
Low cost PC-based quad channel real-time / storage oscilloscope

COURSE: BEng (HONS) Electronic Systems
MODULE: EEE516J4 - Honours Project
BY: Colin K McCord
DATE: Friday, 21 June 2002

Final Year Project

Supervisors:
First: Dr. S. Katzen
Second: Dr C. Tuner

Final Report

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page I Acknowledgements

ACKNOWLEGEMENTS

Dr. S. Katzen: For everything that he has done in helping the project along, and for offering support and

encouraging an interest in the field of microprocessor / microcontroller engineering.

Dr. C. Turner: For everything that he has done in helping the project along, and for offering support and

encouraging an interest in the field of object originated programming.

Dr. Ning Li: For the use of FG Wilson’s electronic laboratory.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page II Executive Summary

EXECUTIVE SUMMARY

The following report details the development and implementation of a low-cost PC based quad channel real-
time / storage oscilloscope.

This project attempts to achieve the same functionality as a traditional oscilloscope, using a PIC
microcontroller for data acquisition (including appropriate analogue circuitry) which transfers the data to the
PC (via RS232). A Microsoft Windows based software application will then display the waveform as it would
appear on a traditional CRT oscilloscope. This software application will have additional features not present
on a traditional oscilloscope (e.g. printing / saving waveforms) with greater flexibly as additional features can
be added as their developed without the need for new hardware.

The digital based oscilloscope should display very low frequency waveforms in real-time, but for higher
frequency waveforms it is necessary to read a finite number of samples storing them into RAM. Once the
memory is full (or the preset number of samples has been reached) the PIC will stop sampling and transfer
the data to the PC, when ACK (acknowledgment) is received from the PC the PIC will start sampling again.
This is known as a “Storage Oscilloscope”, but there are disadvantages e.g. it’s impossible to continuously
monitor a waveform in real-time for more than the amount of samples that can be stored into the buffer as
there would be gaps in the data.

Main Advantages of Digital over Analogue Scopes

• The ability to observe slow and very slow signals as a solid presentation on the screen.
• The ability to hold or retain a signal in memory for long periods.

Core Objectives

• Design and construct hardware required for data acquisition.
• Design of the real-time communication protocol.
• Design of a Windows application for displaying low-frequency waveforms in real-time.
• Design of a simulation program.
• Demonstrate the entire system working.

Further Development

• Add storage functionally increasing its sampling rate to at least 20 kHz.
• Using external ADC and external RAM, explain how it would be possible to monitor high-frequency

waveforms?
• Investigate how far this storage technique can be pushed, what are the limits?

Summary

• Low-Cost PC Based Oscilloscope
• PIC16F877 microcontroller for data acquisition using 4 of the built-in ADCs (4 channel scope).
• Analogue circuitry to insure 0 to 5 V input to ADC (e.g. -100 to 100V converted to 0 to 5V, i.e. bipolar)
• Windows application (scope.exe) for displaying waveforms.
• Simulator program for testing graphical display, communication protocols and triggering techniques.

Possible Application

• Demonstration oscilloscope, using data projector and laptop.

Advantages

• Large high-resolution display.
• Windows / GUI advantage such as cut & paste into documents.
• Low-cost (less than £50)
• Software Upgradeable.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page III Notation

NOTATION

Abbreviations and symbols used in this report are listed alphabetically: -

% Percentage

µ Micro, 1 x 10-6

∞ Infinity

ACK Acknowledgement

ADC Analogue to Digital Converter

ASM Assembly level programming

BMP Bitmap

bps Bits per second, also known as the baud-rate

BRG Baud Rate Generator

C Capacitor

C High-level programming language

C++ Object originated programming language

CCS C compiler

CISC Complex Instruction Set Computer

CPU Central Processing Unit

CRC Cyclical Redundancy Check

CRT Cathode Ray Tube

DDB Device Dependent Bitmap

DIB Device Independent Bitmap

DOS Disk Operating System

F Farads

fCUT_OFF High frequency cut-off

FERR Framing Error

fSTOP Start of filter stop band

GIF Graphical Interchange Format

GND Ground

GUI Graphical User Interface, i.e. Microsoft Windows

Hz hertz

I/O Input / Output

IC Integrated Circuit

JPEG Joint Photographic Experts Group

k Kilo, 1 x 103

LCD Liquid crystal Display

m Milli, 1 x 10-3

M Filter Order

M Mega, 1 x 106

MB Megabytes

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page IV Notation

MS Microsoft

NAK Negative Acknowledgment

OERR Overflow Error

p Pico, 1 x 10-9

PC IBM compatible personal computer

PIC Peripheral Interface Controller

R Resistor

RAM Random Access Memory

RCSTA Receive Status and Control Register

RISC Reduced Instruction Set Computer

ROM Read Only Memory

RS232 Standard 9-pin PC serial port

RX Receive

S Switch

SCI Serial Communications Interface

SPBRG Serial Port Baud-Rate Generator

SPEN Serial Port Enable bit

SPI Serial Peripheral Interface

SREN Single Receive Enable bit

TACQ Amplifier Setting Time

TC Hold Capacitor Charging Time

TCOFF Temperature Coefficient

TX Transmit

TXSTA Transmit Status and Control Register

UART Universal Asynchronous Receiver Transmitter

USART Universal Synchronous Asynchronous Receiver Transmitter

USB Universal Serial Bus

V Voltage

VCC Supply Voltage

VDD Supply Voltage

VI Input Voltage

VIN Input Voltage

Vo Output Voltage

VOUT Output Voltage

VSS Ground

WWW World Wide Web

X Horizontal

XTAL Crystal frequency

Y Vertical

Ω Ohms

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page V Table of Contents

TABLE OF CONTENTS

1.0. Project Background Pages 1 to 3

2.0. Design Specifications Page 4
 2.1. Core Objectives Page 4
 2.2. Further Development Page 4

3.0. Fundamentals Pages 5 to 15
 3.1. The Basic CRT Oscilloscope Page 5
 3.2. Digital Sampling Oscilloscopes Page 6
 3.3. Display Formats Pages 6 to 8
 3.4. Aliasing Pages 8 to 12
 3.4.1. Typical Low-Pass Filter Design Parameters Page 9
 3.4.2. Typical Low-Pass Filters Pages 9 to 10
 3.4.3. Software Generation of an Anti-Aliasing Filter Pages 10 to 12
 3.5. The PIC Microcontroller Pages 12 to 13
 3.6. RS232 Serial Interface Pages 13 to 15

4.0. The PIC16F877 Microcontroller Pages 16 to 20
 4.1. Overview of the File Registers Page 17
 4.2. Overview of the 8-channel 10-bit ADC Pages 18 to 19
 4.3. Overview of the Hardware USART Page 20
 4.3.1. Baud-Rate Generator, BRG Page 20

5.0. Hardware Development Pages 21 to 29
 5.1. Simplified Block Diagram Pages 21 to 23
 5.2. Digital Circuit Diagram Pages 23 to 24
 5.3. Analogue Circuit Diagram – Mark 1 Pages 24 to 26
 5.4. Analogue Circuit Diagram – Mark 2 Pages 26 to 28
 5.5. System Powering Circuit Pages 28 to 29
 5.6. Cost of Components Page 29

6.0. Communication Protocol Development Pages 30 to 42
 6.1. Real-Time Mode Pages 30 to 31
 6.2. Storage Mode Page 31
 6.3. Control Protocol Page 32
 6.4. Frame Structure: Real-Time Mode Pages 32 to 33
 6.5. Sample Rate: Real-Time Mode Pages 33 to 34
 6.6. Frame Structure: Storage Mode Pages 34 to 35
 6.7. Sample Rate: Storage Mode Page 35
 6.8. CRC16 (Cyclical Redundancy Check) used in Storage Mode Pages 36 to 41
 6.8.1. Comparison of Raw Calculation CRC & Lookup Table CRC Pages 38 to 41
 6.9. Frame Structure: Control Protocol Page 42

7.0. The Scope Program Pages 43 to 85
 7.1. Data Flow Diagram Page 49
 7.1.1. Data Flow Paths Pages 49 to 50
 7.2. The Grid Pages 50 to 52
 7.3. The Traces Pages 52 to 58
 7.4. Storing and Restoring the Previous Position of the Main Frame Pages 58 to 59
 7.5. Setting-Up RS232 Communications Pages 60 to 62
 7.6. Solving the Flickering Problem Pages 62 to 63
 7.7. Creating the Split Window View Pages 63 to 64
 7.8. Saving / Opening Scope Data Pages 65 to 70
 7.9. Copying the Scope Display to the Windows Clipboard Pages 71 to 72
 7.10. Exporting the Scope Display as a Bitmap (BMP) File Pages 72 to 77

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page VI Table of Contents

 7.11. Owner Drawn Menus with Bitmaps Pages 77 to 80
 7.11.1. Integrating Brent Corkum’s BCMenu Class with the Scope Program Pages 78 to 80
 7.12. Windows 95/98 Compatibility Problem (scope v1.008a, 20/12/2001) Pages 81 to 83
 7.13. Windows XP Compatibility Problem (scope v1.017a, 05/02/2002) Pages 83 to 84
 7.14. Additional Video Card Features That May Explain Low CPU Usage Pages 84 to 85

8.0. The Simulator Program Pages 86 to 89
 8.1. How Channel Simulation is Achieved? Pages 78 to 89

9.0. Test Program Pages 90 to 95
 9.1. User Manual Pages 90 to 92
 9.2. How is RS232 Communication Achieved? Pages 93 to 95

10.0. PIC Software Development Pages 96 to 113
 10.1. Mark 1.c (Test RS232 Communications) Pages 96 to 97
 10.2. Mark 2.c (Fully Test RS232 Communications) Page 97
 10.3. Mark 3.c (Real-time Mode: 1 channel, fixed sampling delay) Pages 97 to 98
 10.4. Mark 4.c (Test RS232, Baud-Rate Set by dip-Switches) Pages 99
 10.5. Mark 5.c. (Fully Test RS232 Communications, Adjustable Baud-Rate) Page 100
 10.6. Mark6.c (Real-time mode: 1 channel, fixed delay, adjustable baud-rate) Pages 100 to 101
 10.7. Mark 7.c (Test Timer Interrupts) Pages 102 to 103
 10.8. Mark 8.c (Real-time mode: dual channel, fixed delay, adjustable baud-rate) Pages 104 to 105
 10.9. Mark 9.c (Real-time mode: four channels, chop, interrupt time-base) Pages 105 to 109
 10.10. Mark 10.c (Test External RAM Chip) Pages 109 to 111
 10.11. Mark 11.c (Main Program) Pages 112 to 113

11.0 Test Results Pages 114 to 147
 11.1. Test Session 1: FG Wilson Lab (26/02/2002) Pages 114 to 120
 11.1.1. Test 1: Test RS232 Communications (TX only) Pages 114 to 115
 11.1.2. Test 2: Fully Test RS232 Communications Pages 115
 11.1.3. Test 3: Test ADC Pages 115 to 119
 11.1.4. Conclusion Page 120
 11.2. Test Session 2: FG Wilson Lab (05/03/2002) Pages 120 to 131
 11.2.1. Test 4: Test RS232 Communications (Baud Rate set by DIP Switches) Page 120
 11.2.2. Test 5: Fully Test RS232 Communications (Baud rate set by DIP Switches) Page 121
 11.2.3. Test 6: Test ADC, Scope Program and Real-time Communication Protocol Pages 121 to 136
 11.2.3.1. Sample Rate Changed to 2000Hz (mark6b.c) Pages 125 to 129
 11.2.3.2. Sample Rate Changed to 5000Hz (mark6c.c) Pages 129 to 130
 11.2.4. Test 7: Test Timer Interrupts Page 130 to 131
 11.2.5. Conclusion Page 131
 11.3. Test Session 3: FG Wilson Lab (22/03/2002) Pages 131 to 147
 11.3.1. Test 8: Dual Channel Test Page 131
 11.3.2. Test 9: Interrupt Drive Time-Base, Real-Time Sampling (Four Channels) Pages 132 to 145
 11.3.2.1. Dual Channel Operation Using Two Signal Generators Pages 135 to 140
 11.3.2.2. Quad Channel Operation Pages 140 to 141
 11.3.2.3. 5000Hz Sample Rate – Single Channel Pages 141 to 145
 11.3.3. Test 10: Test External RAM Chip Pages 145 to 147
 11.3.4. Test 11: 5V Regulator Page 147
 11.3.5. Test 12: Analogue Circuitry Page 147
 11.3.6. Conclusion Page 147

