

Redes de Comunicação em Ambientes Industriais Aula 3

Luís Almeida Ida@det.ua.pt

Electronic Systems Lab-IEETA / DET Universidade de Aveiro Aveiro, Portugal

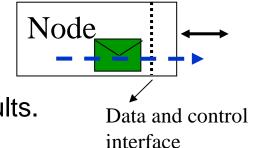
In the previous episode ...

- Distributed systems application domains and general concepts
- Requirements
 - Short data, short periods, low jitter, low latency
- Notion of message and transaction
- Temporal behavior merit figures
 - Network induced delay, delay jitter, buffers requirements, ...
- Data exchange semantics: event and state
- Time and event triggering

Outline

- Transmission control
 - who triggeres message transactions
- > Information flow
- Operation flexibility
- Protocol stacks

Transmission control


Determines who triggers network transactions, application or network

External control

Transactions are triggered upon explicit control signal from the application.

Messages are queued at the interface.

Highly sensitive to application design/faults.

Autonomous control

The network triggers transactions autonomously. Data interface, No control signal crosses the CNI.

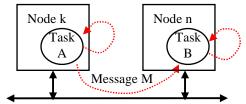
Applications exchange data with the network by means of buffers.

Deterministic behavior.

Transmission control

- All 4 combinations of network type and transmission control are possible, depending on how much global a priori knowledge there is and whether it is located within or outside the network:
 - ET network with external control no global a priori knowledge
 - TT network with autonomous control network includes global a priori knowledge
 - ET network with autonomous control
 some global a priori knowledge within the network (e.g. predefined servers per node)
 - ✓ TT network with external control global a priori knowledge kept by the application but outside the network

Typical approaches to combine ET and TT

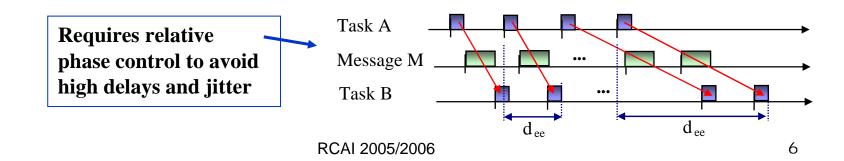


Task B

time

Information flow

Determining end-to-end delay

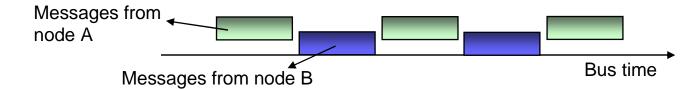


 d_{ee}

Task A

ET-network with external control Transactions are composed of several elementary actions carried out in sequence.

TT-network with autonomous control
The elementary actions in each intervenient
(transmitter, network, receiver) are decoupled, spinning
at an appropriate rate.



Information flow

✓ In a TT-network

- The tight control of the relative phase required between all system activities (message transmissions and task executions) imposes rigid architectural constraints
 - ✓ Time-triggered architecture
- The whole system must be designed altogether (network and nodes)
- However, once the network is designed, nodes will not interfere with each other (transmissions occur in disjoint intervals)
 - Composability with respect to temporal behavior

Operational Flexibility

- There is a growing interest in using Distributed Embedded Systems in dynamic operational scenarios:
 - Systems with variable number of users, either humans or not (traffic control, radar...)
 - Systems that operate in changing physical environments (robots, cars...)
 - Systems that can self-reconfigure dynamically to cope with hazardous events or evolving functionality (cars, planes, ...)

Buzz words:

QoS adaptation, graceful degradation, survivability

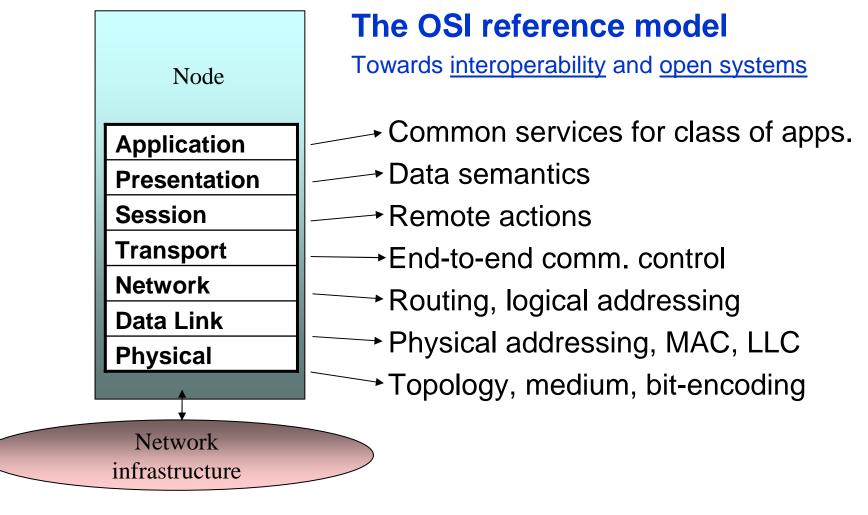
RCAI 2005/2006

Operational Flexibility

- Network requirement:
 Dynamic (flexible) management of bandwidth while guaranteeing real-time constraints
 - Act upon periodic communication, e.g. related to control information (potentially bandwidth consuming)
 - Adapt transmission rates according to effective needs
 - Explore subsystems that operate ocasionally
 - Explore variable sampling/tx rates according to the current system control stability state

