

Redes de Comunicação em Ambientes Industriais Aula 8

Luís Almeida

lda@det.ua.pt

Electronic Systems Lab-IEETA / DET Universidade de Aveiro Aveiro, Portugal

In the previous episode ...

Cooperation models:

 Client/Server, Producer/Consumer, Producer/Distributor/Consumer, Publisher/Subscriber

Manufacturing Message Specification

- ✓ Goals
- Architecture
- Objects and methods
- Clock synchronization
 - ✓ IEEE 1588
 - ✓ SynUTC

- Establishes the relative order of message transmissions
- Related issues:
 - Constraints imposed by the MAC Fixed-priorities, Master-Slave, Token-passing, TDMA, FIFO queues, Table-based
 - Support for global synchronism Allows use of offsets
 - On-line or off-line (table-based) scheduling
 - Static or dynamic scheduling

- The traffic scheduling algorithm is essentially executed at the
 - data link level (MAC and by local queuing policies)
 - network layer (routing queues)
- It can be distributed (e.g. CAN), or centralized in a particular node (e.g. FTT-CAN, WorldFIP).

Resemblances with task scheduling

- The problem of scheduling tasks in a processor, upon fully distribution (one processor per task) is transformed in a message scheduling problem
- The network is now the bottleneck (i.e. the resource to be scheduled)

Resemblances with task scheduling

Task model must be adapted adequately according to network protocol

- Tasks execution time (C_i) translates to message transmission time, or to transaction duration when atomic
- Period (T_i), Deadline (D_i) and Priority (P_i) are similar
- Offsets (O_i) are supported on globally synchronized systems, only

Resemblances with task scheduling

Non-preemption of message (packet) transmission.
Once transmission starts cannot be interrupted.
Can be accounted for as a blocking term (B_i).

Typical scheduling model

 $M \equiv \{m_i \text{ (C}_i, T_i, J_i, D_i, P_i, O_i), i=1..N\}$

Problem: Can all timing constraints be met? or Is the message set schedulable?

Scheduling Criteria

Fixed Priorities

- Rate Monotonic (RM)
- Deadline Monotonic (DM)
- Importance

Dynamic Priorities

- ✓ Earliest Deadline First (EDF)
- Least Laxity First (LLF)
- First Come First Served (FCFS)

Schedulability Analysis

Most typical analysis focus on

- ✓ Bandwidth utilization $U = \sum_{i=1}^{N} \frac{C_i}{T_i}$
- Network induced delay also referred to as worst-case response time analysis.
- In static table-based systems it is typical to use branch and bound techniques to optimize the schedule (e.g. wrt to jitter or precedences)

Schedulability analysis based on utilization

Rate Monotonic (RM):

$$\sum_{1}^{N} \frac{C_{i}}{T_{i}} + \max_{1..N} \left(\frac{B_{i}}{T_{i}} \right) < N(2^{1/N} - 1)$$

Earliest Deadline First (EDF):

$$\sum_{1}^{N} \frac{C_{i}}{T_{i}} + \max_{1..N} \left(\frac{B_{i}}{T_{i}} \right) < 1$$

$$B_{i} = \max_{l=j..N} (C_{l})$$

Modified Liu and Layland (1973) utilizations bounds accounting for blocking

Schedulability analysis based on utilization

Getting rid of the blocking with inserted idle-time

Schedulability analysis based on network-induced delay

Maximum network-induced delay (Fixed Priorities)

Schedulability analysis based on network-induced delay

Schedulability analysis based on network-induced delay

Maximum network-induced delay (Fixed Priorities)

With inserted idle-time we can use the Timeline Analysis

✓ Consider the following set of 9 variables with periods given by $T_1=1$, $T_{2..5}=2$, $T_{6..9}>3$

Cyclic Table-Based Scheduling

Cyclic Table-Based Scheduling

 Allows using optimization techniques (e.g. Branch and Bound, Simulated Annealing, Integer Linear Programming, Genetic Algorithms) to improve schedule properties (e.g. jitter, Rwc, precedences)

Similarities with server scheduling

 Typically, controlled access networks allocate a fraction of bandwidth (server) to each node.
Server-based analysis for processor scheduling can also be used in this case, with adequate adaptations.

e.g. a TDMA slot can be viewed as a server handling the traffic from the respective node.

Similarities with server scheduling

Constraints imposed by the MAC

- Minimum transmission period (e.g. TDMA round cycle, or microcycle in Master-Slave.
- High jitter in Token-Passing systems, due to the irregularity of token arrivals.
- Blocking term in asynchronous systems (no offset, i.e. phase, control).
- Dead interval in polling systems (e.g. Master-Slave, Token-Passing) to handle aperiodic communication requests.
- Inserted idle-time in synchronous systems with variable size data.

Summary:

Traffic scheduling:

- Establishes the relative order of the message transmissions
- Carried out essentially at Data Link or Network layers
- Distributed/Centralized
- Resembles task scheduling (adaptation of the task model possible)
- Scheduling criteria:
 - Fixed priorities (RM, DM, importance/value)
 - Dynamic priorities (EDF, LLF, FCFS)
- Schedulability analysis:
 - Utilization
 - Response time
 - ✓ Timeline
 - Branch and bound (for static table/based)

Summary:

Similarities with server scheduling

fraction of the network bandwidth allocated to each node

MAC imposes constraints

- minimum transmission period
- jitter
- blocking
- ✓ dead-interval
- inserted idle-time