12.0. Conclusions Pages 148 to 151

13.0. Recommendations For Further Work Pages 152 to 155
 13.1. Control Protocol Page 152
 13.2. Storage Mode Page 152
 13.3. Multiple Serial Ports Page 152
 13.4. USB Transport Medium Page 152
 13.5. Bootstrap Page 152 to 153

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page VII Table of Contents

 13.6. Virtual Channels Page 153
 13.7. Data Logging Page 153
 13.8. TCP / IP Internet Communications Page 153
 13.9. Direct Modem to Modem Communication Pages 153 to 154
 13.10. Printing of Scope Display Page 154
 13.11. An Alternative Method for Dealing with Aliasing Pages 154 to 155
 13.12. Taking Advantage of Aliasing Page 155

14.0. Bibliography / References Pages 156 to 158

A. CD ROM containing source code, datasheets, etc… Page 159
NOTE: Full set of appendixes in separate booklet

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page VIII Table of Figures

TABLE OF FIGURES

1.0. Project Background Page 1 to 3
 1.0a. 20MHz Analogue Dual Trace (CRT), about £400 [W2] Page 1
 1.0b. 150MHz Analogue / Digital (CRT), about £1,600 [W1] Page 1
 1.0c. Diagram of a typical cathode-ray tube (CRT) construction Page 1
 1.0d. 100MHz 4 channel digital storage oscilloscope, about £1,800 [W2] Page 2
 1.0e. 100MHz handheld digital storage oscilloscope, about £1,000 [W2] Page 2
 1.0f. 100kHz dual channel PC based storage oscilloscope, about £250 [W2] Page 2
 1.0g. 20kHz single channel PC based storage oscilloscope, about £95 [W2] Page 2

3.0. Fundamentals Pages 5 to 15
 3.1a. Block diagram of a basic CRT oscilloscope Page 5
 3.1b. Types of CRT oscilloscopes Page 5
 3.2a. Example showing how a sinewave is digitally sampled Page 6
 3.3a. Comparison of dot, pulse interpolator and sine interpolator displays Page 7
 3.4a. Demonstrating aliasing Page 8
 3.4.1a. The key low pass filter design parameters Page 9
 3.4.3a. Step 1: Open anti-aliasing wizard Page 11
 3.4.3b. Step 2: Enter 3dB cut-off frequency Page 11
 3.4.3c. Step 3: Enter sampling frequency Page 11
 3.4.3d. Step 4: Enter ADC resolution Page 11
 3.4.3e. Step 5: Ideal signal to noise ratio is calculated Page 11
 3.4.3f. Step 6: Click build Butterworth, the finish Page 11
 3.4.3g. Anti-aliasing filter designed by the anti-aliasing wizard Page 12
 3.5a. Simplified illustration of the von Neumann architecture Page 12
 3.5b. Simplified illustration of the Harvard architecture Page 13
 3.6a. Illustration of RS232, 1 driver and 1 receiver Page 14
 3.6b. 9-pin RS232 D-connector, pin signal description Page 15
 3.6c. Typical maximum distance modern line drivers/receivers can manage Page 15
 3.6d. Illustration of how data is transmitted over RS232 Page 14

4.0. The PIC16F877 Microcontroller Pages 16 to 20
 4.0a. Architecture of the PIC16F877 microcontroller [W9] Page 16
 4.1a. PIC16F877 register file map Page 17
 4.2a. Simplified block diagram of the PIC16F877 ADC module Page 18
 4.2b. Unknown eight placed on the scales Page 19
 4.2c. 8g weight placed on the pan, not too heavy (keep) Page 19
 4.2d. 4g weight placed on the pan, too heavy (remove) Page 19
 4.2e. 2g weight placed on the pan, not too heavy (keep) Page 19
 4.2f. 1g weight placed on the pan, too heavy (remove) Page 19
 4.2g. Unknown weight is about 10g (1010) Page 19

5.0. Hardware Development Pages 21 to 29
 5.0a. illustrates the operation of the analogue circuitry Page 21
 5.1a. Simplified block diagram Page 22
 5.2a. Digital circuit diagram (version 1.3, 19/03/2002) Page 23
 5.2b. Dip-switch configuration Page 24
 5.3a. Analogue circuit diagram – Mark 1 (14/12/2001) Page 25
 5.4a. Analogue circuit diagram – Mark 2 (19/03/2002) Page 27
 5.5a. System powering circuit Page 28

6.0. Communication Protocol Development Page 30 to 42
 6.1a. Illustration of real-time mode with one channel Page 30
 6.1b. Illustration of real-time mode with four channels (chop mode) Page 30
 6.1c. Illustration of real-time mode with four channels (alternate mode) Page 30
 6.2a. Illustration of storage mode with one channel Page 31
 6.2b. Illustration of storage mode with four channels (chop mode) Page 31
 6.3a. Illustration of the control protocol Page 32

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page IX Table of Figures

 6.4a. Frame structure: Real Time Page 32
 6.4b. Real-time frame structure example Page 33
 6.5a. Table showing the theoretical real-time sample rates (chop, 10-bit ADC) Page 33
 6.5b. Table showing the theoretical real-time sample rates (chop, 8-bit ADC) Page 34
 6.5c. Table showing the theoretical real-time sample rates (chop, 10-bit ADC, dual RS232) Page 34
 6.6a. Frame Structure: Storage Mode Page 35
 6.8.1a. Result of raw calculation CRC test Page 39
 6.8.1b. Result of lookup table CRC test Page 41
 6.9a. Frame structure: control protocol Page 42
 6.9b. SETUP_REG1 Page 42
 6.9c. SETUP_REG2 Page 42

7.0. The Scope Program Pages 43 to 85
 7.0a. Screen dump of scope.exe (V1.041a, 19/04/2002) Page 43
 7.0b. Right click menu Page 43
 7.0c. Screen dump of scope.exe with side bar hidden Page 44
 7.0d. Screen dump of scope.exe demonstrating auto-resize Page 44
 7.0e. Three screen dumps of scope.exe demonstrating the change of zero point Page 44
 7.0f. Three screen dumps of scope.exe demonstrating the change of waveform offset Page 44
 7.0g. Six screen dumps of scope.exe demonstrating different trigger settings Page 45
 7.0h. Two screen dumps of scope.exe demonstrating different display settings Page 46
 7.0i. [Sample] tab of controls dialog Page 46
 7.0j. Grid configuration dialog box Page 47
 7.0k. Screen dump of scop.exe demonstrating multiple scope views Page 47
 7.0l. Screen dump of about dialog Page 48
 7.0m. Screen dump of configuration dialog Page 48
 7.0n. Screen dump of debug menu Page 48
 7.0o. Screen dump of advanced sampling control panel Page 48
 7.2a. Grid layout Page 50
 7.5a. Screen dump of the configuration dialog box Page 60
 7.5b. Screen dump of windows registry Page 60
 7.8a. Scope data saved to File1.sdf (Scope V1.040a, 07/04/2002) Page 65
 7.8b. Windows standard CFileDialog Box Page 66
 7.8c. Example :File1.sdf has been opened Page 69
 7.8d. Demonstrating aliasing by selecting a out of range time-base Page 69
 7.9a. Screen dump demonstrating how to copy the scope display to the clipboard Page 71
 7.9b. Scope display was pasted into this document from the clipboard Page 71
 7.10a. User clicks [Export] Page 73
 7.10b. Save dialogue box appears Page 73
 7.10c. Screen dump of exported file scope.bmp Page 73
 7.11a. Microsoft Word XP file menu Page 77
 7.11. Scope Ver1.046a file menu Page 77

8.0. The simulator Program Pages 86 to 89
 8.0a. Screen dump of sim.exe V1.007a – 29/03/2002 Page 86
 8.0b. Screen dump of options dialog in sim.exe Page 87
 8.0c. Screen dump of about dialog in sim.exe Page 87

10.0. PIC Software Development Pages 96 to 113
 10.1a. Mark 1 flowchart Page 96
 10.2a. Mark 2 flowchart Page 97
 10.3a. Mark 3 flowchart Page 98
 10.7a. Mark 7 flowchart Page 102
 10.8a. Mark 8 flowchart Page 104
 10.9a. Mark 9 flowchart Page 106

11.0. Test Results

Pages 114 to 147

 11.1a. Test circuit diagram 1 Page 114
 11.1.3a. Screen dump of scope program (sample rate = 100Hz, input wave = 1Hz) Page 116
 11.1.3b. Screen dump of scope program (sample rate = 100Hz, input wave = 2Hz) Page 116
 11.1.3c. Screen dump of scope program (sample rate = 100Hz, input wave = 5Hz) Page 117
 11.1.3d. Screen dump of scope program (sample rate = 100Hz, input wave = 10Hz) Page 117
 11.1.3e. Screen dump of scope program (sample rate = 100Hz, input wave = 20Hz) Page 118
 11.1.3f. Screen dump of scope program (sample rate = 100Hz, input wave = 50Hz) Page 118

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page X Table of Figures

 11.1.3g. Screen dump of scope program (sample rate = 100Hz, input wave = 100Hz) Page 119
 11.1.3h. Screen dump of scope program (sample rate = 100Hz, input wave = 200Hz) Page 119
 11.2a. Test circuit diagram 2 Page 120
 11.2.3a. Screen dump of scope program (sample rate = 1,000Hz, input wave = 2.5Hz) Page 121
 11.2.3b. Screen dump of scope program (sample rate = 1,000Hz, input wave = 5Hz) Page 122
 11.2.3c. Screen dump of scope program (sample rate = 1,000Hz, input wave = 10Hz) Page 122
 11.2.3d. Screen dump of scope program (sample rate = 1,000Hz, input wave = 20Hz) Page 123
 11.2.3e. Screen dump of scope program (sample rate = 1,000Hz, input wave = 50Hz) Page 123
 11.2.3f. Screen dump of scope program (sample rate = 1,000Hz, input wave = 100Hz) Page 124
 11.2.3g. Screen dump of scope program (sample rate = 1,000Hz, input wave = 200Hz) Page 124
 11.2.3h. Screen dump of scope program (sample rate = 1,000Hz, input wave = 500Hz) Page 125
 11.2.3.1a. Screen dump of scope program (sample rate = 2,000Hz, input wave = 10Hz) Page 125
 11.2.3.1b. Screen dump of scope program (sample rate = 2,000Hz, input wave = 20Hz) Page 126
 11.2.3.1c. Screen dump of scope program (sample rate = 2,000Hz, input wave = 50Hz) Page 126
 11.2.3.1d. Screen dump of scope program (sample rate = 2,000Hz, input wave = 100Hz) Page 127
 11.2.3.1f. Screen dump of scope program (sample rate = 2,000Hz, input wave = 200Hz) Page 127
 11.2.3.1g. Screen dump of scope program (sample rate = 2,000Hz, input wave = 500Hz) Page 128
 11.2.3.1h. Screen dump of scope program (sample rate = 2,000Hz, input wave = 1,000Hz) Page 128
 11.2.3.1i. Screen dump of scope program (sample rate = 2,000Hz, trianglewave) Page 129
 11.2.3.1j. Screen dump of scope program (sample rate = 2,000Hz, squarewave) Page 129
 11.2.3.2a. Screen dump of scope program (sample rate = 5,000Hz, input wave = 50Hz) Page 130
 11.3.1a. Screen dump of scope program (Dual Channel Test) Page 132
 11.3.3a. Test Circuit Diagram 3 Page 146

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 1 Chapter 1: Project Background

1.0. PROJECT BACKGROUND

Oscilloscopes traditionally are hardware based using a CRT (Cathode Ray Tube) designed to display
voltage variations (periodic or otherwise); they are bulky, expensive and have difficultly displaying low
frequency waveforms.

