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Abstract
This paper presents a comprehensive navigation system capable
of extended coverage operations in semi-structured environments.
By semi-structured, we mean pre-mapped terrain that although
locally smooth has potentially large changes in elevation and that
is generally free of obstacles. The system has three key capabili-
ties -- it is able to track specified paths with high accuracy, detect
small obstacles reliably, and plan coverage patterns to com-
pletely cover a specified area. These technologies have been com-
bined and implemented on a mobile robot, which has
accumulated over 90km of autonomous operation to date. Here
we report on the components, the architecture, and experimental
results. 

1. Introduction
This paper presents a comprehensive autonomous system
for full coverage and traversal of semi-structured outdoor
terrain. By semi-structured, we mean smooth terrain
smooth with potentially large elevation changes, and with a
low density of (potentially small) obstacles. Examples of
this type of terrain include parks, sports fields, and golf
courses. The major challenges for developing such a sys-
tem are: (a) high accuracy tracking and localization, to
allow for operation near potentially dangerous areas, (b)
robust obstacle detection, which can operate in terrain with
changing elevation, while still detecting small (15cm)
obstacles, and (c) complete coverage planning to automati-
cally cover a specified area completely. Since our intended
application is commercial, ease of use and low cost are also
important. This paper presents a system that exhibits high
accuracy, high repeatability, robust obstacle detection, and
complete coverage. This system has been in operation for
months and has accumulated over 90km of autonomous
operations, low cost, and simple to use; it has been tested
and operated by non-technical people. 

Our work has applications to automated mowing, spraying
fertilizer, applying paint to sports fields, and examining
large areas of grass for damage or disease. These types of
operations require semi-skilled labor, which can be either
expensive or in short supply. Furthermore, there can be
labor-imposed constraints that specify when these opera-
tions can be performed. An autonomous system which
requires minimal supervision could operate at night, when
labor is not available.

There has been a great deal attention to parts of the prob-
lem of autonomous operation in semi-structured environ-
ments. For example, research in robust localization has
been used to automate machines such as straddle carriers
for transport of large containers in a port setting [8].
Research in tracking of paths for automated underground
mining machines is presented in [19]. Automation of agri-
cultural machines has concentrated mainly on navigation
and tracking of local features [4][10][16][17], and has typi-
cally not focused on obstacle detection or coverage. A
recent system has automated a tractor [21] capable of path
tracking and localization. The system is able to detect
obstacles based on texture and color segmentation, but
there is no automated coverage generation. Other systems
have developed random coverage patterns for covering
small areas [9][11]. In comparison, our system is capable
of tracking, localization, obstacle detection and coverage.
Also unique with our system is the requirement to track
specified paths to high accuracy and reliably detect very
small obstacles.

Our approach to tracking and coverage uses paths based on
an absolute reference frame. Although geo-referenced cov-
erage patterns can potentially be generated using digital
maps, we use a teach-playback system in which an opera-
tor drives the outline of a desired coverage area as input to
a coverage generation algorithm. This makes training and
operation easy for the user, and minimizes the work load. 

Obstacle detection is also a major component of autono-
mous systems. Stereo [3][15][24], radar [14], and laser
range finders [18] have all been used in the past for obsta-
cle detection. Previous approaches based on stereo and
other forms of passive vision such as color segmentation
[1][12][23] suffer from lighting, color constancy, and
dynamic range effects which cause false positives and false
negatives. Radar is good for large obstacles, but localiza-
tion is an issue due to wide beam widths. Single axis laser
scanners only provide information in one direction, and
can be confounded by unmeasured pitching motion and
mis-registration. Two axis scanners are also used, which
provide more information, but are very costly. 

In recent work, we have developed a custom obstacle
detection system [2]. Our approach is to mechanically pan
a single axis scanner to provide horizontal and vertical cov-
erage. We also have developed a novel obstacle detection
algorithm capable of detecting small (15 cm) discrete



obstacles in curving but locally smooth terrain. We further
assume that all areas are equally traversable, except for the
presence of discrete obstacles. 

Section 2 presents details about the core path tracking, nav-
igation, obstacle detection, user interface modules, and
overall architecture. Section 3 presents results of individual
components, along the results of three months of outdoor
testing on a mobile platform, in which time the robot

autonomously covered 82,000m2 of turf. 

2. Subsystems
Here we present methods which enable complete autono-
mous operation in semi-structured terrain. These include
cm-level path tracking, cm-level localization, robust obsta-
cle detection in curving terrain, and an intuitive user inter-
face which is capable of being used with minimal training. 

