing the gradient and updating the network weights and biases; the validation
set (25%) to measure network generalization and to halt training when generalization
stops improving; and the test set (25%) that is used to compare different ANNs as well as
evaluate the ability of the network to correctly classify the floors. To make the classification
process more accurate and less biased, the 36 data sets are randomly splitted into the three
subsets, to ensure that each has 25% of the data represented by each of the classes. Table
3.2 shows the final dimensions of the input and target matrices.

3.4 CIT experimental results

As described in chapter I two CITs (ANN and ELM), implemented in MATLAB (Inc.,
2018) are explored to classify the different floors.
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Table 3.2: Dimensions of the input and target matrices

Input Target

Training 100x1440 4x1440
Validation 100x720 4x720
Testing 100x720 4x720

3.4.1 ANN

The ANN studied consists of a generic feed-forward back-propagation neural network
with three layers: input, sigmoid hidden and softmax output layer. An example of the
studied ANN architecture can be seen in Fig. 3.6.

To tune and obtain the best ANN we developed many experiments, where we varied (1)
the number of hidden neurons, (2) the back-propagation mathematical algorithms and (3)
the way the inputs are presented to the network (as described in chapter III). Each defined
input matrix is trained using 5 different backpropagation algorithms: Scaled Conjugate
Gradient (scg), Conjugate Gradient with Powell (cgb), Resilient Back-propagation (rp),
Variable Learning Rate Back-propagation (gdx) and Polak-Ribiére Conjugate Gradient
(cgp). Additionally, each algorithm is trained 10 times for each number of hidden neurons
ranging from 2 to 52. A total of 500 ANN are trained and tested for each training
algorithm. The output of the ANN is an array with 4 numbers between zero and one,
being that each number indicates the likelihood of the present floor being one of the four
previously labelled and trained, where a value of 0 means not likely and 1 means likely.

After evaluating the performance results, with cross-entropy, for the various tested
algorithms, the following Fig. 3.7 shows the overall performance of the ANNs for the
diverse input variables, and only for the algorithm that best performed: gdx. It is visible
in the chart, that the performance increases significantly as the number of hidden neurons
increases up to approximately 20. From here, the increasing number of neurons does not
affect the performance in more than 1%. In attempt to avoid overfitting and bearing
in mind that higher number of neurons almost does not improves the performance, we
decided that the optimal number of hidden neurons for this network is 20. Observing the
chart, can also be seen that the defined inputs that outputs the best overall performance
are the tangential forces in both sagittal and transverse planes (Fhst and Fhtt). On the
other hand, although the normal forces are important to separate the robot steps, these
are the ones that present the poorer results. Additionally, the inputs defined as Fust and
Futt present a lower performance when compared with the Fhst and Fhtt, possibly due
to the negative effect of the normal forces.

The confusion matrix presented in Fig. 3.8 shows the testing accuracy for the best
obtained ANN using as input the tangential forces in the transverse plane. The test
confusion matrix show us that the network failed to correctly classify 24 out of 720 (3.3%)
steps.
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Figure 3.6: Neural Network architecture.

With knowledge of the best algorithm (gdx) and the best number of hidden neurons
(20) we decided to train a new network using both tangential forces in order to improve
the ANN accuracy. The new input matrix has 200 rows (100 for the Fhst and 100 for the
Fhtt) by 2880 columns. The following confusion matrix presented in Fig. 3.9, shows that
the testing accuracy increased 2.6% from 96.7% to 99.3%. It seems that the information
from both tangential forces are relevant and necessary to best classify the different floors.

3.4.2 ELM

The ELM consists in a single hidden layer feed-forward network with a more efficient
learning algorithm, which randomly chooses hidden nodes and analytically determines the
output weights. One of the advantages of using ELM is its extremely fast learning speed,
that most real-time applications require.

For the ELM analysis we decided to only use the tangential forces as input (200x2880)
since it has been proven previously that these forces are the ones presenting the best
results. The ELM was trained with a number of hidden neurons ranging from 100 to
600. In order to change the random variables value we decided to run 10 ELM for each
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Figure 3.7: ANN overall performance for the diverse input variables.

Figure 3.8: Best ANN testing confusion matrix using the tangential forces in the transverse
plane as input for the network.

number of neurons. Similarly to the previous approach the activation function used was
the sigmoid function. Fig. 3.10 shows the training and testing accuracy for the different
number of neurons.

Although both training and testing accuracy increases with the increasing number of
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Figure 3.9: Best ANN testing confusion matrix using both tangential forces as input for
the network.

hidden neurons, for a number of neurons bigger than 400, it can be seen that the testing
accuracy stagnates around 97%. As result, we propose the optimized ELM with 400 hidden
neurons. With this ELM architecture we obtained a testing accuracy of 98.5%. Fig. 3.11
shows the confusion matrix for the chosen ELM network. The test confusion matrix show
us that the network failed to correctly classify 11 out of 720 (1.5%) steps.

Figure 3.10: ELM training and testing classification performance.

50



Chapter 3. Learning-based Analysis of a New Wearable 3D force
System Data to Classify the Underlying Surface of a Walking

Robot

Figure 3.11: ELM testing confusion matrix using both tangential forces as input for the
network.

3.4.3 ANN vs ELM: Classification time

For further application of the CITs in real-time it is important to compare both CITs
not only by their final accuracy but also by their real required time for classification.
As previously described the data is recorded at a rate of 100hz which means that if we
need to take an action (e.g. adapt the humanoid robot gait based on the detected floor
information so that the next robot step is optimized for the current floor), we have to do
it in less than 10ms.

The previous results show that the ANN presents better classification accuracy when
compared with the ELM, however the ANN takes about 145 times longer than the ELM to
classify a floor. Using the software MATLAB (Inc., 2018), the ANN requires about 15ms
to classify a single humanoid robot step. We expect that the application of this ANN
using a computer programming language (e.g. C) will lead to a considerable reduction of
the required time. In case of the necessary time still exceeds 10ms, the ELM appears as
the best suitable solution for this problem.

3.4.4 Step percentage reduction

The previous approach allows only the correction of the robot gait, for the requirements
of the different floors, after it performs a complete step. To ensure that the humanoid
robot does not lose its stability before we adapt its gait, we also developed a study where
we attempted to reduce the required time for the floor classification problem. For this
purpose we evaluated the ability of the network to classify the different floors using only
a percentage of the robot step data points. Multiple networks were fed with a decreasing
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percentage of data points that represent the robot step, and simulated using the optimal
parameters described previously. The results are presented on Fig. 3.12.

Looking at the results, it can be seen that the network has a good accuracy with a

Figure 3.12: ANN testing performance for different percentage of step data points.

loss of less than 2% even for steps represented only by 40% of the data points. For steps
represented by 60% of the data points the network performance decreases by approximately
0.5%. It is seen that, without compromising much the performance we can use a percentage
of the robot step to classify the floor and thus control the robot stability much earlier than
what was allowed by the previous approach. Additionally, if the decrease in the network
accuracy affects the results in real time, a new network can use the chosen percentage of
data points to predict the next ones so that the accuracy increases again.

3.5 Conclusions

In this paper, we have addressed the problem of floor classification with a biped robot
based only on the ITshoe force data and a learning-based analysis.

The 2880 labelled steps of a walking biped robot over four different floors are used to
train and test two CITs. The comparison between the ANN and ELM performed in this
study, suggests that the ANN is the best CIT to classify the different floors considering
that the time required for classification is lower than 10ms. The ANN outperform the
ELM with a final testing accuracy of 99.3% vs. 98.5%.

In the near future we expect that the application of this CITs in real-time, will not only
help to classify the present floor but also, lead to a more efficient gait, since a controller
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can be developed to optimize the robot gait based on the classified floor.

53





Chapter 4

Real-time LSTM-RNN
Classification of Floors with
Different Friction Coefficients for
a Walking Humanoid Robot
Wearing a 3D Force System

Published in
Almeida L, Santos V, Ferreira J

IEEE Sensors Journal( Volume: 21, Issue: 24, 15 December 2021)
DOI: 10.1109/JSEN.2021.3124854

55





Chapter 4. Real-time LSTM-RNN Classification of Floors with
Different Friction Coefficients for a Walking Humanoid Robot

Wearing a 3D Force System
4.1 Abstract

In the study of biped humanoid robots it is crucial to achieve high precision and
robustness in locomotion. Humanoid robots that operate in real world environments need
to be able to physically recognize different grounds to best adapt their gait without losing
their dynamic stability. This work proposes a technique to classify in real time the type
of floor from a set of possibilities learnt off-line. Hence, the paper describes the collection
and preparation of a dataset of contact forces, obtained with a wearable instrumented
system, mixed with the information of the robot internal inertial sensor to classify the type
of underlying surface of a walking humanoid robot. For this classification, the data are
acquired for four different slippery floors at a rate of 100 Hz and it is used as input for a long
short-term memory Long Short-Term Memory (LSTM) recurrent neural network (RNN).
After testing different learning models architectures and tuning the models parameters, a
good mapping between inputs and targets is achieved with a test classification accuracy
greater than 92 %. A real time experiment is presented to demonstrate the suitability of
the proposed approach for the multi-classification problem addressed.

4.2 Introduction

The study of humanoids increasingly contributes to several scientific areas of which it
is possible to extrapolate improvements to our lives, such as in walking rehabilitation, dan-
gerous works, or elderly assistance. To achieve a robot capable of servicing and assisting
people, first it has to be able to perform fundamental locomotion tasks such as balancing
and walking (Pratt et al., 2010). Despite the progress and efforts made in the past years,
humanoid locomotion is still a challenging problem without definitive solution. Developing
a good system that allows a biped robot to walk on unknown and diversified floors, e.g.
slippery floors, requires the system to be intelligent and autonomous to adapt in real time
so that the robot can successfully overcome the barriers found during locomotion tasks
(Siciliano and Khatib, 2016). In most of the bipedal locomotion approaches, hard contacts
with the ground are assumed, although, in real life scenarios this is normally not accurate.
Despite the several developments over the years, there are no explicit implementations
which deal with the changing floor properties (Hopkins et al., 2015). This oversight may
lead to disastrous consequences, e.g. the biped robot falls while walking on a non-modeled
ground, most of the times preventing the robot to continue its locomotion tasks.