Figure 1.0a. 20MHz Analogue Dual Trace (CRT), about £400

[W2]

Figure 1.0b. 150MHz Analogue / Digital (CRT), about £1,600

[W1]

“The word ‘Oscilloscope’ is an etymological hybrid. The first part derives from the Latin ‘oscillare’, to swing
backwards and forwards; this in turn is from, ‘oscillum’, a little mask of Bacchus hung from the trees,
especially in vineyards, and thus easily moved by the wind. The second part comes from the Classical Greek
‘skopein’, to observe, aim at, examine, from which developed the Latin ending ‘scopium’, which has been
used to form names for instruments that enable the eye or ear to make observations.” [B1].

The heart of the traditionally CRT oscilloscope is the display screen itself, the CRT. “The CRT is a glass bulb
which has had the air removed and then been sealed with a vacuum inside. At the front is a flat glass screen
which is coated inside with a phosphor material. This phosphor will glow when struck by the fast moving
electronics and produce light, emitted from the front and forming the spot and hence the trace. The rear of
the CRT contains the electron ‘gun’ assembly. A small heater element is contained within a cylinder of metal
called the cathode. When the heater is activated by applying a voltage across it, the cathode temperature
rises and it then emits a stream of electrons.” [B2].

-2000V -1500V +100V +100V +100V +10kV

Heater

Cathode

Focus electrodes

Correction
electrodes, ASTIG

etc.

X and Y deflection plates

PDA
connector Phosphor coated screen

Figure 1.0c. Diagram of a typical Cathode-ray tube (CRT) construction.

This project attempts to achieve the same functionality as a traditional oscilloscope, using a PIC
microcontroller for data acquisition (including appropriate analogue circuitry) which transfers the data to the
PC (possibly via RS232, USB or Parallel). A Microsoft Windows based software application will then display
the waveform as it would appear on a traditional CRT oscilloscope. This software application will have
additional features not present on a traditional oscilloscope (e.g. printing / saving waveforms) with greater
flexibly as additional features can be added as their developed without the need for new hardware.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 2 Chapter 1: Project Background

The digital based oscilloscope should display very low frequency waveforms in real-time, but for higher
frequency waveforms it is necessary to read a finite number of samples storing them into RAM. Once the
memory is full (or the preset number of samples has been reached) the PIC will stop sampling and transfer
the data to the PC, when ACK (acknowledgment) is received from the PC the PIC will start sampling again.
This is known as a “Storage Oscilloscope”, but there are disadvantages e.g. it’s impossible to continuously
monitor a waveform in real-time for more than the amount of samples that can be stored into the buffer as
there would be gaps in the data.

Digital storage oscilloscopes have two main advantages over traditional analogue scopes: -

1. The ability to observe slow and very slow signals as a solid presentation on the screen. “Slow
moving signals in the 10-100 Hz range are difficult to see and measure on a normal analogue
oscilloscope due to the flicker of the trace and the short persistence of the spot on the screen.
Very slow moving signals, less than 10 Hz, are impossible to view on an analogue scope. As
fast as the spot traces out the waveform, the image fades and disappears before a complete
picture can be formed.” [B2].

2. The ability to hold or retain a signal in memory for long periods.

The PIC microcontroller has a built-in ADC (8, 10 or 12 bits) which has a voltage range of 0 to 5V. This
voltage range is not ideal as most oscilloscopes have a much wider voltage range including negative
voltages (e.g. -100 to 100V); hence an analogue circuit is required to reduce the voltage positive signals so
they fall between 2.5 and 5V and voltage negative signals between 0 and 2.5V (i.e. bipolar). The built-in ADC
on the PIC is slow and will limit the maximum sampling frequency; hence an external Flash ADC with direct
memory access will be required to produce a high-performance digital storage oscilloscope (e.g. AD9070 –
10Bit, 100MSPS ADC).

There are commercial digital scopes, but they are expensive and have small displays (unless they have
video outputs or are based on PC displays).

Figure 1.0d. 100MHz 4 channel digital storage oscilloscope, about
£1,800. [W2]

Figure 1.0e. 100MHz handheld digital storage oscilloscope,

about £1,000. [W2]

Figure 1.0f. 100kHz Dual Channel PC based storage oscilloscope

(-50mV to 20V), about £250. [W2]

Figure 1.0g. 20kHz single channel PC based storage oscilloscope

(-5 to 5V), about £95. [W2]

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 3 Chapter 1: Project Background

Advantages of the PC based oscilloscope: -

• Large screen using data projector for demonstration purposes.
• All Windows / GUI advantage such as cut & paste into documents.
• Data logging (e.g. streaming real-time data to disk).
• Remote monitoring (e.g. via the internet remotely control / view the oscilloscope from any where in

the world).
• Low cost (expected to be less than £50).
• Software upgradeable.

There are many possible applications for this PC based oscilloscope: -

• Monitoring of sound waves, which are difficult to monitor on a traditional oscilloscope due to the low
frequencies involved.

• Monitoring of an ECG signal, again because this is such a low frequency traditional oscilloscopes

would have difficultly monitoring such a signal. ECG data could be logged and emailed directly to the
doctor for diagnosis, or perhaps real-time TCP/IP internet communication so that the doctor could
remotely monitor the ECG signal in real-time.

• Monitoring of serial communications, for example RS485 works on the principal of differential

voltages between two cables twisted together; hence the PC based oscilloscope could be used to
view serial communications. Two oscilloscope channels would be used, and the PC software will
automatically add the two channels together producing a virtual trace (A+B). Note this PC based
oscilloscope is also suitable for RS422 communication where there are separate transmit and
receive lines (2 sets of differential twisted par cables), hence all four scope channels can be used
producing two virtual traces (VC1 = CH1 + CH2, VC2 = CH3 + CH4). This monitoring of serial
communication is extremely useful for educational usage (e.g. learning how serial data is
transmitted).

• The PC based oscilloscope is ideal for demonstration purposes, for example using data projector a

class of student could be introduced to the oscilloscope, with real waveforms being monitored (signal
generator, or even a microphone for sound waves) and displayed on a large projector display.

• Because of the low cost of the PC based oscilloscope, it is economical for a school / technical

college to have large quantities available for students. Unlike traditional analogue scopes which are
expensive and students are forced to share equipment, because it is not economical to purchase
enough scopes for every student.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 4 Chapter 2: Design Specifications

2.0. DESIGN SPECIFICATIONS

2.1. Core Objectives

1. Design and construct the hardware required for data acquisition, including analogue circuit design for

insuring input voltage falls between 0 and 5V (ADC min and max range).

2. Pick a transport medium for relaying data to the PC (USB, RS232, parallel or PCI) and discuss the

advantages, disadvantages and the reasons why it was picked. Design and construct the hardware
required (e.g. MAX232, etc…) to interface the PIC microcontroller with the chosen medium.

3. Design a communication protocol for relaying data from the PIC to the PC in real-time (perhaps including

a check-sum or CRC). Discuss the advantages and disadvantages of using a check-sum or CRC in this
real-time mode.

4. Design a Windows based C++ application capable of displaying low-frequency waveforms (up-to 4

channels simultaneously <5 KHz) in real-time (i.e. the graphic subsystem). This application should
directly communicate with the PIC using the chosen transport medium. The application must be user-
friendly and should be Windows 95/98/NT/ME/2000/XP compatible.

5. Design PIC embedded software for reading the ADC at a certain sample rate and transferring the data to

the PC in real-time.

6. A basic simulation program for simulating the PIC microcontroller, allowing the communication protocol

to be tested before the hardware has been constructed. This simulation program should be able to
simulate a waveform at an adjustable frequency, hence making it possible to easily test the graphic
display and triggering methods in the windows based oscilloscope program.

7. Demonstrate the entire system working together as a basic real-time low-frequency oscilloscope (<5

KHz).

2.2. Further Development

1. Add storage oscilloscope functionally to the low-frequency (<5 kHz) PC based real-time oscilloscope

specified in the ‘core objectives’ increasing it’s sampling frequency to at least 20 kHz, hence making it
possible to monitor sound-waves using this oscilloscope.

2. Using external ADC with direct memory access, explain how it would be possible to monitor high-

frequency waveforms (storage oscilloscope >3MHz) even if the transport medium between the PIC
microcontroller and the PC is much slower than the sample rate.

3. Investigate how far this storage technique can be pushed, what are the limits?

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 5 Chapter 3: Fundamentals

3.0 FUNDAMENTALS

3.1. The Basic CRT Oscilloscope

An oscilloscope draws its trace with a spot of light (produced by a deflectable beam of electrons) moving
across the screen of its CRT (see Figure 1.0c). Basically an oscilloscope consists of the CRT, a ‘time base’
circuit to move the spot steadily from left to right across the screen at the appropriate time and speed, and
some means (usually a ‘Y’ deflection amplifier) of enabling the signal to deflect the spot in the vertical or Y
direction.

Y Input AC

DC

Frequency-compensated
attenuator Y Amplifier

Y Shift

Y Deflection
Stage

Trigger
pickoff amp

CRT

CRT Y
Deflection

plates

CRT X
Deflection

plates

Sweep gate
logic

Sweep
(time base)
generator

X Deflection
Stage

X
Shift

int

ext
Trigger
Input

Trigger
Selector

Trigger
Level

Trigger +/-
Polarity Auto -

Brightline
Circuit

Blanking
Amplifier

To CRT
Grid 1

X Input Sweep Speed Setting

Figure 3.1a. Block diagram of a basic CRT oscilloscope

This type of oscilloscope is known as a ‘real-time’ oscilloscope. This means that the vertical deflection of the
spot on the screen at any instant is determined by the Y input voltage at that instant. Not all CRT
oscilloscope are real-time instruments, figure 3.1b categorises the various types available.

Cathode-ray
oscilloscopes

Real-time scopes Non-real-time scopes

Storage scopes Sampling scopes

Digital storage scopes
‘traditional’ storage
scopes with storage

CRT

Scopes with long-
persistence screensAdvanced scopesBasic scopes

Single-trace scopes Dual-trace, dual beam
scopes

Figure 3.1b. Types of CRT oscilloscopes

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 6 Chapter 3: Fundamentals

3.2. Digital Sampling Oscilloscopes

Digital sampling oscilloscopes use an ADC (analogue-to-digital converter) to converter analogue voltages to
binary representation. The sampling rate specifies the number of samples taken per second. Figure 3.2a
demonstrates clearly how an analogue wave-form is digitally sampled and displayed onto the screen (LCD,
Computer Monitor, etc…).

50Hz sine-wave, sampled at 500Hz (x10)

-10

-6

-2

2

6

10

Vo
lts

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

0

1

2

3

4

5

6

7

8

9

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

A
rra

y
co

nt
ai

ni
ng

 A
D

C
 re

ad
in

gs
 a

t e
ac

h
sa

m
pl

e
po

in
t

Draw Waveform using Pulse Interpolator (join the dots)

-10

-6

-2

2

6

10

Vo
lts

Figure 3.2a. Example showing how a sine-wave is digitally sampled

3.3. Display Formats

There are three main methods of presenting the captured waveform on the screen. These are dot display,
dot joining (also called linear or pulse interpolation) and sine interpolation. These are illustrated in Figure
3.3a.

Dot display requires 20 to 25 samples per cycle before a recognisable sine wave can be plotted. Pulse
interpolation provides a good general purpose display, where the waveform under investigation is known to
be smooth and generally of a sinusoidal shape. Sine interpolation provides a good representation with as
few as 2.5 samples per cycle. However, it should not in general be used for pulse waveforms, as here it can
introduce ringing on the display which is not present on the actual waveform.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 7 Chapter 3: Fundamentals

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 8 Chapter 3: Fundamentals

Nyquist theorem states that “to define a sine wave, a sampling system must take more than two samples per
cycle”. Notice that the sine interpolator display type (2.5 samples / cycle) approaches the limits that the
sampling theory suggests.