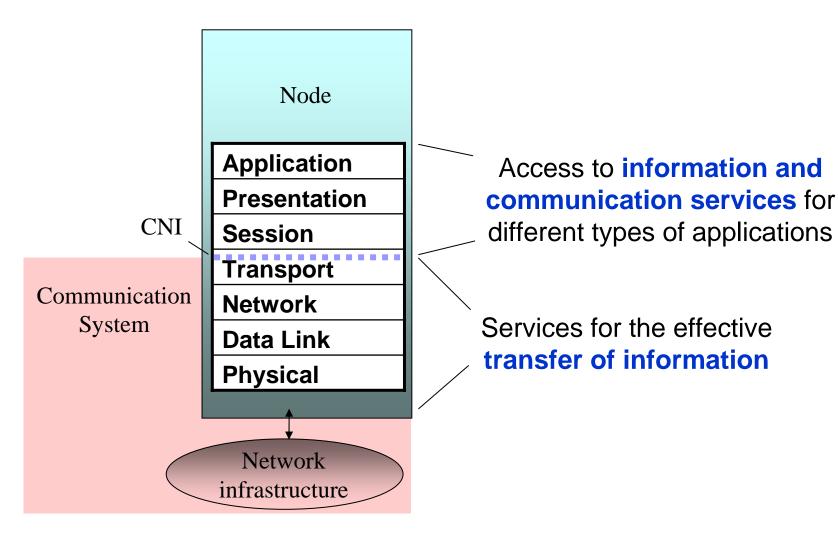
Operational Flexibility

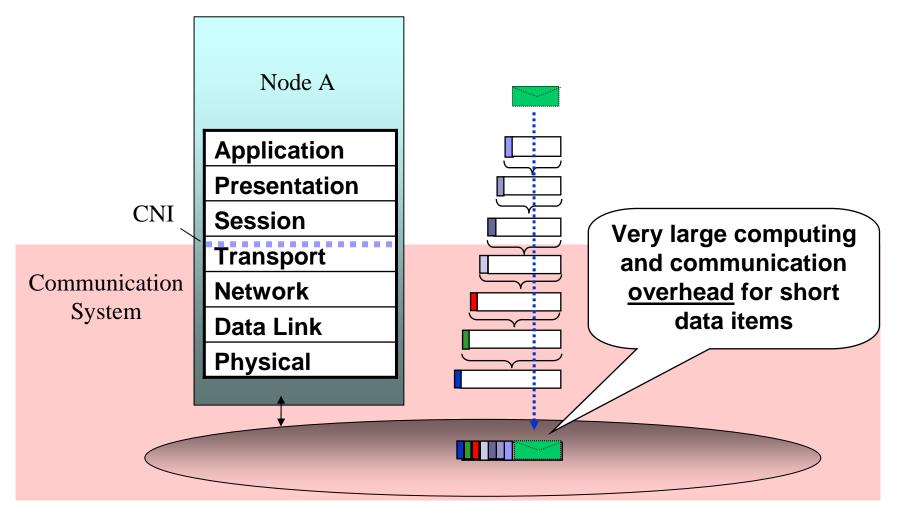
- ET-networks are inherently flexible wrt the communication requirements
- TT-networks are not because of a priori knowledge (normally static)


Question:

Are the TT-networks excluded when we need operational flexibility?

- NO, flexibility of TT-networks can be improved with:
 - Multiple operational modes that can be switched on-line
 - On-line scheduling of the periodic traffic:
 - → FTT paradigm (Flexible Time-Triggered communication)


Protocol stack

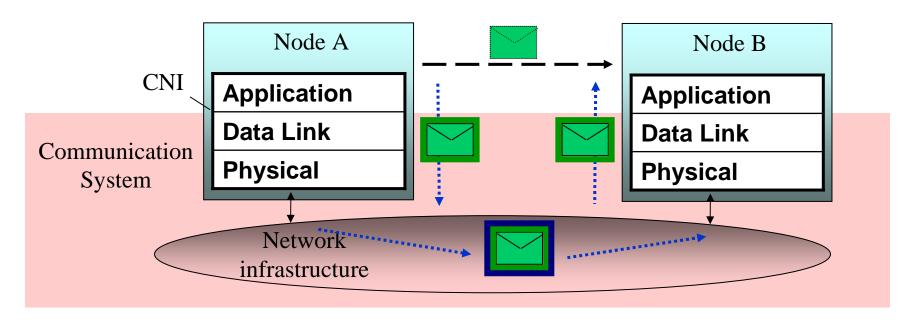

Protocol stack

RCAI 2005/2006

Protocol stack

RCAI 2005/2006

Real-time protocol stack


- ✓ The end-to-end communication delay must be bounded
 - All services at all layers must be time-bounded
 - Requires appropriate time-bounded protocols
- The 7 layers impose a considerable computation and communication overhead...
 - The time to execute the protocol stack becomes dominant wrt the communication time
- Many real-time networks
 - are dedicated to a well defined application (no need for presentation)
 - use single broadcast domain (no need for routing)
 - ✓ use short messages (no need to fragment/reassemble)

OSI collapsed model

- Application services access the Data Link directly
- Other layers maybe present but not fully stacked
- In process control and factory automation these networks are called **Fieldbuses**

Summary:

- Transmission control can be external or autonomous
- ✓ TT networks with autonomous control require judicious use of relative phase to avoid high delays and jitter → Time-triggered architecture
- ET networks are inherently flexible at run-time
- TT networks are typically static but can use multiple modes or on-line scheduling of the periodic traffic

Summary (cont.)

- The OSI 7 layers reference model imposes too much overhead for real-time networks (mainly in embedded control applications)
- Real-time properties must be enforced in all layers
- Real-time networks frequently use a collapsed 3 layers structure:
 - physical, data link and application layers