Having an intelligent algorithm that allows the robot to identify the terrain with good
accuracy, using force sensors installed on its feet or assembled under it, will give the possi-
bility to eliminate most of the falls while walking on different surfaces Walas et al., 2016;
Kim, 2020. The increasing progresses made in the areas of artificial intelligence and ma-
chine learning, lead to a significant impact in this field. With the rise of techniques such
as neural networks, recurrent neural networks Recurrent Neural Networks (RNNs), deep
learning and reinforcement learning, humanoids can now perform tasks that previously
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seemed far-fetched.

In this work, the capabilities of a Long Short-term Memory Recurrent Neural Network
(LSTM-RNN), first presented in (Schmidhuber and Hochreiter, 1997), were analysed to
classify the underlying surface of a walking robot. To feed the network, a wearable instru-
mented system assembled to a robot foot was used to measure the ground reaction forces
(GRFs), and the internal robot inertial sensors were used to measure the body accelera-
tions and inclinations on different slippery floors. The choice of this type of network was
mainly due to its feedback loop which serves as a kind of memory. This means that the
past inputs leave a footprint on the model that is expected to be an asset, e.g., when the
humanoid robot moves from one floor to another. These networks are capable of recog-
nizing temporal encrypted patterns from dynamic data, which is what happens between
the interaction of the humanoid’s foot and the different floors; indeed, humanoid walking
can be considered a time-dependent task. Additionally, our approach does not require a
time window for offline processing, hence, the classification can be done online at every
new robot step. The main contribution of our work is the classification of slippery floors
using a novel instrumented system that can be adapted to different humanoid robots. This
classification will provide knowledge of the characteristics of different floors on which the
robot walks to the humanoid controller, thus allowing it to adapt the robot gait according
to the different slippery floors requirements.

Several published works in the field of humanoid robots show the applicability and
capabilities of the LSTM-RNN (Yu et al., 2020a; Ko et al., 2020; Lobos-Tsunekawa et al.,
2018; Kerzel et al., 2019; Bhattacharjee et al., 2018; Chalvatzaki et al., 2019; Li et al.,
2020). For example, in How et al. (2014) a LSTM-RNN model was used to classify six
different robot behaviours based on ten robot joint time sequences. In Zhao et al. (2018) it
was used to generate a robotic motion from the observations of the human movements to
achieve fast and responsive human robot collaborative tasks, avoiding the trouble of solv-
ing an inverse kinematics or motion planning problem. In Yu et al. (2020b) kinect sensors
were used to obtain walking information of the human body under different slopes, and
the data collected are used to feed a LSTM neural network to learn the degrees of freedom
of multiple lower limb joints, classify and recognize the different slopes and to compensate
the robot’s ankle joints based on the slope inclination. The results show a robot NAO
able to walk on different slopes. In another example Li et al. (2018), the authors used
a LSTM network to classify motor fault in mobile robots achieving an accuracy of 87 %.

In Li et al. (2021), the authors used the robot’s foot soles pressure sensors and inertial
measurement unit (IMU) to feed a LSTM network. They used the sensors to calculate
two-directions center of pressure (CoP) and the IMU to obtain two-direction acceleration.
The authors report that the robot walking process based on the LSTM output is better
than when using a fixed gait. Another example using pressure sensors data and a LSTM
network is addressed in (Zhang et al., 2018). The authors used these sensors to collect data
while interacting with different daily objects. The developed LSTM presented a 97.62%
accuracy on the test dataset, being that the authors expect that this good slippery clas-
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sification can improve the robot grasping skills, leading to a better contact and smoother
interaction/manipulation.

Different LSTM architectures and their combination with other networks have also
been increasingly studied and applied in the humanoid field. In Liu et al. (2020), the
authors used a bidirectional LSTM-based network which makes use of historical measure-
ments of system states to predict humanoid fall probability in real-time. In Farazi and
Behnke (2017) a deep LSTM network was trained with simulated data and fine-tuned
on a set of real data to track and identify Robots with identical appearance. Since the
analysed data are transmitted via Wi-Fi, some delay or even data loss are expected, hence
the importance of using a LSTM. Similarly, in Zhen et al. (2019) a deep network LSTM
was also used, but here the authors fed the network with acceleration signals and used it
to detect gait-phases of a walking human, presenting a F-score higher than 92%. In Li
et al. (2019) a LSTM network was combined with a convolutional neural network (CNN)
to improve the human-robot interaction. The CNN was used to extract visual features
and the LSTM network was used to find the relationship between these features and six
basic emotions. The humanoid is able to adapt its response based on the human emotion
classified with the LSTM model.

Our approach is comparable to the floor classification problem addressed by Wang
et al. (2020a) since a LSTM network is explored to solve the problem, but the approaches
differ because Wang et al. (2020a) uses the humanoid foot sinking state and the force reads
from a load cell embedded in the robot’s ankle to classify deformable terrains, whereas
we combine data from the robot inertial sensor and eight force sensors to classify different
slippery floors. They achieved 95 % accuracy on average during experiments.

The remainder of this work is divided as follows. Section II presents the materials and
methods for the data collection and manipulation. The LSTM network implementation,
tuning and online experimental results are presented in Section III. Lastly, Section IV
presents the conclusions and future challenges.

4.3 Materials and methods

In previous research activities (Almeida et al., 2018), an instrumented system was
developed to be seamlessly assembled on the walking humanoid robot NAO to measure
real-time vertical and horizontal ground reaction forces (GRFs). The GRFs are divided
into total normal force (vGRFs) and total horizontal force (hGRFs). The developed system
is a cost-effective, lightweight and wirelessly instrumented shoe (ITshoe). The ITshoe used
on this work is presented in Fig. 4.1.

The hGRFs can be represented in the sagittal and transverse plane, as depicted in Fig.
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Figure 4.1: ITshoe schematic structure. The red block (A) is the acquisition unit, the
green block (B) is the streaming unit, and the blue block (C) is the sensing unit. At the
top, the image shows the position of the eight force sensors and the reference axis used to
decompose the tangential forces.

4.1, and calculated as follows:

Fhst =
√

2
2 · [(S145 + S245) − (S345 + S445)] (4.1)

Fhtt =
√

2
2 · [(S245 + S445) − (S145 + S345)], (4.2)

where Fhst is the total horizontal force in the sagittal plane, Fhtt is the total horizontal
force in the transverse plane and S145 to S445 are the four Flexiforce sensors, positioned
at 45◦, used to measure the tangential forces.
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The ITshoes are divided into three units (see Fig. 4.1):

Sensing unit - Composed of eight piezo-resistive A301 flexiforce sensors;

Acquisition unit - Deals with the electrical conditioning and power supply;

Streaming unit - Receives the data across a serial communication with the micro-
controller and forwards it to the server, through the ESP8266 Wi-Fi module.

The robot NAO also communicates with the server through Wi-Fi and its main software
is used to make it walk. The high-level functions allow to define the walking distance and
gait configuration parameters, such as, step length, height, frequency and torso translation
along the X and Y axis. The server runs the open-source system ROS that deals with all
the data flow and communications with the ITshoes and the Robot, for further details, see
(Almeida et al., 2018). The dataset used for this work were recorded using the ITshoes
sensors and the humanoid robot NAO internal sensors at a frequency of 100 Hz.

4.3.1 Floor multi-classification problem

This work extends the study presented in (Almeida et al., 2020) to classify different
slippery floors on which the humanoid robot NAO has to walk while wearing the ITshoes.
Our hypothesis is that each floor has a particular characteristic when identified by the
ITshoes force sensors together with the robot NAO inertial unit, which is positioned in
the center of the body of the humanoid NAO, namely data from its 3-axis gyroscope,
acceleration and body inclination. Fig. 4.2 shows the layout used to collect data for the
addressed multi-classification problem.

Figure 4.2: Layout for data collection with four different floors.

The system NAO+ITshoes is used to collect data while the humanoid NAO walks on
four different slippery floors: Polytetrafluoroethylene (PTFE); Aluminium; Polyethylene
high-density (PE-HD); and Melamine floor. We only focused on the slippery characteristic
of these floors since the forces that the humanoid NAO exert on these rigid and flat floors
while walking are not significant and do not produce meaningful elastic or permanent
deformation. However, our classification can be associated with different material proper-
ties, and can also be used to classify different floors such as deformable floors. Table 4.1
presents the coefficient of friction (CoF) for the different materials used as the walking
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floors. Acrylic is the base material of the ITshoes.

Table 4.1: Floor-Shoe coefficient of friction

Material Coefficient of Friction

Acrylic-Polytetrafluoroethylene (PTFE) 0.11
Acrylic-Aluminium 0.20
Acrylic-Polyethylene high-density (PE-HD) 0.26
Acrylic-Melamine 0.33

4.3.2 Data manipulation

Before classifying the floors using the LSTM-RNN, it is necessary to pre-process the raw
data. The following procedure describes the developed algorithmic methodology to extract
the data that corresponds to the humanoid robot steps, and to format its representation
to be used as inputs for the learning approach. The algorithm reads the recorded raw
data from the database and outputs only the data that corresponds to moments when the
robot’s foot is in contact with the floor. The main steps of the algorithm are as follows:

(a) Use the calibration curves to convert each sensor (S(i)) raw data into forces, as given
by:

F (i) = − b(i)
R(i)

(
1023
S(i) − 1

) 1
m(i) , i ∈ {1, ..., 8} , (4.3)

where R(i) is the voltage divider resistor, m(i) and b(i) are the calibration curve
slope and y-interception respectively, and 1024 (210) refers to a 10-bit analog to
digital converter (ADC);

(b) Obtain the start and end of each step: the points where Fn(i) ≈ 0 (normal force
≈ 0, robot foot is in the air);

(c) Use the indices i for which Fn(i) ̸= 0 to filter the data points for all the recorded
variables;

(d) Normalize each data point to be in the range [-1,1] ;

(e) Reshape the data according to the LSTM model needs.