Exactly two samples per cycle (known as the ‘Nyquist rate’) suffice if it is guaranteed that they coincide with
the peaks of the waveform. Otherwise there would be no knowledge of amplitude and if samples happened
at zero crossings, the waveform wouldn’t even be detected. However more than two samples per cycle
would be fine as the position of the samples relative to the sine wave will gradually drift through all possible
phases, so that the peak amplitude will be accurately defined.

For none-sinusoidal waveforms, a sine interpolator is inappropriate, except in the case of certain instruments
which can suitably pre-process the waveform before passing it to the sine interpolator.

3.4. Aliasing

Aliasing is an undesirable effect that can occur in digital sampling oscilloscopes which is not found in
traditional analogue oscilloscopes. This is the display of an apparent signal which does not actually exist,
usually caused by under-sampling.

Many samples should be taken per cycle (at least 10 for pulse interpolation) to ensure an accurate
representation of an analogue signal in a digital memory. If only one sample is taken per cycle, or one
sample per several cycles, then aliasing occurs. For example say a waveform is being sampled every three
cycles, these samples may form together, particularly when using pulse interpolation, to look like a valid
waveform.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Figure 3.4a. Demonstrating aliasing, red is the real waveform, while blue is an alias.

Figure 3.4a clearly demonstrates how false signals (aliasing) can be displayed on a digital scope. The red
waveform is the waveform being monitored, notice that the waveform is under sampled (see green arrows for
sample points). The black dots shows were the input waveform (red) has been sampled, by joining the dots,
it is clear that a perfect sine-wave is created (blue), which is an alias of the original signal. Note that it is
impossible to tell that the blue signal is an alias, unless the scope has analogue and digital capabilities were
a user can switch to analogue mode to check that the waveform is not an alias.

There is nothing that can be done after sampling to correct aliasing; hence the solution is to filter out high
frequencies by sending the input signal through a low-pass filter. Ideally all frequencies above half the
sample rate should be filtered out, but circuit design can become difficult if the sampling rate is adjustable
because the high frequency cut-off must also be adjustable. One solution is to used digital potentiometers
(resistance controlled by microcontroller), to change the high frequency cut-off of the filter.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 9 Chapter 3: Fundamentals

3.4.1. Typical Low-Pass Filter Design Parameters

There are four key parameters, that specify an low-pass filter as shown in figure 3.4.1a: fCUT-OFF, fSTOP, AMAX,
and M.

The cut-off frequency (fCUT-OFF) of a
low pass filter is normally defined as
the -3dB point (e.g. Butterworth and
Bessel filter) or the frequency at
which the filter response leaves the
error band (e.g. Chebyshev).

Butterworth or Bessel filters do not
create ripple in the pass band (i.e.
flat) unlike the Chebyshev filter. The
Chebyshev filter has a ripple up to
the cut-off frequency, defined as ε.

“By definition, a low pass filter
passes lower frequencies up to the
cut-off frequency and attenuates the
higher frequencies that are above the
cut-off frequency.” [J4]

The filter order is determined by the number of poles in the transfer function (e.g. 3 poles, hence 3rd order).
Generally, the greater number of poles a filter has the smaller the transition bandwidth.

“Ideally, a low-pass, anti-aliasing filter should perform with a ‘brick wall’ style or response, where the
transition band is designed to be as small as possible. Practically speaking, this may not be the best
approach for an anti-aliasing solution. With active filter design every two poles require an operational
amplifier. For instance, if a 32nd order filter is designed, 16 operational amplifiers, 32 capacitors and up to 64
resistors would be required to implement the circuit. Additionally, each amplifier would contribute offset and
noise errors into the pass band region of the response.” [J4]

3.4.2. Typical Low-Pass Filters

The Butterworth, Bessel, and Chebyshev are the three most popular filter designs, other filter types include:
inverse Chebyshev, Elliptic and Cauer designs. See reference [B4] for detailed information on designing
various types of filters including Butterworth and Chebyshev.

Butterworth Filter

The Butterworth filter is by far the most popular design used in circuits. This filter exhibits a monotonically
decreasing transmission with all the transmission zeros at ω = ∞, making it an all-pole filter. Therefore the
transfer function of a Butterworth filter consists of all poles and no zeros and is equated to: -

 1 2 2
0 1 2 1 1

OUT
n n n

IN n n

V G
V a s a s a s a s a s− −

−

=
+ + + + +…

 {3.4.2.1}

Note denominator coefficients for Butterworth designs are available in table form; Table 1 in reference [J4]
lists all of coefficient up to a 5th order filter. The frequency behaviour has a maximally flat magnitude
response in the pass-band. The rate of attenuation in the transition band is better than Bessel, but not as
good as the Chebyshev filter. There is no ringing in the stop band, but there is some overshoot and ringing in
the time domain, but less than the Chebyshev.

APASS

ASTOP

A M
AX

Pass Band Stop Band

Transition Band

G
ai

n
(d

B
)

Frequency (Hz)

fCUT-OFFM = Filter Order e

fSTOP

Figure 3.4.1a. The key low pass filter design parameters

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 10 Chapter 3: Fundamentals

Chebyshev Filter

“The Chebyshev filter exhibits an equiripple response in the pass-and and a monotonically decreasing
transmission in the stop-and. While the odd-order filter has |T(0)| = 1, the even-order filter exhibits its
maximum magnitude deviation at ω = 0. In both cases the total number of pass-and maxima and minima
equals the order of the filter, N. All transmission zeros of the Chebyshev filter are at ω = ∞, making it an all-
pole filter.” [B4]

Therefore the transfer function of the Chebyshev filter is similar to the Butterworth filter in that it has all poles
and no zeros with a transfer function of: -

2 1
0 1 2 1

OUT
n

IN n n

V G
V a a s a s a s s−

−

=
+ + + +…

 {3.4.2.2}

Note denominator coefficients for Chebyshev designs are also available in table form; Table 2 in reference
[J4] lists all of coefficient up to a 5th order filter.

Bessel Filter

The transfer function of the Bessel filter has only poles and no zeros. Where the Butterworth design is
optimised for a maximally flat pass band response the transition bandwidth, the Bessel filter produces a
constant time delay with respect to frequency over a large range of frequency. The transfer function for the
Bessel filter is: -

2 1
0 1 2 1

OUT
n

IN n n

V G
V a a s a s a s s−

−

=
+ + + +…

 {3.4.2.3}

Note denominator coefficients for Bessel designs are also available in table form; Table 3 in reference [J4]
lists all of coefficient up to a 5th order filter. The Bessel filter has a flat magnitude response in the pass-band,
and the rate of attenuation in the transition band is slower than the Chebyshev or Butterworth. This filter has
the best step response of all the filters mentioned, with very little overshoot or ringing.

3.4.3. Software Generation of an Anti-Aliasing Filter

Customised filters (e.g. anti-aliasing) can be designed automatically using powerful software applications,
microchip have developed a program called ‘FillerLab’. This program is freeware and can be downloaded
free of charge from the microchip website [W3].

“FilterLab™ is an innovative software tool that simplifies active filter design. Available at no cost, the
FilterLab active filter software design tool provides full schematic diagrams of the filter circuit with component
values and displays the frequency response.

FilterLab™ allows the design of low-pass filters up to an 8th order filter with Chebyshev, Bessel or
Butterworth responses from frequencies of 0.1 Hz to 10 MHz. Users can select a flat passband or sharp
transition from passband to stopband. Options, such as minimum ripple factor, sharp transition and linear
phase delay, are available. Once the filter response has been identified, FilterLab™ generates the frequency
response and the circuit. For maximum design flexibility, changes in capacitor values can be implemented to
fit the demands of the application. FilterLab™ will recalculate all values to meet the desired response,
allowing real-world values to be substituted or changed as part of the design process.

Further consideration is given to designs used in conjunction with an analogue-to-digital converter. A
suggested filter can be generated by simply input-ting the bit resolution and sample rate via the Anti-Aliasing
Wizard. This eliminates erroneous signals folded back into the digital data due to the aliasing effect.” [W3]

For example, design a Butterworth anti-aliasing filter using the FilterLab anti-aliasing wizard. Figures 3.4.3a
to figures 3.4.3f show step-by-step how to configure the anti-aliasing wizard.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 11 Chapter 3: Fundamentals

Figure 3.4.3a. Step 1: Open Anti-Aliasing Wizard

Figure 3.4.3b. Step 2: Enter 3dB Cut-off frequency

Figure 3.4.3c. Step 3: Enter sampling frequency

Figure 3.4.3d. Step 4: Enter ADC resolution

Figure 3.4.3e. Step 5: IDEAL signal to noise ratio is calculated

Figure 3.4.3f. Step 6: Click build Butterworth, then Finish

Notice that the anti-aliasing wizard gives the user the choice to generate a Butterworth or Chebyshev
solution. Note that the Chebyshev solution (figure 3.4.3f) has a 3dB base-band ripple while the Butterworth
has no base-band ripple. The anti-aliasing wizard generates the circuit diagram required to filter out the high
frequencies that will cause aliasing, based on the user configurable parameters (see figure 3.4.3g).

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 12 Chapter 3: Fundamentals

Figure 3.4.3g. Anti-aliasing filter designed by the anti-aliasing wizard

3.5. The PIC Microcontroller

A PIC (Peripheral Interface Controller) microcontroller is an IC manufactured by Microchip.

These ICs are complete computers in a single package. The only external components necessary are
whatever is required by the I/O devices that are connected to the PIC.

The traditional Von-Neumann Architecture (Used in: 80X86, 8051, 6800, 68000, etc…) is illustrated in Figure
3.5a. Data and program memory share the same memory and must be the same width.

“All the elements of the von Neumann computer are wired together with the one common data highway or
bus. With the CPU acting as the master controller, all information flow is back and forward along these
shared wires. Although this is efficient, it does mean that only one thing can happen at any time. This
phenomenon is sometimes known as the von Neumann bottleneck.” [B3]

Memory
(Program
& Data)

CPU 8-Bit

Figure 3.5a. Simplified illustration of the von Neumann architecture

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 13 Chapter 3: Fundamentals

PICs use the Harvard architecture. The Harvard architecture (Figure 3.5b) is an adaptation of the standard
von Neumann structure with separate program and data memory: data memory is made up by a small
number of 8-bit registers and program memory is 12 to 16-bits wide EPROM, FLASH or ROM.

Memory
(Data) CPU Memory

(Program)8-Bit 12/14/16 Bit

Figure 3.5b. Simplified illustration of the Harvard architecture

Traditional CISC (Complex Instruction Set Computer) machines (Used in: 80X86, 8051, 6800, 68000, etc…)
have many instructions (usually > 100), many addressing modes and it usually takes more than 1 internal
clock cycle to execute. PIC microcontrollers are RISC (Reduced Instruction Set Computer) machines, which
have 33 (12-bit) to 58 (15-bit) instructions, reduced addressing modes (PICs have only direct and indirect),
each instruction does less, but usually executes in one internal clock.

“The combination of single-word instructions, the simplified instruction decoder implicit with the RISC
paradigm and the Harvard separate program and data buses gives a fast, efficient and cost effective
processor implementation.” [B3]

3.5.1. Summary of the PICs Built-in Peripherals

SPI (Serial Peripheral Interface) uses 3 wires (data in, data out, clock), Master/Slave (can have multiple
masters), very high speed (1.6 Mbps), and full speed simultaneous send and receive (full duplex).

I2C (Inter IC) uses 2 wires (data and clock), Master/Slave. There are lots of cheap I2C chips available;
typically < 100kbps.

UART (Universal Asynchronous Receiver/Transmitter) with baud rates of 300bps to 115kbps, 8 or 9 bits,
parity, start and stop bits, etc. Outputs 5V hence an RS232 level converter (e.g. MAX232) is required.

Timers, both 8 and 16 bits, many have prescalers and some have postscalers. In 14 bit cores they generate
interrupts. External pins (clock in/clock out) can be used for counting events.