2.1. Path Tracking

We use pure-pursuit [7], a well understood, intuitive path
tracker, to achieve tracking accuracy on the order of +/-
5cm, when measured against the localization system. This
accuracy is measured with reference to a path, which is
represented as a series of points in the global coordinate
frame. The path tracking error at any instant in time is the
straight-line distance from the vehicle to the closest point
on the path. 

Pure pursuit operates by searching for a point along the
path that is a look-ahead distance away from the control
point. The steering angle is proportional to the y coordinate
of the look ahead point when translated to the vehicle’s ref-
erence frame, as shown in Figure 1. The basic form of
pure-pursuit is a proportional controller. We have added an
integral term to this to reduce bias error. Equation (1) gives
the relationship between the look-ahead point and the
resulting steering curvature. Kp is a proportional gain and
Ki an integral gain.

(1)

We have also modified the path tracker to compensate for
constant delays in the vehicle’s control system by using a
kinematic model of the vehicle to estimate future position.

This position is used as input to the pure pursuit algorithm.
As shown in Section 3.1, the maximum error is 5 cm on
straight sections, and 10 cm on 2.5m radius curves. 

2.2. Localization

Our intended applications require localization accuracy of
5cm over large areas. While the terrain is assumed to be
smooth it can be populated with trees, buildings and other
large obstructions. When line of sight to GPS satellites is
obstructed, such as in areas of dense tree cover, localiza-
tion is degraded, and is sometimes unavailable. In practice
we have to augment our DGPS (2 cm accuracy) with wheel
encoders and a fiber optic gyro to provide dead-reckoning.

The chosen sensors have different update rates and differ-
ent error characteristics. We therefore use an extended Kal-
man filter formulation, described in [13], to fuse the sensor
information. The state, x measured in the kalman filter is a
vector containing the vehicles’s x, y position, forward
velocity, v, the yaw, Θ and yaw rate.

(2)

The kalman filter algorithm is broken into two steps, the
time update (prediction) and the measurement update (cor-
rection.) During the time update, the kalman filter uses a
simple dynamic model of the system to predict its new
state.

(3)

Because the measurements are not correlated and the data
are not synchronized, each sensor is handled individually.
Occasionally, the GPS system returns invalid position data.
To detect invalid measurement data, we analyze the filter
residual to look for large discrepancies between the mea-
sured state and the predicted state. If this term is much
larger than the measurement’s reported standard deviation,
then that measurement is discarded.

This combination of sensors and kalman filter provides a
localization system that is very accurate in areas of unob-
structed GPS positioning. The system is robust enough to
drive through and recover from short periods (10-20 sec-
onds) of degraded and absent GPS information, as we
show in Section 3.2

2.3. Obstacle Detection

The obstacle detection subsystem is capable of detecting
small (15cm) obstacles on curving terrain while moving at
up to 2m/s, with a very low false positive rate. Although
we initially relied solely on passive vision techniques, we
have since adopted an active sensing system, making use
of a custom-designed two-axis laser scanner. The motiva-
tion for this evolution is described in [2].
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Figure 1: While following a path, the pure pursuit algorithm 
locates a point along the path at the a look ahead distance away 
from the control point. The steering angle is proportional to the 

look ahead point’s y’ error.

x’y’

S
A

γ Kp ex Θsin– ey Θcos+( ) Ki ex Θsin– ey Θcos+( ) td∫+=

ex xf xg–= ey yf yg–=

x x y v Θ Θ
· T

=

x
-

x dt v Θ( )cos v Θ( )sin 0 Θ
·

0
T

+=



2.3.1. Hardware Design

Our current method mechanically sweeps a vertically-
mounted single-axis laser scanner to produce a two-axis
scanning system. Figure 2 shows a prototype of the system.
The laser scanner generates a set of range points, called a
scan, in a vertical direction, from top to bottom. The laser
is mechanically rotated back and forth to produce a set of
scans, which we refer to as a sweep. The rate and range of
the sweep is determined by sensor resolution, vehicle
speed, and desired update rate. [2] presents a trade-off
analysis of the design parameters. The current system has
the following characteristics:

• 100 degree (vertical) by 40 degree (horizontal) FOV
• 1 degree resolution in both directions 
• 2Hz frame rate 

Note that these parameters are mostly customizable. For
instance, the horizontal resolution can be increased by
decreasing the sweeping speed, at the cost of decreased
frame rate or decreased FOV. This flexibility allows for
focus of attention algorithms to be easily implemented.