4.3.3 Data for LSTM training, validation and testing

The resulting dataset for this work includes 27800 labeled sequences. Each input
sequence consists of 11 features, each composed of 50 samples. Despite the fact that the
measured vertical forces are crucial for the data collection and manipulation, these were
not used as features to train the network due to the dynamics involved in the robot step
being so small that the variability of the normal force sensors are of limited use (Almeida
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et al., 2020). The 11 selected features to represent the robot’s behaviour on the different
studied floors are as follows:

Fhst Horizontal force in the sagittal plane (N);

Fhtt Horizontal force in the transverse plane (N);

Gx Gyroscope X axis (rad/s);

Gy Gyroscope Y axis (rad/s);

Gz Gyroscope Z axis (rad/s);

Accx Accelerometer X axis (m/s2);

Accy Accelerometer Y axis (m/s2);

Accz Accelerometer Z axis (m/s2);

BIx Body inclination X axis (rad);

BIy Body inclination Y axis (rad);

BIz Body inclination Z axis (rad).

The data are prepared and randomly divided into three subsets: the training set (60 %),
which is used for computing the gradient and updating the network weights and biases;
the validation set (20 %) to measure network generalization and to halt training when
generalization stops improving, and the test set (20 %) that is used to compare the different
LSTM networks, as well as evaluate the ability of the network to correctly classify the
floors. To make the classification process more accurate and less biased, a 10-fold cross
validation is applied to the data so that the LSTM model is trained 10 times, each time
with a different train/test split. Table 4.2 shows the final dimensions of the input and
target matrices.

Table 4.2: Dimensions of the input and target matrices

Input Target

Training (16680, 50, 11) (16680, 1, 4)
Validation (5560, 50, 11) (5560, 1, 4)
Testing (5560, 50, 11) (5560, 1, 4)

Fig. 4.3 illustrates the 50 chosen samples of the normal force component from a full
humanoid robot step. All the selected features for this classification problem use also 50
samples corresponding to the same time steps.
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Figure 4.3: Illustration of the 50 chosen samples of the normal force of a robot step to be
used on the classification of the robot walking floor.

4.4 LSTM-RNN experimental results

Recurrent Neural networks (RNNs) are the feed-backward version of the conventional
feed-forward neural networks. They have a cyclic connection architecture that allows
them to update their current state based on past states and current input data. The
standard RNN topology suffers from the vanishing gradient (Graves, 2012). To overcome
this problem, Schmidhuber and Hochreiter (1997) developed the Long Short Term Memory
(LSTM) unit presented in Fig. 4.4.
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Figure 4.4: LSTM cell structure (Varsamopoulos et al., 2018).

The LSTM unit, also known as "memory block" enables the network with the capacity
to store and access information over long periods of time. LSTMs achieve this through their
3-gate architecture, which consists of an input, forget and output gates. The input gate
decides which input information will be used to update the memory state. The forget gate
decides which information to keep or erase from the memory block. Finally, the output
gate decides based on the current input and the stored memory which information to
output. The LSTM models developed in this work were built using the open source neural
network library Keras, running on top of the machine learning platform TensorFlow. The
API Keras is written in Python. Several LSTM networks configurations were implemented
to classify the different floors from the input layer of 11 features and 50 time steps. The
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base model used to start training was a LSTM layer with a sigmoid activation function
and 50 hidden neurons, a fully-connected output layer with activation function "softmax",
and 4 hidden neurons corresponding to the four floors to be classified. The optimizer
used in all the training trials was the Adam optimizer (Kingma and Ba, 2014) because
of its ability to converge quickly while traditionally performing better than most other
optimizers (Chang et al., 2018; Wang et al., 2020b). Additionally, an early stop strategy
is applied to the training process to halt it when the loss of the model stops improving.
The loss of the model was evaluated using a categorical cross-entropy function, calculated
according to (4.4)

L = −
M∑

c=1
yo,c log(po,c) (4.4)

where M is the number of classes (different floors), yo,c indicates if the class label c

is the correct classification for the observation o, and po,c is the predicted probability
of the observation o is of class c. Before tuning the LSTM model hyper parameters, a
dropout layer was added to the model since it is commonly used to fight over-fitting and to
improve the model performance. This layer is used as a regularization method were input
and recurrent connections to LSTM units are probabilistically excluded from activation
and weights updates while training a network. It randomly sets input units to 0 with a
chosen frequency fd (fraction of the input units to drop) at each step during training time.
Inputs not set to zero are scaled up by 1∇ · (1 − fd) such that the sum over all inputs
is unchanged. Fig. 4.5 exemplifies the dropout behaviour for a standard neural network
with two hidden layers.

Figure 4.5: Dropout behaviour. On the left it is visible a standard neural network and
on the right an example of the same network after applying dropout. The units presented
with a cross have been dropped (Srivastava et al., 2014).

Multiple LSTM models architectures were implemented and trained with a varying
number of hidden neurons, different activation functions, batch sizes, learning rates and
dropout probabilities. Table 4.3 shows the evaluated range for some of these parameters
as well as the chosen value that produced the overall best results.

Fig. 4.6 shows the optimized model obtained for this multi-classification problem using
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Table 4.3: Range of network parameters evaluated.

Range Best

Hidden neurons 50 - 500 300
Learning rate 0.00001 - 0.1 0.0001
Batch size 10 - 500 256
Dropout probability 0.1 - 0.5 0.2

Table 4.4: LSTM model Classification report.

Precision Recall F1-score Samples

Acrylic-PTFE 0.98 1.00 0.99 1620
Acrylic-Aluminium 0.88 0.92 0.90 1510
Acrylic-PE-HD 0.93 0.84 0.89 1290
Acrylic-Melamine 0.93 0.89 0.91 1140

the chosen best parameters. This model has three layers: a LSTM layer with 300 hidden
neurons and "tanh" activation functions, a dropout 0.2 layer and a fully-connected layer
with four hidden neurons and "softmax" activation functions.

LSTM 300
(tanh) Dropout 0.2 Dense 4

(softmax)
Input
Layer

Ouput
Layer

Figure 4.6: Optimized LSTM model.

Figure 4.7 presents the optimized model accuracy/epochs. This model presents a
96.31 % and 89.63 % training and validation accuracy, respectively.
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Figure 4.7: LSTM model, Accuracy vs Epochs.

Table 4.4 presents the classification report of this LSTM model where the metrics
Precision, Recall and F1-score are used to evaluate the model’s capability of correctly
classifying the different floors.

Figure 4.8 presents the confusion matrix obtained the applying the network to the
testing set. From there it can be seen that the model was able to correctly classify 92.09 %
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of the test set data (confusion matrix true positives plus true negatives divided by total of
samples), which are data never presented to the network before. Overall, the differences
between the high scores achieved for the first class compared to the other classes can be
justified not only because of the uneven distribution of the four classes, but also because
the floor properties, more specifically the CoF of the first class differs more from the
remainder. The gap between the CoF for the remainder classes is similar and, as it can
be seen, the results for these classes are very balanced.
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Figure 4.8: Confusion matrix of the testing dataset.

4.5 Online experiment

After training and improving the LSTM network, a real-time experiment of the NAO
robot walking on different floors, as illustrated in Fig. 4.9, was carried out to validate the
model. The gait parameters for the walk are as follows: 0.02 m step length; 0.02 m step
height; 50% of robot’s maximum step frequency; and 0.1 rad torso rotation around Y.

NAO

PTFE Aluminium PE-HD Melamine

Figure 4.9: Layout for the real-time on-line experiment.

Figure 4.10 plots the classification results of the LSTM network, and at the top, some
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Figure 4.10: Individual results on floor classification of NAO walking experiment in real-
time using 50, 40 and 30 timesteps. At the top, some snapshots of NAO walking on
the different surfaces are presented, and their corresponding output is presented, at the
bottom, on the charts for each foot/shoe. ◦ Left ITshoe(50); • Right ITshoe(50); □ Left
ITshoe(40); ■ Right ITshoe(40); △ Left ITshoe(30); ▲ Right ITshoe(30); Real floor
on which the robot walks (it is 1 when walking on the current floor).

snapshots of the experiment
are shown. In this experiment, the robot walked 1.80 meters on the four floors starting

on the PTFE floor and ending on the melamine surface. It is important to mention that
we considered as being the correct floor on which the robot walks when the front part
of the robot foot is at least 0.04 m over that floor. The detailed results show that the
network, although not always with 100 % certainty, classified correctly (with a confidence
always larger than 50 %) the different floors for the vast majority of the robot’s steps. Fig.
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4.11 presents the confusion matrix for this experiment, where the LSTM model classified
correctly 87 of the 90 (≈97 %) robot steps. Indeed, the network correctly classified all the
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Figure 4.11: Confusion matrix of the real-time experiment.

steps on the PTFE and PE-HD floors, and misclassified only two steps on the aluminium
floor and one step on the melamine floor. Overall, it can be seen that the LSTM model is
suitable for this multi-classification problem. The model presented requires approximately
541 milliseconds to classify one input in real time (from data collection to obtaining a
network output). Since the data are recorded at 100 Hz and we are using the first 50 data
points (500 milliseconds) to feed the model, it means that the model classification time (41
milliseconds) represents only 7.5 % of the total time required for this multi-classification
problem. Basically, after one robot step we need to wait 41 milliseconds before taking the
procedures to optimize the next step. In the future, if we need to decrease the overall
required time, we can focus on strategies to reduce the data points used to feed the model.
We tested the LSTM network’s ability to classify correctly the different slippery floors
using less timesteps and the results are shown in Fig. 4.12. We observed for example
that the network test accuracy exhibits a loss of less than 4 % and 9 % when using 40
and 30 timesteps, respectively. In Fig. 4.10 it is visible that the network was still able
to correctly classify most of the steps during the online experiment, using the 40 and
30 timesteps model, although with less confidence when compared with the 50 timesteps
model. Fig. 4.13 and 4.14 show the confusion matrices for these two networks with less
timesteps. The LSTM model with 40 timesteps classified correctly 86 of 90 robot steps,
that is, one more misclassified step when compared to the 50 timesteps model, and the
LSTM model using 30 timesteps only classified correctly 80 of 90, seven less than the
original 50 timesteps model. In conclusion, it is possible to reduce the timesteps used to
classify the different floors and still have a model able to classify correctly most of the
robot’s steps.
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Figure 4.12: LSTM network testing accuracy using different sizes of timesteps.
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Figure 4.13: Confusion matrix of the testing dataset using 40 timesteps.