Ports have two control registers: TRIS sets whether each pin is an input or an output and PORT sets their
output bit levels. Note: Other peripherals may steal pins, so in this respect peripheral registers control ports
as well. Most pints have 25mA source/sink (LED enabled), but not all pins, it is important to look up the
datasheet. Floating input pints must be tied off (or set to outputs).

ADCs (Analogue to Digital Converter) are currently slow, less than 54 KHz sampling rate (8, 10 or 12 bits),
theoretically higher accuracy when PIC is in sleep mode (less digital noise) once the sample is complete the
ADC sends an interrupt waking the PIC. Note that the PIC must wait until the sampling capacitor is charged;
see datasheets.

3.6. RS232 Serial Interface

RS232 is simple, universal, well understood and supported, but it has some serious shortcomings as a data
interface. Its origins predate modern computers and it contains many features that are not relevant to the
modern user. It can control very old primitive modems and has many control signals to do this in hardware,
but often it is used without these old control and status lines.

Its major feature is that it does not require the transmission of a clock, the reception of a ‘start bit’ is enough
to cause the receiver to time all its actions from this one edge. This is called asynchronous transmission.
RS232 allows a 5% difference in transmitted timings and receiver chip timings. This is important if using a

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 14 Chapter 3: Fundamentals

PIC as the datasheet specifies the % error of the baud rate generator at certain baud rates (the higher the
baud rate, the higher the % error), as long as this error is less than 5% the RS232 standard is capable of
coping.

Electronic data communications between elements will generally fall into two broad categories: single-ended
and differential. RS232 (single-ended) was introduced in 1962, and despite rumours for its early demise, has
remained widely used.

 D R±12V ±3V

15m, @ 20kb

Logic
Levels

Logic
Levels

Figure 3.6a. Illustration of RS232, 1 driver and 1 receiver

“Both RS232 and RS423 are unbalanced (or single-ended) standards, where the receiver measures the
potential between signal line and ground reference. Even though the transmitter and receiver grounds are
usually connected though the transmission line return, the impedance over a long distance may support a
significant difference in the two ground potentials, which will degrade noise immunity. Furthermore, any
noise induced from the outside will affect signal lines differently from the ground return due to their dissimilar
electrical characteristics – hence the name unbalanced.” [B3]

RS232 data is bi-polar, e.g. a +3 to +15 volt indicates an SPACE (ON) while a -3 to -15 volt indicates an
MARK (OFF). Modern computer equipment ignores the negative level and accepts a zero voltage level as
the MARK (OFF) state. This means circuits powered by 5 VDC are capable of driving RS232 circuits directly;
however, the overall range that the RS232 signal may be transmitted / received is dramatically reduced.

+15V

-15V

-3V

+3V

0V

S
pa

ce
 (=

0)
M

ar
k

(=
1)

0 1 0 0 0 0 0 1 0 1

LSB MSB

8 Data Bits

Start Bit Stop Bit

In
de

te
rm

in
at

e
R

eg
io

n

Figure 3.6d. Illustration of how data is transmitted over RS232

The output signal level usually swings between +15V and -15V. The ‘dead area’ between +3v and -3v is
designed to give some noise immunity. This dead area can vary for various RS232 like definitions, for
example the definition for V.10 has a noise margin from +0.3V to -0.3V. Many receivers designed for RS232
are sensitive to differentials of 1v or less.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 15 Chapter 3: Fundamentals

Pin Signal Pin Signal
1 Data Carrier Detect 6 Data Set Ready
2 Receive Data 7 Request to Send
3 Transmit Data 8 Clear to Send
4 Data Terminal Ready 9 Ring Indicator

 5 Signal Ground
 Figure 3.6b. 9-pin RS232 D-connector, pin signal description

Typical line drivers / receivers chips for RS232 are the Maxim MAX232 or MAX233 chips (see
http://www.maxim-ic.com) the original specification states that RS232 should drive 50 feet, but modern line
driver/receivers can manage much better than this.

Baud Rate Max Distance Shielded Cable Max Distance Unshielded Cable
110 bps 5000 feet 3000 feet
300 bps 5000 feet 3000 feet
1200 bps 3000 feet 3000 feet
2400 bps 1000 feet 500 feet
4800 bps 1000 feet 250 feet
9600 bps 250 feet 250 feet

Figure 3.6c. Typical maximum distance modern line driver/receivers can manage before errors occur.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 16 Chapter 4: The PIC16F877 Microcontroller

4.0. THE PIC16F877 MICROCONTROLLER

Figure 4.0a: Architecture of the PIC16F877 microcontroller [W9]

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 17 Chapter 4: The PIC16F877 Microcontroller

“The PIC16F877 is a high-performance FLASH microcontroller that provides engineers with the highest
design flexibility possible. In addition to 8192x14 words of FLASH program memory, 256 data memory bytes,
and 368 bytes of user RAM, PIC16F877 also features an integrated 8-channel 10-bit Analogue-to-Digital
converter. Peripherals include two 8-bit timers, one 16-bit timer, a Watchdog timer, Brown-Out-Reset (BOR),
In-Circuit-Serial Programming™, RS-485 type UART for multi-drop data acquisition applications, and I2C™
or SPI™ communications capability for peripheral expansion. Precision timing interfaces are accommodated
through two CCP modules and two PWM modules.” [W3]

4.1. Overview of the File Registers

The data memory is partitioned into multiple banks which contain the general purpose registers and the
special function registers. Bits RP1 and RP0 are the bank select bits, these bits are found in the STATUS
register (b6 & b5).

General Purpose
Global Register

16 Bytes

Indirect addr. (*)
OPTION_REG

PCL
STATUS

FSR
TRISA
TRISB
TRISC
TRISD
TRISE

PCLATH
INTCON

PIR1
PIR2

PCON
Unimplemented
Unimplemented

SSPCON2
PR2

SSPADD
SSPSTAT

Unimplemented
Unimplemented
Unimplemented

TXSTA
SPBRG

Unimplemented
Unimplemented
Unimplemented
Unimplemented

ADRESL
ADCON1

General
Purpose
Register

80 Bytes

Bank 1

Accesses Global
Register
70h-7Fh

80h
81h
82h
83h
84h
85h
86h
87h
88h
89h
8Ah
8Bh
8Ch
8Dh
8Eh
8Fh
90h
91h
92h
93h
94h
95h
96h
97h
98h
99h
9Ah
9Bh
9Ch
9Dh
9Eh
9Fh
A0h

.

.

.

.

.

.

.
EFh
F0h

FFh

.

.

Indirect addr. (*)
TMR0
PCL

STATUS
FSR

PORTA
PORTB
PORTC
PORTD
PORTE

PCLATH
INTCON

PIR1
PIR2

TMR1L
TNR1H
T1CON
TMR2

T2CON
SSPBUF
SSPCON
CCPR1L
CCPR1H

CCP1CON
RCSTA
TXREG
RCREG
CCPR2L
CCPR2H

CCP2CON
ADRESH
ADCON0

General
Purpose
Register

80 Bytes

Bank 0

20h

7Fh

.

.

.

.

.

.

.
6Fh

00h
01h
02h
03h
04h
05h
06h
07h
08h
09h
0Ah
0Bh
0Ch
0Dh
0Eh
0Fh
10h
11h
12h
13h
14h
15h
16h
17h
18h
19h
1Ah
1Bh
1Ch
1Dh
1Eh
1Fh

70h
.
.

Indirect addr. (*)
TMR0
PCL

STATUS
FSR

Unimplemented
PORTB

Unimplemented
Unimplemented
Unimplemented

PCLATH
INTCON
EEDATA
EEADR

EEDATH
EEADRH

General
Purpose
Register

96 Bytes

Bank 2

Accesses Global
Register
70h-7Fh

100h
101h
102h
103h
104h
105h
106h
107h
108h
109h
10Ah
10Bh
10Ch
10Dh
10Eh
10Fh
110h

16Fh

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

170h

17Fh

.

.

Indirect addr. (*)
OPTION_REG

PCL
STATUS

FSR
Unimplemented

TRISB
Unimplemented
Unimplemented
Unimplemented

PCLATH
INTCON
EECON1
EECON2

RESERVED
RESERVED

General
Purpose
Register

96 Bytes

Bank 3

Accesses Global
Register
70h-7Fh

180h
181h
182h
183h
184h
185h
186h
187h
188h
189h
18Ah
18Bh
18Ch
18Dh
18Eh
18Fh
190h

1EFh

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1F0h

1FFh

.

.

Figure 4.1a. PIC16F877 register file map

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the special
function registers (shown in yellow). Above the special function registers are general purpose registers
(shown in blue), implemented as static RAM. All implemented banks contain special function registers. Some
“high use” special function registers from one bank may be mirrored in another bank for code reduction and
quicker access. Also notice that there are 16 general purpose global registers (shown in green), these
registers can be accessed from any bank.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 18 Chapter 4: The PIC16F877 Microcontroller

4.2. Overview of the 8-Channel 10-bit ADC

At first it appears that the PIC16F877 has 8 built-in ADCs, but this is not the case. Figure 4.2a shows a
simplified block diagram of the analogue-to-digital converter module, clearly there is only one 10-bit ADC
which can be connected to only one of eight input pins at any one time.

EC1

1D

EC1

1DAN6/RE1

AN7/RE2
Vref-

5p 500n

1kVDD

Vref-

5p 500n

1kVDD

AN4/RA4

AN5/RE0

AN0/RA0

AN1/RA1

AN2/RA2

AN3/RA3

Vref-

5p 500n

1kVDD

Vref-

5p 500n

1kVDD

Vref-

5p 500n

1kVDD

Vref-

5p 500n

1kVDD

Vref-

5p 500n

1kVDD

Vref-

5p 500n

1kVDD

7k
50p

Sample
Switch 10

-B
it

AD
C

Vin

Vref- Vref+

CLK
ON

ADCS1 ADCS0 CHS2 CHS1 CHS0 GO/
DONE 0 ADON

ACON0

8-
to

-1
 li

ne
 m

ul
tip

le
xe

r

Analogue channel
address

File 1Fh

D0

D1

D2

D3

D4

D5

D6

D7

Z

File 1Eh

File 9Eh

ADRESH

ADRESL

F/2
F/8

F/32
CR

tAD

ACON1 File 9Fh

01234567

01234567

VDD

VSS

1: Right justified, 0: left justified

Internal data bus
to MCU

R
ea

d
AD

R
ES

H
R

ea
d

AD
R

E
SL

C
on

ve
rs

io
n

co
m

pl
et

e

ADFM 0 0 0 PCFG3 PCFG2 PCFG1 PCFG0

Figure 4.2a. Simplified block diagram of the PIC16F877 ADC module

The input analogue channels AN4..0 are shared with port A, and channels AN7..5 are shard with port E. If
less than eight analogue channels are required then some of the pins can be assigned as digital I/O port
lines using PCFG3..0 bits (see datasheet). For example, if PCFG3..0 = 0010 then AN4..0 are configured as
analogue inputs, while AN7..5 are digital (port E free), with VDD used as the reference.

“On reset all pins are set to accept analogue signals. Pins that are reconfigured as digital I/O should never
be connected to an analogue signal. Such voltage may bias the digital input buffer into its linear range and
the resulting large current could cause irreversible damage.” [B3]

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 19 Chapter 4: The PIC16F877 Microcontroller

The 10-bit ADC uses a technique know as ‘successive approximation’, the following mechanical analogy will
help explain how it works. Suppose there is an unknown weight, a balance scale and a set of precision
known weights 1, 2, 4 and 8 grams. A systemic technique can be used to calculate the unknown weight.

Place the 8g weight on the pan and remove if it is too heavy. Next place the 4g weight on the pan and
remove if it is too heavy. Next place the 2g weight on the pan and remove if it is too heavy. Next place the 1g
weight on the pan and remove if it is too heavy. The sum of the weights still on the pan yields the nearest
lower value of the unknown weight. This is illustrated in figures 4.2b to 4.2g.