The main advantage of this approach over commercial
two-axis laser systems is cost. Commercial systems pro-
vide greater resolution and range than our system, but at a
much higher (5-10x) cost. 

2.3.2. Software Algorithm

The obstacle detection algorithm consists of three stages:
classification, fusing, and filtering. As scan lines come in,
each range point in the scan is classified as ‘obstacle’ or
‘freespace’. Scans are accumulated, and then obstacle pix-
els are clustered using a nearest-neighbor criterion, and
candidate obstacles are then filtered based on statistics
such as mass and size. Figure 3 illustrates this procedure. 

The novelty of this algorithm is that point clustering and
scan fusing is done in such a way as to be robust to data
mis-registration, and hence, false positives. 

The first stage, classification, is gradient-based. Gradient
algorithms, as the name suggests, convert laser range data
into cartesian coordinates in a vehicle-centric frame, and
calculate the terrain gradient and look for areas which are
not traversable based on slope. Our gradient calculation
and classification method is similar to the method proposed
by Chang [5]. Their algorithm processes each scan as it is
accumulated, and classifies returns as obstacle or freespace
based on gradients and heuristics. In our approach, as each
scan is accumulated, it is registered to a fixed coordinate
frame to account for platform motion. The gradient is com-
puted along the dimension of the scan line. This is done in
real time as each scan is received. A threshold is applied to
the gradient to classify each pixel as ‘obstacle’ or
‘freespace’. Each classified scan is then added to a circular
buffer which contains a time-history of scans. The duration
of this ‘time-window’ determines the amount of data which
will be fused when clustering.

At regular (user specified) intervals, the points classified as
obstacles are clustered using a nearest-neighbor approach.
The nearest-neighbor approach is in contrast to the conven-
tional approach of registering all the data to a common
frame, and then classifying pixels, which can lead to false
positives due to mis-registration of data. Our approach
avoids this by clustering obstacle pixels after they are clas-
sified. Therefore, small mis-registrations in the data lead to
small errors in gross obstacle statistics, rather than errors in
deciding whether an obstacle is present. The latter is rela-
tively minor, while the former can lead to undesired stop-
ping or obstacle-avoidance behavior. This is similar in
motivation to previous work which merges traversability
maps created from instantaneous range images rather than
merging elevation maps because of indeterminacy of vehi-
cle motion in between images [20].

There are two parameters which control the behavior of the
algorithm: the gradient threshold, and the time window.
The output rate is another parameter, but does not affect
results. It is a function of available computing power-- a
faster CPU can support a faster output rate than a slower

Figure 2: Two-axis laser scanner used for obstacle detection.

Figure 3: Obstacle Detection Algorithm overview. Each scan is 
classified as “obstacle” or “freespace”. Obstacle pixels from 

groups of scans are clustered using nearest-neighbor to gener-
ate candidate obstacles. Candidate obstacles are filtered based 

on gross statistics. 
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CPU. Figure 4 shows a representative point cloud of an
obstacle at the foot of a 20 degree slope. The obstacle is
detected and properly classified, in the presence of regis-
tration errors, as evident in the side view of the slope.

2.4. User Interface

The user interface is a crucial component, since it is
expected that non-experts will be using this system. We
have adopted a “wizard” representation, which asks the
operator a series of questions related to the task, and then
sets up the appropriate options and begins operation. This
representation can be limiting, as it forces the user into a
linear, structured interaction with the system [6]. However,
if properly designed, it can reduce the amount of training
required to operate. Figure 5 shows a flowchart of the
“wizard” interface. This shows the queries the user is pre-
sented, and the actions which are taken based on his
responses. We also have an “expert” interface, which is
suitable for use by people familiar with the details of oper-
ation. This interface is capable of being displayed directly
on the vehicle, or remotely, over wireless ethernet (using
either a laptop or a handheld computer as the client). This
allows for remote monitoring and telemetry functions. 

An initial qualitative test of the wizard interface has shown
that it is easy to learn. Three untrained individuals were
asked to use our testbed to construct a path by driving the
outline of an area, and then activate autonomous operation.
They were able to do so with little difficulty. While this ini-
tial result is positive, a more formal user study needs to be
done to determine what improvements are needed to the
interface. 