In order to assess the relative importance of the variables involved in this process of
floor identification, different training strategies were done using different sets of input
variables, namely with horizontal forces only, robot own IMU only, and the combination
of both. Fig. 4.15 shows the average test accuracy of the LSTM model when using only
the horizontal forces (HFs), only the IMU data and lastly, both together (HFs+IMU) as
was used throughout this work. We can already observe that the data coming from the
ITShoes has a much larger performance in the classification than the IMU data alone, but
we also observed that when we put together the data coming from the ITshoes and the
IMU, the classification results further improve about 8 %.
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Figure 4.14: Confusion matrix of the testing dataset using 30 timesteps.
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Figure 4.15: LSTM average test accuracy when using only the Horizontal Forces (HFs),
only the data coming from the robot’s IMU and all the features (HFs+IMU) as described
in sub-section 4.3.3.

4.6 Conclusions

This work addresses a multi-classification problem using a LSTM recurrent neural net-
work model based on the ITshoes force data together with the robot internal inertial sensor
data. A dataset of 27800 labelled steps of a walking biped robot over four different floors
were collected and used to train, validate and test the multiple learning models. After
several attempts to optimize the LSTM base model, and after tuning its parameters, we
achieved a network capable of classifying the different floors with an accuracy of approx-
imately 92 %. The developed online experiment also validated the LSTM-RNN approach
to this classification problem, as it correctly classified 87 out of 90 robot’s steps. For
future work we will develop a thorough study of the impact of the data coming from the
ITShoes and the IMU to validate the importance of the wearable instrumented system.
Additionally, in the future it is expected to use this classification to optimize the humanoid
robot controller, since it will be easier to achieve an efficient and stable humanoid gait if
its controller has information about the floor where it walks on. Following this idea, we
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also expect that this network can be adapted to be used with different classes by analysing
how close a new input will be from one of the studied classes. In fact, we observed that
even in cases where classification shows smaller confidence in one material, the next best
option is, most often, a material with a neighbour friction coefficient. This shows that
this solution is able to detect properly the closest friction coefficient from the set of pos-
sibilities trained. So, if enough materials are used to represent the required resolution of
friction coefficients, the robot will be able to assess with adequate accuracy the interval
of values for the friction coefficient where it is walking on, thus allowing the decision of
measures to take to improve walking control. Although this classification is focused on
the friction property of the materials, we will also consider to study other characteristics
such as damping and stiffness not only to have a richer set of parameters to adapt the
robot controller but also to broaden the possibility to detect different floors, i.e deformable
floors.

When we classify the different but known floors we know in advance the floor prop-
erties/characteristics and the main challenge where more characteristics of the floors can
be handy will be in the future when we try to interpolate this known properties with the
classification of unknown floors.
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5.1 Abstract

This paper presents a comprehensive strategy to improve the locomotion performance
of humanoid robots on various slippery floors. The strategy involves the implementation
and adaptation of a Divergent-Component-of-Motion (DCM) based control architecture
for the humanoid NAO, and the introduction of an Embedded Yaw Controller Embedded
Yaw Controller (EYC), which is based on a Proportional-Integral-Derivative Proportional-
Integral-Derivative (PID) control algorithm. The EYC is designed not only to address the
slip behavior of the robot on low friction floors, but also to tackle the issue of non-straight
walking patterns that we observed in this humanoid, even on non-slippery floors. A series
of locomotion experiments are conducted in a simulated environment, where the humanoid
step frequency and PID gains are varied for each type of floor. The effectiveness of the
strategy is evaluated using metrics such as robot stability, energy consumption, and task
duration. The results of the study demonstrate that the proposed approach significantly
improves humanoid locomotion on different slippery floors, by enhancing stability and
reducing energy consumption. The study has practical implications for designing more
versatile and effective solutions for humanoid locomotion on challenging surfaces, and
highlights the adaptability of the existing controller for different humanoid robots.

5.2 Introduction

Humanoid robots are anthropomorphic machines that aim to emulate the locomotion
and behaviour of humans. Although significant advancements have been made in robot’s
locomotion, the challenge of navigating on slippery floors remains a difficult and unresolved
issue, with significant potential for further improvements. Just as humans use their senses
to adapt to changing environments, we believe that humanoid robots should rely on sensor
feedback to achieve the same. By utilizing sensor data, robots can better adjust to varying
surfaces and conditions, improving their ability to navigate on slippery floors and other
challenging terrains (Ding et al., 2018), as well as perform seemingly simple tasks like
setting their home position (Kim et al., 2008).

On past studies (Almeida et al., 2020; Almeida et al., 2021), it was hypothesized that
adapting the controller of the robot based on the known friction coefficient of various
floors could lead to efficient and effective locomotion on such surfaces. Building upon the
development of instrumented shoes (ITShoes) and machine learning algorithms that enable
real-time detection of the coefficient of friction for various floor types, this work proposes
a comprehensive strategy to enhance humanoid locomotion on slippery surfaces through
adaptive control. In addition to addressing the challenges posed by varying slippery floor
conditions, a peculiar behavior was also observed in the humanoid when instructed to walk
on a straight path. This behavior is attributed to its unconventional building, which will
be explain in the next section. As such, the proposed controller aims not only to address
slip behavior on slippery floors, but also to mitigate the issue of non-straight walking
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patterns resulting from the humanoid’s particular mechanical construction.
Several techniques have been proposed in the literature for generating Center of Mass

(CoM) trajectories based on the concepts of Zero-Moment Point (ZMP) (Vukobratović and
Stepanenko, 1972) and Linear Inverted Pendulum (LIP) (Kajita et al., 2001). In recent
years, there has been significant research on bipedal locomotion, which has resulted in
the introduction of new concepts such as the Divergent Component of Motion Divergent
Component of Motion (DCM) and Virtual Repellent Point (VRP) (Englsberger et al.,
2013; Koolen et al., 2012). These concepts allow for the decomposition of the second-
order dynamics of the CoM into two first-order linear dynamics, where the CoM converges
to the DCM (stable dynamics) and the DCM diverges away from the VRP (unstable
dynamics) (Englsberger et al., 2013). These concepts have been utilized in various methods
of generating CoM trajectories and stabilizing humanoid robots during locomotion.

The strategy described in this paper is founded on an implementation and adaptation
of a DCM based control architecture. The DCM concept has been applied to various
types of robots, including bipeds (Murooka et al., 2021; Mesesan et al., 2018; Shafiee
et al., 2019; Romualdi et al., 2020), quadrupeds (Griffin et al., 2022; Wagner, 2021), and
exoskeletons (Mehr et al., 2021; Xu et al., 2022a), and has been shown to be effective
in achieving stable and dynamic locomotion. It has also been used in applications such
as prosthetics and rehabilitation robotics, where maintaining balance and stability are
critical for safe and effective movement. We follow the DCM-based control architecture
presented in (Romualdi et al., 2018), where the authors present and compare several
DCM-based implementations of a layered control architecture. A unicycle-based planner
is used to generate desired DCM and foot trajectories for the fixed trajectory optimization
layer. The simplified model control layer comprises two main controllers for DCM tracking,
along with an additional inner controller that utilizes 6-axes Force Torque sensors (F/T) to
ensure precise tracking of CoM and ZMP (Choi et al., 2007). The two main controllers are:
an instantaneous feedback controller and a Model Predictive Control (MPC) approach.
One common approach to generate feasible CoM trajectories is to combine the Linear
Inverted Pendulum Model (LIPM) with MPC techniques, which are also referred to as
Receding Horizon Control (RHC) (Herdt et al., 2010). The MPC is a control technique
that uses a mathematical model of the system to predict its future behaviour, and then
optimizes the control inputs over a finite time horizon to minimize a cost function while
satisfying constraints. The Whole-Body Quadratic Programming (WBQP) control layer
ensures the tracking of the desired CoM and feet trajectories by presenting velocity and
inverse kinematics.

In the current work, we propose an Embedded Yaw Controller (EYC) as an extension
to the existing control strategy based on the MPC controller from (Romualdi et al., 2018).
The EYC is specifically designed to address slip behavior on slippery floors and to rectify
the non-linear paths observed due to the robot’s suspicious building technique. It functions
as a Proportional-Integral-Derivative (PID) controller, which allows us to dynamically
control and adapt the humanoid gait in real-time. This approach draws upon the well-
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established use of PID controllers in optimizing various aspects of humanoid locomotion,
such as stability, efficiency, and robustness of walking, as demonstrated in prior works
such as (Nguyen et al., 2020; Bestmann and Zhang, 2022; Xu et al., 2022b). Thus, in
this work, the digital PID control scheme is leveraged to implement the EYC for precise
control of the humanoid gait, by continuously monitoring its torso orientation in response
to slip behavior and non-linear path observations.

The remainder of the paper is structured into the following sections. Section 5.3
provides an overview of the DCM-based control architecture that has been implemented,
covering key concepts, components, and its integration into the NAO robot. Furthermore,
the integration of an EYC within the architecture is detailed. Section 5.4 describes the
preliminary locomotion experiments setup and the experiments conducted with varying
step frequencies and PID gains. The metrics used to evaluate the performance of the
system are also discussed, and the results obtained are presented. Finally, in Section 5.5,
conclusions are provided, highlighting the achieved improvements, and recommendations
for future work are given.