Unknown
Weight

Figure 4.2b. Unknown weight placed on the scales

Unknown
Weight

8g

Figure 4.2c. 8g weight placed on the pan, not too heavy (keep)

Unknown
Weight

8g

4g

Figure 4.2d. 4g weight placed on the pan, too heavy (remove)

Unknown
Weight8g

2g

Figure 4.2e. 2g weight placed on the pan, not too heavy (keep)

Unknown
Weight

8g

2g
1g

Figure 4.2f. 1g weight placed on the pan, too heavy (remove)

Unknown
Weight8g

2g

Figure 4.2g. Unknown weight is about 10g (1010)

The electronic equivalent to this successive approximation technique uses a network of precision capacitors
configured to allow consecutive halving of a fixed voltage VREF to be switched in to an analogue comparator,
which acts as the balance scale.

Generally the network of capacitors are valued in powers of two to subdivide the analogue reference voltage
(e.g. 1,2,4,8,16, etc…). This sampling acquisition process takes a finite time due to the charging time
constant and is specified in the data sheet as 19.72µS.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 20 Chapter 4: The PIC16F877 Microcontroller

4.3. Overview of the Hardware USART

The Universal Synchronous Asynchronous Receiver Transmitter (USART) module is one of the two serial I/O
modules. The USART can be configured for asynchronous operation (UART) for communication with a PC or
synchronous operation for communicating with peripheral devices such as DAC or DAC integrated circuit.

Note bit SPEN (RCSTA:7) and bits TRISC:7..6 have to be set in order to configure pin PC6/TX/CK and
RC7/RX/DT for USART operation. CSS (C compiler) will automatically configure these bits, but it is important
to be aware that if using fast_io(C) mode to manually configure port C, bits 7 & 6 must also be manually set if
using the hardware UART.

4.3.1. Baud-Rate Generator, BRG

This is basically a programmable 8-bit counter followed by a switchable frequency ÷4 flip flop chain which
can be set up to give the appropriate sampling and shifting rates for the desired baud rate, based on the
PIC’s crystal frequency XTAL (e.g. for 20MHz, XTAL = 20) giving: -

 =
× +

Baud Rate (Low Speed Mode)
64 (1)

XTAL
X

 {4.3.1.1}

 =
× +

Baud Rate (High Speed Mode)
16 (1)

XTAL
X

 {4.3.1.2}

 ×
=

×

610
64
XTALX

BAUD
 {4.3.1.3}

It may be advantageous to use the high baud rate (BRGH = 1) even for slower baud clocks as this may
reduce baud rate error in some cases.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 21 Chapter 5: Hardware Development

5.0. HARDWARE DEVELOPMENT

The purpose of this project is to design, built and test a low-cost PC-based digital real-time / storage
oscilloscope. The main reasoning behind hardware development was to keep the hardware cost to an
absolute minimum.

It was decided to use the PIC16F877 (flash version), “The PIC16F877 is a high-performance FLASH
microcontroller that provides engineers with the highest design flexibility possible. In addition to 8192x14
words of FLASH program memory, 256 data memory bytes, and 368 bytes of user RAM, PIC16F877 also
features an integrated 8-channel 10-bit Analogue-to-Digital converter. Peripherals include two 8-bit timers,
one 16-bit timer, a Watchdog timer, Brown-Out-Reset (BOR), In-Circuit-Serial Programming™, RS-485 type
UART for multi-drop data acquisition applications, and I2C™ or SPI™ communications capability for
peripheral expansion. Precision timing interfaces are accommodated through two CCP modules and two
PWM modules.

The PIC16F877 also supports low voltage self-programming, allowing the user to program the device in-
circuit at the user’s operating voltage. The in-circuit debugging feature allows the designer to “emulate” the
PIC16F877 device without an in-circuit emulator (the MCU itself is the “emulator”). PIC16F877 applications
range from body controllers, programmable machine controls, network maintenance, feature phones and
field-upgradeable pointing devices. PIC16F877 has 33 I/O pins and is available in the following package
options: 40 PDIP(P), 44 PLCC(L), 44 PQFP(PQ), and 44 TQFP(PT)” [W3].

Four of the PICs ADC pins are used for data acquisition, a MAX232 buffer is used to convert the TTL serial
logic of the PICs UART to the correct RS232 format. Additionally an analogue circuit is required to make
sure the input voltage to the PICs ADC falls between 0 to 5V, Figure 5.0a illustrates an -10 to 10V sine wave,
where the 10V peak is reduced to 5V (ADC Value is 1024), 0V is represented by 2.5V (ADC Value is 512)
and -10V is represented by 0V (ADC value is 0), i.e. Bipolar. This could be achieved using two 741 op-amps,
and a couple of diodes could be used for protection as the ADC cannot handle voltages outside its range
(damage the PIC).

10V

0V

-10V

Analogue
Circuitry

5V

0V

Figure 5.0a. Illustrates the operation of the analogue circuitry

A 5V voltage regulator (7805) is used to power the circuit; hence there is a large DC input range of 7 to 20V.
This means that a standard DC power supply (7 to 20VDC) or a battery source (e.g. 9V PP3) can be used to
power circuit.

5.1. Simplified Block Diagram

Figure 5.1a, shows a simplified block diagram of the overall system. It is clear the PIC is connected to a
MAX232 buffer which is connected to the PCs RS232 port. Notice that the clock is specified as 20MHz this
was not the original plan, as a slower clock speed would reduce power consumption (critical if using battery
power supply) and less noise would have been generate; hence ADC readings would be more accurate,
allow it is possible to put the PIC to sleep while taking the ADC reading, the ADC will send an interrupt
waking the PIC once the acquisition is complete. This is not an option for this application because it takes a
long time for the PICs oscillator to return to full speed, after a sleep operation; hence this would severely
affect the maximum sampling rate.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 22 Chapter 5: Hardware Development

The main reason for using a 20MHz clock was because at slower clock speeds it was not possible to obtain
a good 115kbps baud rate. Officially the maximum allowable baud rate error is 3%; allow most PC UARTs
are specified to operate correctly with a baud rate variation of 5% before many errors start to occur. The C
compiler (CCS V2.7) used to write the PIC program, generates an error if the specified baud rate cannot be
achieved within 3% of the desired value using the current clock rate. The reason why 115kbps is important is
because the RS232 serial communication is the bottleneck when operating in real-time mode; hence it
makes sense to use the maximum baud rate possible. Note the PIC is capable at 20MHz of generating baud
rates higher than 115kbps, but most PCs have a maximum baud rate of 115kbps.

PIC16F877
(Microcontroller)

20 MHZ ClockMAX232
(Line Buffer)

M6264P-15
(8kBbyte RAM Chip)

A
[1

2.
.0

]

D
[7

..0
]

RC5RC[3..0] & RD[7..0] RB[7..0]

ADCADC ADC ADC ADC

RxD/RC7
TxD/RC6

5

2

3

131514

PC
R

S2
32

0
5V

-1
00

10
0V

A
na

lo
gu

e
C

irc
ui

tr
y

0
5V

-1
00

10
0V

A
na

lo
gu

e
C

irc
ui

tr
y

0
5V

-1
00

10
0V

A
na

lo
gu

e
C

irc
ui

tr
y

0
5V

-1
00

10
0V

A
na

lo
gu

e
C

irc
ui

tr
y

CH1 CH2 CH3 CH4
Figure 5.1a. Simplified Block diagram

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 23 Chapter 5: Hardware Development

The block diagram (figure 5.1a) clearly illustrates that the analogue circuitry required for each channel is
identical. Note four 741 op-amps are available in a single IC chip, that’s two op-amp ICs required in total (2
741s for each analogue circuit block).

Not shown on this diagram (which is one option) is the input of additional control lines from the PIC to each
“Analogue Circuitry” block. These control lines will be used to select different input voltage ranges, e.g. -1V
to 1V, -10V to 10V, -100V to 100V. Analogue switches could be used to switch in different resistor values to
the op-amps, hence changing the gain of the op-amp (MAX4066 or MM74HC4066). A better solution is the
use of digital potentiometers (resistance controlled by microcontroller), to change the gain of the op-amp. At
first it appears that there is not enough free pins on the PIC to control the analogue input range, this is true,
but it is possible use the data and address bus as long as the RAM chip is disabled. But this mains that
additional IC chips are required (latches, e.g. 74373 is an 8-bit parallel latch) to hold the selected range while
the PIC is using these lines for use with the RAM chip.

The simplest way of producing different analogue ranges is to have a number of different inputs, for example
each analogue block has 3 inputs: -1 to 1V, -10 to 10V and -250 to 250V. Another simple solution is to use a
manual three-to-one way switch to select the appropriate range.

It is clear that a 8kByte RAM chip (see figure 5.1a) is used, this RAM chip is used during storage mode
operation. A finite number of samples are stored into the RAM chip and transmitted to the PC in one large
block, hence removing the RS232 bottleneck (faster sample rates possible). Notice that there are 8 data
lines which are connected to port B and 13 address lines connected which are connected to port C and port
D. Recall that 2 bytes are required per reading, hence 4000 readings can be stored, that’s 1000 for each
channel. Notice that there is one control line: this puts the RAM chip in read or write mode, but if the data
lines are shared with another component sometime in the future there is the need for another control line to
disable the RAM chip.

It is possible to use four PICs (one for each channel) hence each channel can be sampled simultaneously,
using a master/slave communication protocol. For example each PIC has its own address (say 1 to 4) all four
wait until the master (PC) calls them before transmitting there data. Note: the current communication protocol
would not work because there is a high likelihood of a collision occurring (two or more transmit at the same
time), hence the need for a master/slave communication protocol or extremely good synchronisation where
each PIC only transmits during specified time blocks. Sampling simultaneously is not required, the two
modes chop and alt should be adequate, hence only one PIC is required (chop: read CH1 read CH2
read CH3 read CH4 ..., alt: read CH1 1000 times read CH2 1000 times read CH3 1000 times
read CH4 1000 times). Simultaneous sampling using four PICs may be useful for specialist applications and
this project is suitable as only mirror software modification is required.

5.2. Digital Circuit Diagram

Figure 5.2a shows the digital circuit diagram, the design is simple with a low chip count (3 ICs).

The dip-switches connected to port E are used to select RS232 baud
rate (see figure 5.2b). The MAX232CPE (RS232 line buffer) is connected
to pins RC7 and RC6 of the PIC; these pins are for use with the PICs
hardware UART. The use of the PICs hardware UART was the only
option, because a software UART would severely affect system
performance.

The reason why the MAX232CPE (RS232 line buffer) was chosen was
because it can be powered from a single 5V power supply. Recall that
RS232 requires +3 to +12 volts for a logic ‘0’ and -3 to -12 volts for a
logic ‘1’, the MAX232CPE has a built-in (external capacitors required)

voltage doubler circuit (+10V) and a voltage inverter circuit (-10V). This reduces product cost as the other
option is to using a switch mode DC to DC converter (cost about £5) to generate required power supply.
Allow a +15 and -15 supply is required for the analogue circuit; hence a DC to DC converter is required
anyway. Allow the max232 data sheet states that the +10 and -10 voltage pins could be used to drive other
circuits, but it is not recommended, plus its good design practice to keep analogue and digital circuits
separate (problems with noise).