2.5. System Architecture

The above sections presented components of an autono-
mous vehicle. This section describes how they are com-
bined and interact with each other. Figure 6 shows the
hardware and software architecture. The hardware archi-
tecture consists of sensing, actuation, and processing. The
core sensing elements are the custom laser range finder for
obstacle detection, and a GPS, gyro, and encoders for
localization. The software architecture consists of multiple
processes, each running on a single CPU, and communicat-
ing via standard IPC techniques such as semaphores, mes-
sage queues, and shared memory. Cost and complexity
were motivating factors in deciding to use a single CPU vs.
multiple CPUs. Each process is either a publisher or sub-
scriber of high level information such as obstacle lists,
throttle/steering commands, or localization information.
Safety monitoring is distributed, and implemented in each
module. Therefore, the system gracefully degrades if indi-
vidual modules or hardware components fail. 

3. Results
We present results of each of the major subsystems, along
with results from extended duration trials conducted on a
mobile robot. 

3.1. Tracking Results

Our application requires the vehicle to travel over rela-
tively flat terrain with 5cm tracking accuracy over straight
sections of path and 10cm over curved sections of path. To
test the tracker’s performance we analyzed the tracking

Figure 4: Profile view of a 22cm (9”) obstacle at the foot of a 
20 degree slope.

Obstacle

Figure 5: Flowchart of the wizard user interface.
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error over an 8km path covering 10,600m2, at an average
speed of 1.5m/s. The terrain was mostly flat with a few
small hills. 

To gauge the tracker’s overall performance, we measured
the distribution of the tracking error over the entire path
and also over the path’s straight sections. Overall, the stan-
dard deviation of the tracking error is 3.7cm., with 97% of
the tracking error falling below 10 cm. Along the path’s
straight sections the standard deviation is 2.2cm, and 97%
of the tracking error is less than 5cm. This level of tracking
error meets our performance criteria for both straight-line
and curved path tracking. Figure 7 shows a histogram of
tracking error for an entire path (left) and for straight sec-
tions alone (right). 

3.2. Localization Results

We evaluate the localization system’s performance during
GPS outages in two different tests. This first is by applying
a simulated GPS dropout to localization data collected
using our mobile platform while traveling at 1.5m/s, and
the second is to subject the robot to real GPS outages by
operating it underneath dense tree cover. The advantage of
the first test is that it allows us to continue using GPS for
ground truth measurements, so we can compare localiza-
tion system estimates with actual position. The disadvan-
tage is that the GPS dropout is artificially induced, and
does not exhibit the same characteristics of a true dropout.
I.e., a true dropout will usually result in degraded esti-
mates, rather than no estimate at all. However, this test
illustrates the response to a worst case scenario. Figure 8
shows a plot of localization error (top) and kalman filter
standard deviation (bottom). The GPS outage begins at
time T=40, and lasts for 10 seconds. During this time, the
localization system is using dead-reckoning (based on gyro
and encoders) alone to estimate position. Over the duration
of the outage, the localization error, as measured against
GPS position, never goes beyond 30cm. The kalman filter
covariance increases to reflect its uncertainty.

In the second test, we drove the vehicle in and out of an
area of dense tree cover, which consistently caused a GPS
outage. We then compared the kalman filter’s calculated
position with the vehicle’s true position at a point 60m
from the point the vehicle entered the trees. The deviation
from the true position at this point was +/- 0.4m. The kal-
man filter’s reported standard deviation was 0.5m, agree-
ing with the observed results. Given relatively short
duration GPS outages, the kalman filter is able to maintain
reliable localization.

3.3. Obstacle Detection Results

We have completed two tests of the obstacle detection sub-
system. The first test involved measuring detection dis-
tances, while the second test involved an extended duration
field trial, during which obstacles were placed in front of
our robot testbed. During this trial, true positive, false posi-
tive, and false negative statistics were collected. 

In the first test, we tested obstacle detection performance in
two situations: flat terrain and curved terrain. Three differ-
ent square obstacles were used, with sides of 15cm, 22cm,
and 30cm. The tests were conducted on a moving platform
driven by a person. An initial pass over obstacle-free ter-
rain was used to adjust the gradient threshold such that no
false positives were generated. When testing on hilly ter-
rain, each obstacle was placed at the foot of a steep (20%
grade) hill. We started 10m away from the obstacle and
drove towards it at 1.5m/s, stopping at a distance of 0.5m
from the obstacle. Table 1 shows results for combinations
of obstacle size, terrain type, and time-window. The time-
window parameter controls how much data is fused when
detecting obstacles. The entries in the table show the dis-
tance to obstacle when it was first detected. I.e., this is the
maximum distance at which we can expect to detect the
obstacle. We see that in all cases, the obstacle is detected
earlier on flat terrain than on hilly terrain. This is most
likely due to our use of a steep gradient threshold, com-
bined with low density sampling at far (> 3m) distances

Figure 7: Histogram of tracking errors for entire path (left) and 
straight sections alone (right). 