5.3 Humanoid Whole-body Controller

The whole-body controller used in this work is based on the three-layer control archi-
tecture developed and implemented on the iCub robot (Romualdi et al., 2018). The three
layer architecture is presented in Figure 5.1.
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Desired
CoM Velocity

Feet Pose

Joint Velocity

Joints & CoM Velocity
Contact Wrenches

EYC
Yaw

Angle
Desired

Yaw

iCub NAO+ITShoes

Figure 5.1: Modified humanoid 3-layer control architecture (Romualdi et al., 2018) with
an additional EYC block. The EYC is a controller used to adapt the robot’s motion to
low-friction environments and to correct the unexpected curved path of the Humanoid
NAO by adjusting its behavior based on feedback from an IMU (Inertial Measurement
Unit) sensor

This work demonstrates the potential of the Embedded Yaw Controller (EYC) by
successfully integrating it into the three-layer control architecture, where it effectively ad-
dresses slip behavior and rectifies non-linear paths resulting from the robot’s particular
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building technique. Furthermore, the versatility of the three-layer controller is demon-
strated by successfully implementing it on a different humanoid robot, highlighting its
potential for application in a wide range of robotic systems.

5.3.1 Trajectory optimization

The purpose of this layer is to plan and evaluate the desired footstep positions and the
desired feet and DCM trajectories for a humanoid robot. The robot is approximated as
an unicycle, with the feet represented by the unicycle wheels. The footsteps are planned
by sampling the unicycle trajectories, with each position associated with a time instant.
The impact time is considered as a decision variable, which allows for the selection of
feet positions, duration, and step length. Once the footsteps are planned, the desired feet
trajectory is obtained by cubic spline interpolation. The DCM trajectory is chosen so as
to satisfy a specific time evolution. The DCM trajectory along the walking pattern can be
computed recursively, but the presented planning method only takes into account single
support phases. To ensure that the ZMP trajectory remains smooth and continuous, it is
important to have a reference trajectory for the DCM with smoothly varying derivatives.
This means that the rate of change of the DCM trajectory should be continuous, allowing
for seamless transitions between different segments of the trajectory. To achieve this,
a third-order polynomial is used to smoothly connect the edges of the DCM reference
trajectory. The parameters of the polynomial are carefully selected to ensure that both
the velocity and position of the trajectory satisfy certain boundary conditions, ensuring a
continuous and smooth motion (Romualdi et al., 2018).

5.3.2 Simplified Model

The middle layer of the robot’s control system utilizes a simplified model control layer
that employs a MPC DCM controller. The purpose of this controller is to ensure that
the robot’s DCM accurately tracks its intended trajectory. The DCM is a specific point
in space that represents the robot’s movement and serves as the point at which the robot
would fall if it stopped moving.

To achieve this level of precision, the humanoid robot’s movement is approximated
using the LIPM, a widely recognized model for walking on flat surfaces (Kajita et al.,
2001). The LIPM guarantees that the CoM of the robot remains at a constant height on
a horizontal plane while walking. The MPC algorithm utilizes this model to predict the
robot’s future movements and generates a control signal that maintains its stability and
trajectory.

This algorithm takes into account the desired trajectory and the robot’s motion con-
straints to generate a smooth trajectory for the ZMP, which is essential to the robot’s
stability. The ZMP must remain within the robot’s support polygon to avoid falling.

In this middle layer, an independent CoM-ZMP controller ensures that the robot’s CoM
and ZMP are properly tracked using a force torque sensors (F/T). This inner CoM-ZMP
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controller is presented in (Choi et al., 2007) and is based on the Kinematic Resolution of
CoM Jacobian (KRCJ) method with embedded motion. KRCJ is a mathematical method
for computing the robot’s center of mass and its Jacobian matrix, which describes the
relationship between the robot’s joint angles and its CoM.

This approach aims to enhance the robot’s stability and balance during walking by
adjusting its joint angles in real-time using the KRCJ method. The embedded motion
technique allows the robot to adapt its movements to changes in the environment, such
as uneven terrain or unexpected obstacles (Romualdi et al., 2018).

5.3.3 Whole Body QP Control

The third layer of the control architecture implemented in this work is the WBQP
control layer. WBQP is a common approach used in robotics for generating motion plans
or control commands that optimize the performance of the robot’s whole body motion
while accounting for different constraints. Its main responsibility here is to track the
desired CoM and foot trajectories, employing velocity and inverse kinematic controllers to
ensure accurate and smooth movement control. The achievement of this control objective
involves defining a cost function, which is minimized to obtain the desired robot velocity
(Romualdi et al., 2018).

5.3.4 Implementation in the NAO robot

The entire architecture was adapted to be used in the humanoid NAO. The NAO robot
displays certain peculiarities observed in both simulations and the real system. The most
significant issue is that the robot does not maintain a straight path when commanded to
do so. This behaviour is illustrated in Figure 5.2, where it can be seen that the humanoid
changes direction despite being commanded to walk a straight line.

Figure 5.2: Illustration of the NAO robot’s inability to maintain a straight path. The
robot was commanded to walk in a straight line, but deviated from its intended path

The issue of the robot deviating from a straight path is more prominent on slippery
floors, but it also occurs on floors with a high friction coefficient. We suspect that the
problem is related to the physical configuration of the pelvis joint LHipYawPitch and
RHipYawPitch, which are driven by only one motor and, thus, cannot be controlled inde-
pendently, with priority given to LHipYawPitch. It is possible that the controller has a
glitch when sending the desired position for both joints, leading to the observed behaviour.
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Illustrative trajectories are depicted in Figure 5.3, showcasing the desired straight trajec-
tory and the actual trajectories of the humanoid.
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Figure 5.3: Visualizing humanoid locomotion behavior: trajectories illustrating straight
walking command execution

To enforce the locomotion along a straight path and correct the lateral deviations of
the robot, the EYC control system was developed based on the measurement of robot’s
heading using the onboard Inertial Measurement Unit (IMU). This controller dynamically
adjusts the target set-point to continuously correct the robot’s direction of motion by
monitoring the humanoid’s torso orientation and compensates for changes in direction
that can occur when the robot slips while walking on very slippery floors.

The effectiveness of this modification was also evaluated through experiments on the
humanoid robot NAO, and the results showed that the EYC was able to significantly
improve the robot’s stability and reduce the impact of slips on its movements. A joint
velocity limit was also added to the controller as a safety measure to ensure that the
robot’s joint velocity limits were not exceeded during movement. This modification was
necessary to ensure the safety and stability of the robot’s movements, especially during
dynamic motions that require quick changes in joint velocities.

To implement this architecture in the NAO robot, a detailed step-by-step process was
followed. First, the necessary software dependencies for the walking module were installed,
along with YARP and any required environmental variables. Next, the robot was modeled
using both the Unified Robot Description Format (URDF) and the Simulation Description
Format (SDF) files. This involved defining joint and link structures in the URDF, as well as
specifying physical and environmental properties in the SDF, such as friction coefficients.
With the robot model in place, the focus shifted to adapting the trajectory generation
parameters to suit the specific requirements of the NAO. This involved setting limits for
various gait parameters, such as step length, frequency, and height, among others, to
ensure that the robot could walk smoothly and efficiently. Additionally, the trajectory
generation parameters were fine-tuned to ensure that the robot’s motion was stable and
well-coordinated. Throughout the implementation process, all necessary adaptations were
made to ensure that the model was comprehensive and incorporated all the joints and
sensors needed to achieve optimal performance. To achieve a final implementation that
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is both robust and reliable, it was necessary to adapt numerous parameters and conduct
extensive testing. Some of these adaptations are presented in Table 5.1:

Item Values

URDF Joints, links, and robot description.

SDF Model, physical properties, environmental and ma-
terial properties (i.e. friction coefficients).

Whole-body configs Joints, frames, sensors, devices and others

Trajectory genera-
tion

Gait parameters, such as minimum and maximum
step length, height, width, duration, landing veloc-
ity and others.

Logger Joints position, DCM, CoM, ZMP, sensors, EYC
inputs/outputs and others.

Walking controller
configs

Inner ZMP parameters, forward and inverse kine-
matics, joint’s PID and others

Gazebo Physical environmental, such as solver and con-
straints parameters

Table 5.1: Points adapted in the original walking controller to fit the NAO requirements.

To measure the forces and torques that occur on the ankle of the NAO humanoid robot
during the simulated experiments, a Force/Torque (F/T) sensor was added to the robot’s
ankle model. While this provided accurate measurements in the simulated environment,
the real robot does not have this sensor. To overcome this limitation, we aim to utilize
the instrumented shoe (ITshoe), as shown in Figure 5.4, which was previously developed
in our laboratory (Almeida et al., 2018).

The ITshoe is equipped with sensors that can measure the total ground reaction forces
during walking. These measurements are essential to enhance the robot’s interaction with
the ground (Lee et al., 2021), and they can be utilized to calculate the forces and torques
acting on the ankle. To simulate the output of a F/T sensor in future real experiments,
the measured ground reaction forces have to be translated to the ankle location using the
Equation 5.1 and Equation 5.2.

F⃗AZ = F⃗SZ + (mis + mrf + maj) · g⃗, (5.1)

where F⃗AZ represents the total ankle force in the z direction, F⃗SZ the total force in the
z direction measured by the ITShoe and mis, mrf and maj denote the masses of the
components between the sensors and the robot’s ankle:

τ⃗x

τ⃗y

τ⃗z

 =
n∑

i=1


riy · F⃗iz + riz · F⃗iy

riz · F⃗ix + rix · F⃗iz

rix · F⃗iy + riy · F⃗ix

 , (5.2)
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Figure 5.4: ITshoe schematic structure. The red block (A) is the acquisition unit, the
green block (B) is the streaming unit, and the blue block (C) is the sensing unit. At the
top, the image shows the position of the eight force sensors and the reference axis used to
decompose the tangential forces (Almeida et al., 2021).

where τ⃗x, τ⃗y and τ⃗z represent the total ankle torque in the corresponding x, y and z
directions, rij , for j ∈ x, y, z, are the distances between the ITShoe sensors and the robot’s
ankle, and F⃗ij , for j ∈ x, y, z, are the forces measured on the corresponding sensors in the
ITshoe.