S2 S1 S0 Baud Rate
0 0 0 115,200 bps
0 0 1 57,600 bps
0 1 0 38,400 bps
0 1 1 32,768 bps
1 0 0 19,200 bps
1 0 1 14,400 bps
1 1 0 9,600 bps
1 1 1 4,800 bps
Figure 5.2b. Dip-switch configuration

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 24 Chapter 5: Hardware Development

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

RA0/AN0

RA1/AN1

RA2/AN2/VREF-

RA3/AN3/VREF+

RA4/TOCKI

Vdd

Vss

OSC1/CLKIN

OSC2/CLKOUT

RC0/T1OSO/T1CKI

RC1/T1OSI/CCP2

RC2/CCP1

RC3/SCK/SCL

RD0/PSP0

RD1/PSP1

PIC16F877-20/P

RB7/PGD

RB6/PGC

RB5

RB4

RB3/PGM

RB2

RB1

RB0/INT

Vdd

Vss

RD7/PSP7

RD6/PSP6

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5/SD0

RC4/SDI/SDA

RD3/PSP3

RD2/PSP2

MCLR/VPPTHV

RA5/AN4/SS

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7 1

2

3

4

5

6

7

8

9

D
B

9

4/10/20MHz

C6
33pF

C7
33pF

CH1

CH2

CH3

CH4

DIP SW R1
1k

R2
1k

R3
1k

VC
C

VCC

VC
C

16

2

6

14

7

13

89

12

10

11

5

4

3

1

15

VCC
C1+

C1-

V+

C2+

C2-

V-

+5V to +10V
Voltage
Doubler

+10V to -10V
Voltage
Inverter

GND

C4
1uF

C3
1uF

C1
1uF

C2
1uF

C5
1uF

MAX232CPE

VCC

VC
C

1

2

3

4

5

6

7

8

9

10

11

12

13

14

28

27

26

25

24

23

22

21

20

19

18

17

16

15

NC

A12

A7

A6

A5

A4

A3

A2

A1

A0

I/O1

I/O2

I/O3

GND

VCC

WE

CS2

A8

A9

A11

OE

A10

CS1

I/O8

I/O7

I/O6

I/O5

I/O4

M6264P-15

D
2

D
1

D
0

D
3

D
4

D
5

D
6

D
7

A7

A6

A5

A4

A3

A2

A1

A0

VC
C

VC
C

D7

D6

D5

D4

D3

D2

D1

D0

D
[7

..0
]

A[12..0]

A0

A1 A2

A3

A4

A5

A6

A7

A8

A9

A10

A11 A12

A12

A8

A9

A10

A11

R/W

Figure 5.2a. Digital circuit diagram (version 1.3, 19/03/2002)

Port D is used for the first 8-bits of the 13-bit address bus (213 = 8192 address), RC4 to RC0 is used for the
upper 5-bits of the address bus and Port B is used for the 8-bit data bus. The only component making use of
the data and address buses is the external RAM chip, hence there is only the need for one control line
(R/W), this control line (R/W) puts the RAM chip in read or write mode. If the data and buses are shared with
other components sometime in the future the RAM chip must be disable, while communicating with these
devices, this requires an additional control line (/OE).

To reduce cost even further a 28-pin version of the chosen PIC (PIC16F876) could be used, but this means
a serial RAM chip must be used. The operation of a serial RAM chip is much slower than a parallel RAM
chip, as each bit of the address and data must be clocked in one bit at a time. The purpose of the RAM chip
is to compensate for the RS232 bottleneck (serial link); surly a serial RAM chip would have the same
bottleneck. Yes it does, but the maximum baud rates are much faster than RS232, hence a serial RAM chip
is a real possibility especially now the PIC is running at 20 MHz (must used 20MHz for high RS232 baud
rate).

The ADC input channels (RA3..RA0) labelled CH4..CH1 are connected to the output of the analogue circuit.

5.3. Analogue Circuit Diagram - Mark 1

Figure 5.3a shows the circuit diagram for ensuring that the input voltage falls between zero and five volts.
The first op-amp is designed to change the input voltage so that it does not go over 0 volts, for example
changes -1 to 1V, to 0 to -2V. The second op-amp is configured in a negative amplifier mode to increase and

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 25 Chapter 5: Hardware Development

change 0 to -2V, to 0 to 5V. Note the third part with the two zener diodes is for protection, the PIC ADCs may
be damaged if input voltage is larger than 5 volts or smaller than 0 volts.

R7
150

D1
5.1V

D2
5.1V

R6
150

To ADC

+5V

IC 741

+12V

-12V

VR4
25k

R5
10k

IC 741

+12V

-12V

R4
1.2k

R1
1.2k

VR3
6k

+5V

-1 to 1v
input

R2
8.2k

VR1
4k

-10 to 10V
input

R3
56k

VR2
3.53k

-50 to 50V
input

-

+

-

+

Figure 5.3a. Analogue circuit diagram – Mark 1 (14/12/2001)

The variable resistors are for calibration: -

1. Ground -1 to 1V input, calibrate using VR3 until -1.5V is outputted from the first op-amp.
2. Change VR4 until 2.5 volts is outputted from the output after the two zener diodes and the 2

150R resistors.
3. Un-ground -1 to 1v input and put in a voltage into input -10 to 10v and calibrate using VR1.

Disconnect that voltage.
4. Put a voltage in to -50 to 50V and calibrate using VR2.

Disadvantages of this circuit: -

1. Use of variable resisters (much more expensive than fixed value resistors).
2. No op-amp protection if wrong input line is used (e.g. 100V input on the -1 to 1V input).
3. If an input line is used (say -10 to 10V line) and a device is connected to another line (e.g. say -1

to 1V line) there is nothing to stop current flow to the other device. A diode could be used but
there is a 0.7 voltage drop across the diode, resistor values could be changed to compensate for
this voltage drop.

4. Range not microcontroller controlled.

5.3.1 Simulation of the Circuit using Electronic Workbench

From figure 5.3.1a (using -1 to 1V input) it is clear that a -1 to 1V sine-wave input has been applied and the
output is 0 to 5V. Figure 5.3.1b clearly shows an input of -0.5v to 0.5v, and an output of to 1.25V to 3.75V.
Notice the input and output waveforms are the same phase and polarity.

Figure 5.3.1a. Screen dump of oscilloscope (CH A: Input, CH B:

Output)

Figure 5.3.1b. Screen dump of oscilloscope (CH A: Input, CH B:

Output)

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 26 Chapter 5: Hardware Development

From figure 5.3.1c (using -10 to 10V input) it is clear that a -10 to 10V sine-wave input has been applied and
the output is 0 to 5V. Figure 5.3.1d clearly shows a triangle-wave input of -5v to 5v, and an output of to 1.3V
to 3.70V. Notice the input and output waveforms are the same phase and polarity.

Figure 5.3.1c. Screen dump of oscilloscope (CH A: Input, CH B:

Output)

Figure 5.3.1d. Screen dump of oscilloscope (CH A: Input, CH B:

Output)

From figure 5.3.1e (using -50 to 50V input) it is clear that a -50 to 50V sinewave input has been applied and
the output is 0 to 5V. Figure 5.3.1f clearly shows a squarewave input of -25v to 25v, and an output of to
1.24V to 3.76V. Notice the input and output waveforms are the same phase and polarity.

Figure 5.3.1e Screen dump of oscilloscope (CH A: Input, CH B:

Output)

Figure 5.3.1f. Screen dump of oscilloscope (CH A: Input, CH B:
Output)

5.4. Analogue Circuit Diagram - Mark 2

Figure 5.4a shows the modified circuit diagram for ensuring that the input voltage falls between zero and five
volts, without the use of variable resistors. The first op-amp is designed to change the input voltage so that it
does not go over zero volts, for example changes -2.5 to 2.5V, to -5 to 0V. The second op-amp is configured
in negative amplifier mode with a gain of unity changing -5 to 0V to 0 to 5V. The third part with the two
diodes is for protection, e.g. say a -1 to 6V signal makes it through the op-amps the diodes will cut off the
peaks of the waveform making sure no damage is done to the PICs ADC. Note for the -250 to 250V range it
may be necessary for R3 to be made up of several resistors in series as standard resisters have a maximum
operating voltage of about 200 volts. All resistors should have a tolerance of at least 1%; ideally instrumental
resistors should be used.

Instead of three inputs it is recommend that a three-to-one line manual switch should be used to connect
each line to a single input line. Over voltage protection is still required in case of miss use, e.g. the user has
the -2.5 to 2.5V volt input selected and connects the 240VAC mains to the input.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 27 Chapter 5: Hardware Development

R8
150

To ADC

+5V

IC 741

+15V

-15V

R7
10k

R6
10k

IC 741

+15V

-15V

R4
1k

R1
1k

R5
2k

+5V

-2.5 to 2.5v
input

R2
10k

-25 to 25V
input

R3
100k

-250 to 250V
input

-

+

-

+

D1

D2

C1

Figure 5.4a. Analogue circuit diagram – Mark 2 (19/03/2002)

Disadvantages of this circuit: -

1. No op-amp protection if wrong input line is used (e.g. 100V input on the -2.5 to 2.5V input).
2. Range not microcontroller controlled.

5.4.1 Simulation of the Circuit using Electronic Workbench

From figure 5.4.1b (using -2.5 to 2.5V input) it is clear that a -2.5 to 2.5V sine-wave input has been applied
and the output is 0 to 5V. Figure 5.4.1c clearly shows an input of -1v to 1v, and an output of to 3.5V to 1.5V.
Notice the input and output waveforms are the same phase and polarity.

Figure 5.4.1b. Screen dump of oscilloscope (CH A: Input, CH B:

Output)

Figure 5.4.1c. Screen dump of oscilloscope (CH A: Input, CH B:
Output)

Figure 5.3.1d. Screen dump of oscilloscope (CH A: Input, CH B:

Output)

Figure 5.3.1e. Screen dump of oscilloscope (CH A: Input, CH B:
Output)

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 28 Chapter 5: Hardware Development

From figure 5.4.1d (using -25 to 25V input) it is clear that a -25 to 25V sine-wave input has been applied and
the output is 0 to 5V. Figure 5.4.1e clearly shows a sine-wave input of -250 to 250v (using -250 to 250V
input), and an output of to 0V to 5V. Notice the input and output waveforms are the same phase and polarity.

Figure 5.4.1f clearly demonstrates the operation of the diodes, an input of -5 to +5V voltages is applied to the
-2.5 to 2.5V input. The peaks of the output waveform have been clipped giving an ADC input voltage range
of -0.7 to 5.7V.

Figure 5.4.1f. Screen dump of oscilloscope (CH A: Input, CH B: Output)

5.5. System Powering Circuit

Figure 5.5a shows the circuit diagram; clearly a 5V regulator is used to generate a 5 volt DC output to power
the circuit. The 0.1µF capacitors absorb line noise, while the 100µF capacitors are used for storage in the
event of a minor drop in power (milliseconds) the circuit operation will not be affected.

C2
0.1uF

C3
0.1uF

C4
100uF
50V

C1
100uF
50V

Vi Vo
Com

MC7805CT

8 to 20 VDC 5 VDC

Figure 5.5a. System powering circuit

This means that the circuit has now got a wide operating voltage range as 8 to 20 volts DC will power the
circuit. Note there are higher spec 7805 chips available that can operate up to 30 volts DC, if there is a need
for a higher voltage range.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 29 Chapter 5: Hardware Development

The system can be powered from a battery source (e.g. PP3 9V), or a DC power supply (e.g. 12V). It has
been decided, not to design a complete power supply unit from scratch, but to use commercially available
units. It is important to remember that voltage regulators are not efficient, and as the input voltage increases
the least efficient they become, energy is lost in the form of heat. A heat sink is normally required to keep the
chip within its maximum operational temperature.

5.6. Cost of Components

All order numbers refer to Farnell catalogue.