Figure 8: Performance of Kalman filter during simulated GPS out-
age. The top plot shows localization error, using GPS as ground 

truth. The bottom plot shows the kalman filter error estimate.



due to the geometry of the laser. In all cases, the obstacles
were detected within the stopping distance of the mobile
platform we use, which travels at 1.5-2m/s. Interestingly,
the time window has very little impact on the detection dis-
tance. This is because the robustness to false positives is
great enough that the algorithm can reliably detect an
obstacle with a small number of hits at extreme range. The
additional hits later on do not add to the detectability,
although they do add to the confidence. For instance, at
2.0m, a 15cm obstacle generates 9 hits with a time window
of 0.5s. However, if the time window is 2.0s, then there are
32 hits.

During the obstacle detection field trial, objects between 5”
and 12” in height were placed in front of the robot. A suc-
cessful detection was defined as the robot stopping without
impacting the object, regardless of final distance to the
obstacle. This trial involved approximately 10km of auton-
omous travel, which resulted in 128 true positives, 10 false
positives and 5 false negatives. Of the 10 false positives, 2
were due to large tufts of grass which exceeded the OD
height threshold. Seven were due to dust temporarily
obscuring the laser scanner (this laser is a first pulse laser
scanner, which is sensitive to dust and fog), and one false
positive was due to an unknown event. All five of the false
negatives were in sharp turns, involving small (5-6”) obsta-
cle, where the inside of the turn wasn’t properly visible.
This has since been corrected by further biasing the laser
sweeping angle during turns. 

3.4. Extended Duration Operation Results

In addition to individually testing each subsystem, we have
extensively tested the combined operation of the compo-
nents on a mobile robot. The vehicle is a modified riding
lawn mower, used to mow golf courses and sports fields,
and is pictured in Figure 9. It has been retrofitted with all
of the sensing, actuation, and software previously
described. Note that there is nothing inherent about this
vehicle that makes it the only possible test platform. The
work described here could be used on a variety of different
vehicles.

Our testing has been in two main areas. The first is a test

site roughly 4,000 m2 in area, with a total distance traveled
of approximately 5km for complete coverage. This site has
changing elevation, with slopes up to 20 degrees. We have
covered this area 13 times, although obstacle detection was
not active in all 13 trials. The coverage pattern for this area
is shown in Figure 10. The coverage pattern for convex

portions of this area were automatically generated,
although a small area was manually taught. This portion is
indicated in the figure. The second location was a 300-

meter fairway, roughly 11,000 m2 in size, with a total dis-
tance traveled of 8km for complete coverage. Table 2
shows accumulated statistics of the trials.

Human intervention was occasionally necessary, due to
persistent obstacle detection false positives (two times),
and hardware failures (one time). Aside from those inter-
ventions, the system autonomously covered the desired
areas without interruption, and with no obstacle detection
false negatives. 

Table 1: Max Distance (m) at which Obstacle is Reliably 
Detected for Flat (Hilly) Terrain Using Different Time 

Windows (s) 

Obs Size

 Window
15cm 22cm 30cm

0.5s 3.28 (2.13) 4.24 (4.00) 6.15 (7.01)

1.0s 3.15 (1.90) 4.38 (4.05) 7.45 (7.13)

1.5s 3.09 (1.83) 4.30 (4.09) 7.50 (7.07)

2.0s 3.25 (1.89) 4.24 (4.05) 7.73 (7.01)

Figure 9: Mobile robot test platform is a retrofitted mower used for 
sports fields and golf courses.

Figure 10: Coverage pattern of test area. This pattern was par-
tially manually trained and partially automatically generated.

Manually
Trained



4. Conclusion and Future Work
In this paper, we have presented components for high accu-
racy path tracking, localization, and robust obstacle detec-
tion. These methods are intended for use on semi-
structured outdoor terrain, and have been evaluated using a
mobile robot with over 20 hours of unattended operation,

covering a total area of approximately 82,000m2. Future
work will concentrate on improving localization to reduce
the dependence on high accuracy (and high cost) GPS, and
additional testing. 
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Table 2: Extended Duration Trial Statistics

Number 
of Trials

 Area 
Covered 

(m2)

Distance 
Travelled 

(km)

Total 
Duration 
(hours)

Test Area 13 52K 65 17

Fairway 2 22K 16 3

OD Field 
Trial

2 8K 10 2.5

Total 17 82K 91 22.5
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