Then, in the Gazebo simulator, the physical parameters, such as mass, friction co-
efficients, inertias, and joint damping, were fine-tuned and optimized to ensure that the
simulated robot’s behavior closely emulated the real-world physics and dynamics of the
actual robot.

To capture and analyse the relevant data for each experiment, all the DCM based con-
troller variables, along with the robot’s joint, ZMP, CoM, F/T and IMU sensor data, and
other essential variables were recorded within a 10 ms controller cycle. By gathering this
information, we were able to gain a comprehensive understanding of the robot’s behaviour
and performance in response to different slippery floors. In the following sections, it is
demonstrated how effectively this data was utilized and manipulated to draw meaningful
conclusions about the effectiveness of the methods used.

The control architecture was implemented using YARP, an open-source robotics
middle-ware, and programmed in C++ language. More details can be found at the walking
controllers repository1.

The layout to simulate the humanoid robot navigating on different types of floors was
implemented using the Gazebo simulator, as illustrated in Figure 5.5.

1 https://github.com/robotology/walking-controllers
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Figure 5.5: Layout of the simulated environment featuring the NAO robot and various
types of slippery floors in the Gazebo simulator.

EYC implementation

The role of the Embedded Yaw Controller (EYC) is to continuously monitor the robot’s
orientation, specifically the YAW angle, during locomotion. When the EYC detects that
the robot is deviating from the commanded trajectory, it calculates a new YAW angle
using a digital PID formulation (Åström and Hägglund, 2001), as shown in Equation 5.3,
in order to adapt the robot’s trajectory accordingly.

u0 = −Ku1u1 − Ku2u2 + Ke0e0 + Ke1e1 + Ke2e2. (5.3)

This controller relies on a set of carefully selected and tuned coefficients, which are
defined in Equation 5.4 to Equation 5.14. These coefficients are used in the computation
of the control input, u0, which depends on the previous control inputs u1 and u2, as well
as the error terms e0, e1, and e2. The equation includes the derivative terms Ku1 and
Ku2, and the proportional, integral, and derivative gains Ke0, Ke1, and Ke2, given by:

Ku1 = a0
a1 − a2

, (5.4)

Ku2 = a0
a1 + a2

, (5.5)

Ke0 = a0b0, (5.6)

Ke1 = a0b1, (5.7)

Ke2 = a0b2, (5.8)
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where

a0 = 1 + NTs, (5.9)

a1 = −(2 + NTs), (5.10)

a2 = 1, (5.11)

b0 = Kp(1 + NTs) + KiTs(1 + NTs) + KdN , (5.12)

b1 = −(Kp(2 + NTs) + KiTs + 2KdN), (5.13)

b2 = Kp + KdN . (5.14)

To trigger the controller, a timer interrupt service routine is used, and a set of global
variables is defined, including the command input r, plant output y, error terms e0, e1,
and e2, control inputs u0, u1, and u2, and the coefficients a0, a1, and a2. The error term
is computed by taking the difference between the desired output and the current plant
output. The proportional, integral, and derivative gains are initially set to Kp = 1.00,
Ki = 0.02, and Kd = 0.01, respectively, while the filter coefficients are set to N = 20, and
the sampling time is set to Ts = 0.01 s.

These variables and parameters are critical to the operation of the PID controller, and
have been empirically selected and tuned to ensure an initial effective stabilization of the
robot’s orientation on slippery floors. Further explanation will be provided in section 5.4
to elaborate on the specific process of how these variables and parameters were determined
based on practical experimentation and observation.

To estimate the robot’s orientation, data obtained from the NAO robot IMU sensor
was utilized, which provided measurements of the robot’s angular velocity and linear
acceleration. To estimate the yaw angle, we applied an Extended Kalman Filter (EKF),
which is a recursive algorithm that estimates the state of a system that is subject to
uncertain and noisy measurements (Julier and Uhlmann, 1997).

The EKF uses a quaternion to represent the orientation of the system, where the scalar
component represents the orientation of the system, and the three vector components rep-
resent the axis of rotation. The prediction stage of the filter propagates the quaternion
forward in time using the system dynamics, while the update stage fuses the predicted
state with new measurements. In the case of an IMU, new measurements include mea-
surements of angular velocity. To update the state estimate with the new measurements,
the filter models the measurement process as a linear function of the state, corrupted by
additive Gaussian noise. Finally, the EKF computes the optimal estimate of the state by
minimizing the mean squared error between the predicted state and the measurements.
By applying this algorithm, we were able to obtain an optimal estimate of the robot’s
torso YAW angle over time. This estimate was then used as input to the EYC controller
to stabilize the robot’s trajectory, taking into consideration not only the slippery condition
of the floors, but also the peculiar issue related to the humanoid’s non-straight walking
patterns mentioned earlier. The EYC controller, utilizing the PID formulation, adjusts the
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robot’s trajectory to ensure more stable and accurate locomotion, mitigating the effects
of both slippery surfaces and the humanoid’s unique build.

5.4 Locomotion experiments

In this section it is presented the experiments carried out to collect locomotion data in
order to analyse it and improve the humanoid controller based on the slippery floor it is
faced with. Firstly, we performed an experiment where we attempted to study the impact
of the robot’s step frequency on the different floors by measuring the amount of slippage
occurred during these experiments. According to the information obtained from these
experiments, it was found that the slowest step frequency was the most preferred option
across all floors, rather than a specific frequency for each individual floor. While this in-
sight provides valuable information for gait adaptation on slippery floors, it is inconclusive
towards our goal of adapting the controller to the specific floor the robot is traversing. As
a result, a second experiment was conducted where the optimized parameters for the PID
controller specific to each floor were obtained.

Secondly, in order to evaluate the following experiment, performance metrics are de-
fined, specifically, the time and energy spent on the task, and the stability of the robot
during these tasks. Lastly, the experiments to obtain the optimized PID parameters that
allow the robot to achieve the best performance on each floor individually to improve the
overall experience that is when the robot walks on the four different floors are presented.
Four different slippery floors that were previously studied were used to test the stabil-
ity and slip recovery ability of the robot (Almeida et al., 2018). The floors used in this
study were characterized by their coefficient of friction when in contact with the humanoid
robot’s instrumented shoe (ITshoe). Specifically, the floors exhibited coefficients of friction
of 0.33, 0.26, 0.20, and 0.11, respectively, when in contact with the ITshoe.

5.4.1 Step frequency experiments

In this study, a series of experiments were conducted in a simulated environment to
investigate the impact of humanoid locomotion on different slippery floors. The aim was to
gain a deeper understanding of the relationship between the robot’s step frequency, which
refers to the time it takes for the robot to perform one step, and the friction coefficients of
four different floors to identify the best humanoid gait for real-world settings. To achieve
this, a controlled experiment was designed and implemented, in which the humanoid
step frequency was varied and the humanoid CoM was measured under different types of
slippery floors.

The experiment involved the humanoid robot walking five times for 60 seconds on
each of the four different floors, using five different frequencies. The chosen frequencies
were the maximum frequency of the default humanoid NAO, the minimum frequency,
and three equally separated frequencies between the maximum and minimum frequencies:
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0.43, 0.47, 0.51, 0.55, 0.59 s/step. After collecting data from 100 experiments (i.e., 4 floors
× 5 frequencies × 5 repetitions), data manipulation was performed to quantify the extent
of slippage of the robot on each floor. To achieve this objective, the average absolute
Y-position of the CoM for each experiment was calculated.

In the next step, the average change in the direction of the robot’s feet at each step was
computed. This was done by taking the derivative of the average CoM Y-position data
points. Then, a second derivative was applied to obtain the values that represent how much
the robot slipped on each step. To exclude small slip actions that may occur due to possible
errors associated with the robot’s joints, controller, and/or the simulator environment, a
slip threshold was added to consider only significant slip actions. The optimal threshold
was determined empirically by observing the various outputs of the second-order derivative
and selecting the value that best matched the noticeable slip observed in the different
experiences. Specifically, a threshold of 1 × 10−6 m s−2 was chosen. To normalize the
results, the accumulated slip was divided by the number of steps in each experience since
different step frequencies represent different amounts of steps. Equation 5.15 describes the
steps used to quantify the robot’s slip in each experience.

S(i) = d2A(i)
dt2 , |S(i)| > θ ⇒ T =

∑
|S(i)|
n

, (5.15)

where S represents the second-order derivative of the discrete sequence A(i), which is
calculated as the difference between A(i) and A(i − 1), and A(i + 1) and A(i), i.e., S(i) =
(A(i) − A(i − 1))−(A(i + 1) − A(i)) = 2A(i)−A(i−1)−A(i+1). This equation is used to
estimate the rate of change of the CoM Y-position at each step, which is a key parameter
for detecting slips. θ represents the slip threshold, n represents the number of steps and
T represents the total slippage that occurred in a complete experience. It is important to
note that the absolute value of each detected slip was summed since we did not distinguish
the direction of the slip.

As an example of the procedure described, Figure 5.6 and Figure 5.7 depict the CoM
Y curves obtained for three examples of the resulting lowest slip sum and three examples
of the resulting highest slip sum, respectively.
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Figure 5.6: Absolute centre of mass position in the Y-axis for three exemplary walking
trials on a flat surface resulting in the least amount of slip
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Figure 5.7: Absolute centre of mass position in the Y-axis for three exemplary walking
trials on a flat surface resulting in the highest amount of slip

The slip corresponding to the previous examples is illustrated in Figure 5.8 and Fig-
ure 5.9, respectively. Among these examples, we selected floor 3 with the lowest frequency
as the best representative and floor 1 with the highest frequency as the worst representa-
tive.
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Figure 5.8: Slip and threshold visualization for the top three experiences with the least
amount of slip (e1, e2, e3 represent examples 1, 2, 3)

The overall results of the experiment are presented in Figure 5.10.
The study indicates that a higher nominal step frequency, which corresponds to the

robot taking longer time durations per step, results in more favorable outcomes in terms of
reduced slipping on all types of floors. Moreover, we observed a proportional relationship
between step frequency and outcomes, with lower frequencies resulting in higher slip sums
and vice versa. These findings demonstrate that, similar to humans, robots must adjust
their gait to maintain stability on slippery surfaces. In our study, this involved reducing
the step frequency to minimize the risk of slipping or falling.

Given that a specific step frequency for each floor was not identified, this study fell
short of our goal of real-time adaptation of the controller to optimize walking on diverse
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Figure 5.9: Slip and threshold visualization for the top three experiences with the highest
amount of slip (e1, e2, e3 represent examples 1, 2, 3)

Floor 1 µ = 0.33 Floor 2 µ = 0.26 Floor 3 µ = 0.20 Floor 4 µ = 0.11
0

1

2

3

4

5

2.8 2.7
2.5

2.8
3.2 3.3

2.9 2.8

3.4 3.4 3.4 3.3
3.6 3.6

3.4 3.5

4.2
4

4.2
4

Sl
ip

Su
m

(1
0−

6 )
(m

s−
2 )

nsd 0.58 nsd 0.54 nsd 0.51 nsd 0.47 nsd 0.43

Figure 5.10: Comparison of slip sum for different step frequencies and slippery floors,
where ’st’ denotes the step time in seconds for a robot’s stride.

surfaces. To address this limitation, we conducted a follow-up experiment focused on the
EYC controller. The results of this study provided valuable insights into optimizing the
controller’s parameters to improve the robot’s stability and mobility on various floors.

5.4.2 EYC adaptive controller experiments

For the EYC controller to adapt the humanoid’s locomotion based on its orientation,
the PID parameters that would yield the best results were investigated. To determine
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the suitable PID parameters for stabilizing the humanoid robot orientation on slippery
floors, a series of experiments on gazebo simulator was performed. Before describing the
experiment in detail, it is essential to define the metrics used to evaluate the robot’s
performance on different surfaces.

Performance metrics

In order to assess and compare the performance of the controller and define the best
parameters, some metrics are proposed: task time duration (TD), stability (Sidx), and
energy consumption (EC). These metrics have been established and utilized in previous
literature, as evidenced by Aller et al. (2019).

The task time duration refers to the time necessary for the humanoid robot to complete
a given task, such as walking a certain distance on a slippery surface. This metric allows
us to compare the efficiency of different control strategies in terms of completing tasks
quickly and accurately.

The stability of the robot was measured using the root mean square error (RMSE) of
the Center of Mass (CoM) and Zero Moment Point (ZMP) trajectories in relation to ideal
straight line trajectories, where, for a generic quantity A:

RMSE(A) = 1
N

∑
i

√(
Areal

i − Aplan
i

)2
. (5.16)

Each component of RMSE, including CoM in x and y directions and ZMP in x and y
directions, was given equal weight, accounting for 1

4 of the total weight in the calculation
of RMSE. A lower RMSE indicates better stability, as the robot is better able to maintain
its balance and avoid falling on the slippery surface. The stability index is defined as:

Sidx = 1
4

(
RMSECoMx + RMSECoMy + RMSEZMPx + RMSEZMPy

)
. (5.17)

Finally, to evaluate the energy balance of the control strategies, the energy consumption
of the different experiments was compared using a simplified metric. Given the relatively
small and lightweight nature of the NAO humanoid robot, the contribution of friction
and other energy losses was negligible in comparison to the energy consumed by the
robot’s actuators. Therefore, for simplicity and practicality, the energy consumption was
approximated by integrating, for all time steps (k = 0, ..., NT ), the product of the joint
torque (τi) with the angular velocity (ωi) for all the robot joints (i = 1, ..., NJ), during
each ∆t. This allowed us to focus on the energy consumed by the joints as the main
sources of energy consumption for the robot. The energy consumption is defined as:

EC =
NT∑
k=0

NJ∑
i=1

τi(k)ωi(k)∆t. (5.18)

This simplified metric enabled us to compare the performance of the different control
strategies and identify the most energy-efficient approach for the tasks at hand, while
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disregarding other factors, such as robot size, design, environment, and power source that
would have contributed only marginally to the overall energy budget.

The performance of the implemented digital PID controller on four different slip-
pery floors was evaluated using a combination of the three metrics, as shown in Equa-
tion 5.19.The system’s performance decreases as the value of M increases.

M = 1
3

(
TD

TDmax
+ EC

ECmax
+ Sidx

Sidxmax

)
, (5.19)

where TDmax , ECmax , and Sidxmax correspond to the maximum values obtained across all
the experiments.

The equation calculates the overall performance metric M , which is a weighted sum of
normalized duration, energy, and the average RMSE of the CoM and ZMP positions over
both axes. The normalization was performed using the maximum value of each metric to
respectively scale them to a common range.

Digital PID controller optimization

To adjust the PID parameters, the initial setup was manually tuned to establish a
baseline for comparison. Data was then collected on the robot’s performance on four
different slippery surfaces, systematically varying the P, I, and D gains. This allowed
for the evaluation of the impact of each parameter on the robot’s stability and mobility
and identification of the optimal combination of parameters for each surface. By using
this approach, the PID controller’s parameters were fine-tuned to enhance the robot’s
performance on a variety of surfaces, ensuring optimal stability and mobility.

After each experiment, the results were evaluated using the defined metrics. Due to
the complexity of the model, an analytical approach was not feasible, and an empirical
approach was employed to identify the set of PID parameters that resulted in the best
performance according to the metrics. Finally, the parameters that yielded the best per-
formance across all experiments were selected for further analysis and comparison.

As will be demonstrated in this section, the optimized value of the integral parameter
will be set to zero, effectively reducing the PID controller to a PD controller.

Optimized PID gains To illustrate the results of our experiments, we present three
graphics showcasing the performance of the controller on the first floor, which has a
coefficient of friction of 0.33. Chart in Figure 5.11 displays the performance task results
for five repetitions for each variation in the proportional gain while fixing the integral
and derivative parameters. During the experiment, the controller was used while the
robot walked 2 meters on the floor. Chart in Figure 5.12 presents the performance results
using the optimized proportional gain and the fixed derivative gain while varying the
integral gain. Finally, Chart in Figure 5.13 shows the results obtained with the optimized
proportional and integral gains while varying the derivative gain.

The optimized digital PID gains were determined as P=0.98, I=0.00, and D=0.02 for
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Figure 5.11: Experiment proportional gain impact on the task performance.
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Figure 5.12: Impact of integral gain on task performance.
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Figure 5.13: Experiment derivative gain impact on the task performance.

the first floor, using it as an example for our task. The same procedure was repeated for
each floor, resulting in the corresponding optimized PID gains, as shown in Table 5.2.

As the floor becomes increasingly slippery, we observe that the proportional gain (P)
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CoF

0.33 0.26 0.20 0.11

P 0.98 0.99 1.01 1.04
I 0.00 0.00 0.00 0.00
D 0.01 0.01 0.01 0.01

Table 5.2: Best PID gains for each floor

of the controller increases to enhance its responsiveness. This is because a more slippery
surface tends to induce slower responses from the system to changes in orientation, ne-
cessitating a higher P value to achieve the desired level of control. Our empirical analysis
revealed that the optimal integral term for this controller is I=0, indicating that the sys-
tem is able to compensate for any steady-state error without requiring the integral term.
Furthermore, the derivative gain obtained was D=0.01 for all experiments, suggesting
that the current level of derivative gain is appropriate and does not require adjustments
in response to changes in floor slipperiness.

Performance evaluation: variable vs. fixed PD gains To demonstrate the effec-
tiveness of the approach, a series of experiments were conducted in which the humanoid
robot walked 2 meters on four different slippery floors, each 50 cm long, and repeated the
process five times. The performance of using a fixed-gain PD controller with the best
gains for the first floor was compared against a variable-gain PD controller with optimized
gains for each floor that the robot walked on. The results presented in Table 5.3 show
that implementing the best PD gains for each floor led to a significant improvement in
the robot’s overall performance. On average, the robot achieved an approximately 10 %
increase in performance, with the most noticeable improvements observed on the last two
floors, which had lower friction. The primary factor contributing to the improvement ob-
served with the variable PD control method was the robot’s resulting enhanced stability
performance. Moreover, using the variable PD also resulted in lower energy consumption
during task execution. However, the difference in task completion time between the two
PD control methods was insignificant, with a slightly better performance observed for the
fixed PD. Overall, when considering the three metrics with equal weight, the impact of
the variable PD control method is evident, particularly on floors with reduced friction.

Figure 5.14 shows an example of one of the experiments CoM Y to illustrate the
stability using a fixed-gain PD versus an adaptive-gain PD.

From the graph in Figure 5.14, it can be observed that, initially, the pattern is similar
for both the adaptive and fixed PD controllers. This can be attributed to the floors
being less slippery and the proportional value being the same for both controllers in
the beginning. However, as the experiment progresses towards more slippery floors, the
adaptive PD controller exhibits a more effective response to the slippage caused by the
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Variable PD per floor Fixed PD on all floors

M floor 1 0.9997 0.9999
M floor 2 0.9773 0.9996
M floor 3 0.7568 0.9998
M floor 4 0.8716 0.9987

M experience 0.9013 0.9995

Table 5.3: Experiment results by floor and overall experience, comparing the performance
of the robot using optimized PD gains for each floor versus using the same gains for all
floors.
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Figure 5.14: Comparison of absolute centre of mass position in the Y-axis using an adaptive
PD controller vs non-variable PD

lower friction of these floors. The controller’s adaptability to the floor on which the robot
is walking is attributed to our prior research, which involved the development of an ITShoe
for measuring ground reaction force data, and the implementation of a Long-Short Term
Memory (LSTM) network to identify the various floor types.

It is important to note that, for the defined performance metric, a lower value indi-
cates better performance. In other words, achieving a smaller task time, lower energy
consumption, and less stability error are desired outcomes.

This demonstrates the versatility and effectiveness of the controller used in this work
to adapt to different slippery floor conditions.

The experimental results presented here are illustrated in a video available on
YouTube2, which provides a better understanding of the problem and the observed be-
haviours.

2 https://youtu.be/aWqmWoWTbv8
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5.5 Conclusion

In this study, we have demonstrated the versatility and potential of the controller de-
veloped in (Romualdi et al., 2018) by successfully adapting and implementing it to control
our humanoid robot. Our findings highlight that the integration of an Embedded Yaw
COntroller (EYC) has significantly enhanced the overall performance of the robot while
walking on slippery floors. This improvement was particularly evident when the robot
was exposed to different types of slippery surfaces, effectively mitigating the challenges
posed by the varying conditions. Furthermore, the EYC has also successfully rectified the
non-linear paths resulting from the robot’s unconventional building technique, contribut-
ing to a more stable and controlled gait. It is worth noting that we assumed the robot’s
ability to identify the type of floor it is walking on, as this issue was resolved in a prior
study (Almeida et al., 2021) using the ITShoe and a LSTM. As part of future work, the
plan is to conduct tests on the physical humanoid robot and make necessary adjustments
to seamlessly integrate floor detection with the controller adaptation. This would involve
transitioning from ROS (Robot Operating System) to YARP (Yet Another Robot Plat-
form) and translating the forces measured by the ITShoe to ankle forces and torques for
the robot.
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6.1 Discussion

The general discussion of the thesis is structured into three major sections, each con-
tributing to the overall objective of enhancing humanoid locomotion on slippery floors.

The first section (Chapter 2) is dedicated to the development of the ITShoe, a low-
cost, wireless, and adaptable solution designed for measuring the net GRFs in humanoid
robots. The ITShoe not only provides valuable insights into sensor positioning, but it also
offers a simple architecture that streamlines data gathering and manipulation processes.

The primary objective of this section extends beyond addressing the needs of humanoid
NAO robots navigating slippery floors. It also focuses on the seamless integration of the
ITShoe with a wide range of humanoid robots. The development of the ITShoe was
carefully considered with future adaptability in mind, allowing for easy customization by
changing its outer design to match the foot design of each specific robot. This approach
ensures that the ITShoe can be effortlessly integrated into different humanoid robots,
enhancing their locomotion capabilities on real-world surfaces.

Through our experimental results, we demonstrate the practical application of the
ITShoe in measuring ground reaction forces. While the precise magnitudes, particularly
for horizontal forces that are challenging to quantify, may not be exact, we highlight the
significance of observing variations in these forces. Even without resorting to mathematical
approaches, visual examination allows us to perceive the differences across various types of
floors. However, a significant challenge lies in the lack of a robust system for consistently
placing the ITShoe on the robot’s foot, ensuring precise pressure measurements. This
issue represents a crucial area for future improvement, as similar-looking slippery floors
can have varying effects on robot stability. Thus, detecting even small variations in the
total GRFs using the ITShoe becomes essential for enhancing the overall performance and
adaptability of humanoid robots on such surfaces.

The second part of the thesis (Chapter 3 and 4) explores and implements learning
approaches to interpret the measured ground reaction forces. These approaches harness
the power of machine learning techniques to extract meaningful insights and patterns from
the force data.

Chapter 3 introduces the initial approach for classifying slippery floors. While we
achieved successful classification results using neural networks on test datasets, we en-
countered challenges when applying the trained models to real robot scenarios with new
data. Several factors contributed to this discrepancy. Firstly, the combination of gait
parameters led to diverse force curves even within the same floor type. This complexity,
compounded by the limited representation of the curves due to insufficient data, made
accurate classification difficult. Although this particular research did not yield conclusive
results for our specific problem, it paved the way for Chapter 4.

In Chapter 4, we adopted a more suitable network architecture, specifically a LSTM
network, which is well-suited for analysing temporal data, such as the evolving force
patterns during walking. By augmenting the dataset with a larger volume of data and
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utilizing a fixed gait, we achieved improved classification results in real-time scenarios.
The utilization of the LSTM network, coupled with the increased dataset and controlled
gait, proved instrumental in addressing the challenges faced in this section and obtaining
more reliable classification outcomes. The real robot was used to conduct experiments
on labelled floors with decreasing coefficients of friction, which were measured when the
robot ITShoe came into contact with the floor.

The third part (chapter 5) is dedicated to enhancing the adaptability of a humanoid
controller by incorporating specific tweaks and adjustments based on the insights gained
from the previous chapters. This section presents a solution that optimizes humanoid
efficiency on slippery floors. By combining the knowledge acquired from measuring the
ground reaction forces and the application of learning approaches, the humanoid controller
is fine-tuned to enhance its stability, agility, and overall performance in challenging and
slippery environments. Notably, the implementation of an EYC with adaptable parameters
based on the classification of different floor types has proven to significantly improve the
defined stability criteria outlined in this chapter.

In summary, these three parts collectively contribute to the specific challenge of im-
proving bipedal locomotion on slippery floors.

6.2 Concluding Remarks

In conclusion, this research has made substantial progress in addressing the challenge
of locomotion on various surfaces, with a particular focus on slippery floors.

Firstly, the development of the ITshoes wearable force system aligns with the vision set
forth in Hypothesis 1, enabling accurate measurements of ground reaction forces. These
measurements have provided a robust foundation for subsequent analysis and control
strategies, supported by extensive experimentation and data collection. The reliability
and validity of the collected data have ensured that informed decisions can be made based
on the insights derived from the ground reaction forces.

The development of the ITshoes has taken into account crucial factors such as cost-
effectiveness, weight, adaptability, and user-friendliness. These considerations have been
instrumental in ensuring that the ITshoes have the potential to be widely accessible and
seamlessly integrated into various designs of humanoid robots.

Secondly, our research validates Hypothesis 2, as we effectively harnessed machine
learning techniques to distinguish between different types of slippery surfaces. Leveraging
the normal and tangential ground reaction forces data obtained from the ITshoes, our
classification system provides the humanoid robot with real-time knowledge of floor con-
ditions. This achievement empowers the robot to make informed decisions and adapt its
locomotion accordingly.

Lastly, our work strongly supports Hypothesis 3, as we have seamlessly integrated
the classified floor types into the humanoid controller, thereby significantly enhancing the
robot’s locomotion performance. The adapted controller, tailored to the specific charac-
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teristics of the NAO robot, enables the robot to navigate different slippery floors with
remarkable ease.

In essence, our research has not only addressed the hypotheses outlined at the be-
ginning but has also opened avenues for further advancements in the field of humanoid
robotics, demonstrating the potential of wearable force systems and machine learning
techniques in enhancing robot locomotion and adaptability.

Furthermore, our work introduces a novel approach involving four floors with varying
coefficients of friction and the development of a real-time classification system to adapt
the humanoid controller accordingly. Nevertheless, the overarching objective lies in ex-
tending this concept to detect transitions between different floor types. Such transitions
would signify new frictional challenges and, consequently, necessitate the adaptation of
controller parameters. This avenue of exploration represents a promising direction for
future research, promising to further advance our understanding of bipedal locomotion on
diverse surfaces.

6.3 Future Directions

To enhance the accuracy, reliability, and overall performance of ground reaction force
measurements with the ITshoes, as well as the subsequent data information extraction and
humanoid controller improvements, it is recommended to focus on the following future
directions:

• Design a secure attachment mechanism:

Develop a mechanism that maintains consistent pressure between the robot’s feet
and the ITshoes. This ensures reliable and precise data collection. Incorporate
adjustable straps or fasteners to create a firm connection, minimizing slippage or
movement during locomotion. Use materials with suitable frictional properties to
enhance grip and stability.

• Expand the dataset:

Acquire more data to improve the accuracy and robustness of the floor classification
system. Increase the diversity and quantity of data to enhance machine learning al-
gorithms’ effectiveness and generalization capabilities. Include a range of floors with
varying frictional properties within the classified ones to better predict unfamiliar
surfaces.

• Explore challenging floor conditions:

Actively seek out and analyse new and unclassified floor conditions to enhance the
system’s capabilities. Gather data from diverse and unexplored floors to improve
the classification model iteratively. This helps the system adapt to a wider range of
floor conditions.
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• Implement the developed controller in the real robot:

Integrate the controller with the ITshoes’ ground reaction force measurements, re-
placing simulated sensors with real-time data. Validate the integration through
experimentation and testing in real-world scenarios. Evaluate the system’s perfor-
mance and adaptability to different types of floors and environmental conditions.

By implementing these steps, the accuracy, reliability, and adaptability of the ITshoes
and the floor classification system can be significantly enhanced, leading to an improved
controller for humanoid locomotion on slippery floors. This advancement will contribute to
the development of more capable and agile humanoid robots that can navigate challenging
slippery environments with increased stability and efficiency.

6.4 Contributions

In this section, the contributions made in this PhD thesis will be outlined, with each
corresponding to a specific chapter (which comprises the actual scientific papers):

• Instrumented system for Humanoid Gait Analysis

The first contribution of this thesis is the development of an innovative instru-
mented system, as presented and explored in Chapter 2, scientific article (Almeida
et al., 2018), which serves as the foundation for precise measurement and analysis
of Ground Reaction Forces on various surfaces, particularly slippery ones.

• Computational Intelligence Techniques for Floor Classification

The second contribution is detailed in Chapters 3 and 4, scientific articles (Almeida
et al., 2020; Almeida et al., 2021), where computational intelligence techniques are
introduced to interpret force data and classify different types of slippery floors.

• Humanoid Adaptive Controller

The third contribution encompasses the integration of a humanoid controller and
additional adaptations and improvements, as detailed in Chapter 5, scientific article
submitted. These enhancements significantly enhance control and responsiveness,
especially on challenging surfaces.

Additionally, there is a separate contribution made to research focused on automating
the NAO Robot’s gait. In this context, a controller was presented that adjusts the robot’s
gait based on the analysis of human walking and its adaptation to slippery surfaces,
scientific article (Franco G. Almeida, 2018)).

Finally, the last contribution of this thesis centers on the adaptation of humanoid
gait on slippery surfaces, marking the culmination of all previous efforts, as elaborated
in Chapter 5 (submitted scientific article). This achievement exemplifies the synergistic
effect resulting from the integration of the instrumented system, computational intelligence
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techniques, and the humanoid controller.
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