Digital Circuit: -

Order
Number Item Qty. Cost

Each Cost
325-5573 PIC16F877 – 20/P Microcontroller 1 £7.09 £7.09
407-150 MAX232CPE – RS232 Line Buffer 1 £2.40 £2.40
115-873 HT6264-70 (8k x 8) CMOS SRAM, 70ns acc 1 £1.65 £1.65
170-234 20MHz Crystal A147C 1 £0.75 £0.75
747-014 33pF Ceramic Capacitor 2 £0.13 £0.26
664-315 1µF 25V Electrolytic Capacitor 5 £0.27 £1.35
543-380 1kΩ Metal Oxide Film 1% Resistor 3 £0.02 £0.06
134-3040 40-way dip docket 1 £0.33 £0.33
134-3038 28-way dip socket 1 £0.22 £0.22
134-2988 16-way dip socket 1 £0.12 £0.12
780-091 4-way dip switch 1 £0.40 £0.40
150-812 9-way D-type Socket 1 £0.55 £0.55

 Total £15.18

Analogue Circuit (Mark 2): -

Order
Number Item Qty. Cost

Each Cost
300-373 Quad, 741 op-amp, LM348N 2 £0.40 £0.80
134-2988 16-way dip socket 2 £0.12 £0.12
543-380 1KΩ Metal Oxide Film 1% Resistor 6 £0.02 £0.11
543-627 10KΩ Metal Oxide Film 1% Resistor 9 £0.02 £0.17
543-457 2KΩ Metal Oxide Film 1% Resistor 3 £0.02 £0.06
543-860 100KΩ Metal Oxide Film 1% Resistor 3 £0.02 £0.06
543-860 150Ω Metal Oxide Film 1% Resistor 3 £0.02 £0.06
352-5340 1N4007 Diode 6 £0.04 £0.23
330-760 1W – DC to DC converter 5V input, -15, 15V output 1 £5.05 £5.05

 Total £6.66

System Powering Circuit: -

Order
Number Item Qty. Cost

Each Cost
701-853 MC7805CT, 5V 1A Voltage Regulator 1 £0.30 £0.30
920-757 100µF 50V Electrolytic Capacitor 2 £0.10 £0.21
746-063 100pF Ceramic Capacitor 2 £0.13 £0.26
178-701 Clip On Heat Sink 1 £0.36 £0.36

 Total £1.13

Total component cost = 15.18 + 6.66 + 1.13 = £22.97

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 30 Chapter 6: Communication Protocol Development

6.0 COMMUNICATION PROTOCOL DEVELOPMENT

There are two main communication protocols: real-time and storage. Note there is an additional
communication protocol required to control the PIC (e.g. change sample rate, change from real-time to
storage, etc…). Because RS232 has separate transmit and receive lines, there is no chance of a collision
with the real-time / storage data. Let’s call this additional communication protocol the ‘control’ protocol, note
an interrupt (or PIC must check UART buffer regularly) must be setup in the PIC to let it know that there is a
control message waiting to be read.

6.1. Real-Time Mode

Reads one sample at a time sending each reading directly to the PC using RS232, note there is a delay
(real-time clock) between readings which is specified by the PC using the ‘control’ protocol.

Delay
Read

Channel 1
ADC

Transmit
Reading
(RS232)

Figure 6.1a. Illustration of real-time mode with one channel

From figure 6.1b it is clear that timing is a big problem, as there are time delays for reading each analogue
channel and transmitting the data. This problem is worse at high sample frequencies and one solution is to
work around the problem and try to software offset the waveforms to compensate for these time delays.
Another option is to use four PICs hence sampling can occur simultaneously, and use a master/slave
communication protocol with some why of synchronising all the PICs. PIC microcontrollers are so cheap that
this is a real option and was considered, multiple PICs in designs are widely used, unlike microprocessor
design were it is usually expected that one microprocessor will control everything (e.g. PC, although there
are lots of MPUs in a modern PC besides the Pentium).

Delay
Read

Channel 1
ADC

Transmit CH1
Reading
(RS232)

Read
Channel 2

ADC

Read
Channel 3

ADC

Read
Channel 4

ADC

Transmit CH2
Reading
(RS232)

Transmit CH3
Reading
(RS232)

Transmit CH4
Reading
(RS232)

Figure 6.1b. Illustration of real-time mode with four channels (chop mode)

Figure 6.1c illustrates sampling four channels in the real-time mode using alternate sampling. Channel 1 is
sampled 1000-times, then channel 2 is sampled 1000-times, then channel 3 is sampled 1000-times, then
channel 4 is sampled 1000-times and the process repeats forever.

Let I = 1

I > 1000

Read CH1 and
transmit
reading

I++
Read CH2 and

transmit
reading

I++

I > 2000

Read CH3 and
transmit
reading

I++

I > 3000

Read CH4 and
transmit
reading

I++

I > 4000

No No No No

Yes Yes Yes

Yes

Figure 6.1c. Illustration of real-time mode with four channels (alternate mode)

The advantage of using alternate sampling is that all channels can be sampled at the maximum sample rate,
while in chop mode each channel must share the RS232 throughput (RS232 bottleneck), for example say
the maximum sample rate was 4KHz (set by the maximum RS232 frame structure throughput), one channel
enabled would have a max sample rate of 4KHz, two channels enabled would have a max sample rate of
2KHz each, four channels enabled would have a max sample rate of 1KHz each.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 31 Chapter 6: Communication Protocol Development

But alternate has a disadvantage; timing information between different channels (e.g. channel 1 leads
channel 2 by 25ms) is lost. It is possible to software correct this problem, for example using one of the PICs
real-time timers it is known how mush time as elapsed between the sampling of channels, this information
could be transmitted to the PC Scope program which then draws waveforms with the correct time gap
between channels. Another disadvantage is that continuous monitoring is impossible as there are gaps in
channel data (e.g. continuous monitoring required for an ECG signal). It is clear that alternate mode is only
useful for periodical waveforms (e.g. sinewave), else chop mode should be used.

6.2. Storage Mode

Read a finite number of samples, storing them into RAM (external RAM chip). The readings are then
transferred to the PC in one large block, hence removing the RS232 bottleneck and providing faster sample
rates.

Let i = 1

i > 1000

Read A DC

A rray [i] = A DC
V alue

Inc rement i

T rans mit
A rray []

No

Y es

Delay

Figure 6.2a. Illustration of storage mode with one channel

Let i = 1

i > 1000

Read
Channel 1

ADC

Array[i] =
Channel 1
ADC Value

Increment i

Transmit
Array[]

No

Yes

Delay

Read
Channel 2

ADC

Array[i] =
Channel 2
ADC Value

Increment i

Array[i] =
Channel 3
ADC Value

Increment i

Read
Channel 3

ADC

Read
Channel 4

ADC

Array[i] =
Channel 4
ADC Value

Increment i

Figure 6.2b. Illustration of storage mode with four channels (chop mode)

Alternate sampling can applied to storage mode, but there is no real advantage over chop mode. Recall that
the main reason of having alternate mode was to maximise the sample rate of each channel in the real-time
mode. This no longer apples as storage mode removes the RS232 bottleneck, the new bottleneck is now the
speed of the PICs ADC, hence alternate mode cannot increase channel sample rates.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 32 Chapter 6: Communication Protocol Development

6.3. Control Protocol

The PIC checks the UART buffer regularly (or UART interrupt) checking to see if a control message is being
received. Once a control message has been detected, the PIC leaves the main program and checks (CRC
check) that the message is valid, if not return to the main program, if valid decode and implement the
message. This process is illustrated in figure 6.3a.

Main Program

Setup

RX Buffer

Sample CH1
in real-time

(chop)

Empty

Full Call Function
ControlPROT

ControlPROT

Receive and
check

message

Valid Decode and
Implement

Return

Yes

No

Figure 6.3a. Illustration of the control protocol

6.4. Frame Structure: Real-Time Mode

10-bit ADC, hence 2-bytes are sent per reading.

A B C # # # # # A B C # # # # #

Data d9..d5 Data d4..d0

Byte 1 Byte 2

Figure 6.4a. Frame structure: Real Time.

If A = 0, byte 1 which contains data d9...d5 (Upper 5-bits of ADC reading).
If A = 1, byte 2 which contains data d4…d0 (Lower 5-bits of ADC reading).

B & C specify what channel the data is for.

Since the RS232 communications is the bottleneck, it is important that the real-
time communication protocol is as efficient as possible. At first it appears that
the structure is 100% efficient as all bytes are used, and each one extremely
important.

Yes this is partly true; however the only data of real value is the ADC readings,
the reset are for identification purposes only. Hence the real efficiency of this
frame structure is (10 data bits, 16 bits in total, hence efficiency = 10/16 x 100)
62.5%.

It is theoretically possible to use a frame structure that is 100% efficient, but this requires (because there is
no identification code) extremely good synchronisation between the PC and the PIC. The main problem with
this is that if a byte is lost (due to noise, bad line, buffer overflow, etc…) it would be extremely difficult to
recover. The other option is to have the PC request each and every reading (Master/Slave), the problem with
this is that there is a delay sending the request to the PIC and a processing delay hence this method would
be much slower in reality.

B C
Channel 1
Channel 2
Channel 3
Channel 4

0
0
1
1

0
1
0
1

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 33 Chapter 6: Communication Protocol Development

0 1 1 1 0 0 0 1 1 1 1 1 0 1 0 0

Data d9..d5 Data d4..d0

Byte 1 Byte 2

Figure 6.4b. Real-time frame structure example, channel 4 reads 564d (10,0011,0100b) from ADC

Notice there is no check sum or CRC, the reason for this is to maximise the data throughput. Clearly there is
a problem; however the frame structure is designed in such a way that some errors can be detected. Note
the cable between the MAX232 buffer (connect to PIC) and the PC will be high quality cable (short length)
and errors should not occur that frequently anyway.

A few rules that must occur for the frame to be valid (non-valid frames are flushed): -

1. Byte 1 is always followed by byte 2 for a particular channel.
E.g. B1_CH1 B2_CH1 B1_CH3 B2_CH3 …. OK
E.g. B1_CH1 B1_CH3 B2_CH3 … Error (no B2_CH2) flush this byte

2. Channel readings can occur in any order as long as byte 2 follows byte 1.

E.g. B1_CH3 B2_CH3 B1_CH2 B2_CH2 …

If one or two readings are lost, it should not affect the appearance of the waveform too much, as there are at
least 10 readings per cycle and probably at lot more at high sampling rates. Also because it is real-time the
screen is continuously refreshed, hence the error will probably not stay on the screen for very long (a couple
of milliseconds) until it is replaced by new readings.

6.5 Sample Rate: Real-Time Mode

The RS232 communications is the bottleneck as the maximum sampling frequency of PIC16F877
microcontroller ADC is higher than can be transmitted over RS232. Therefore it makes since to calculate the
maximum sample rate based on how much data can be transmitted through RS232 at different baud rates.

Two bytes are sent per frame, note each byte contains 8-bits plus a start and stop bit. Hence 20-bits are sent
per reading.

=

Baud Rate
20Sample Rate

No .of Channels

Number of
Channels

Max Sample Rate
at 115 Kbps

Max Sample rate
at 56.6 Kbps

Max Sample Rate at
33.6 Kbps

1 5.75 KHz 2.83 KHz 1.68 KHz
2 2.87 KHz 1.41 KHz 840 Hz
3 1.91 KHz 0.94 KHz 560 Hz
4 1.43 KHz 0.70 KHz 420 Hz

Figure 6.5a. Table showing the theoretical real-time sample rates (chop, 10-bit ADC).

Note that the values shown in Figure 6.5a assume that there is no time delay between readings. Clearly this
is not the case in practice and the actual maximum sample rates will be lower than specified e.g. PIC takes
19.72µS (see datasheet for PIC16F877) to acquire each sample, plus there will be processing delays.
However these values should be reasonably accurate because the hardware UART is being used, hence the
PIC can sample the next reading while the UART is transmitting the last reading.

Note if alternating sampling (not chop) is used the sample rate will not decrease with the number of
channels, for example figure 6.5a states that the maximum sample rate for one channel at 115 kbps is 5.75
KHz, if alternate mode is used this maximum sampling rate still applies even if 4 channels are enabled.
Recall that alternate mode is only useful for periodical waveforms.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 34 Chapter 6: Communication Protocol Development

The PIC16F877 has an 10-bit ADC, if speed is important the resolution could be reduced to 8-bits when
sampling four channels. For example channels 1,2,3,4 are always transmitted along with sync frame (5-bytes
for 4 channels, 80% efficient), hence the following sample rates are now possible: -

=
Baud RateSample Rate (8-bit ADC, Four Channels)

50

Number of
Channels

Max Sample Rate
at 115 Kbps

Max Sample rate
at 56.6 Kbps

Max Sample Rate at
33.6 Kbps

1 2.3 KHz 1.132KHz 672 Hz
2 2.3 KHz 1.132KHz 672 Hz
3 2.3 KHz 1.132KHz 672 Hz
4 2.3 KHz 1.132KHz 672 Hz

Figure 6.5b. Table showing the theoretical real-time sample rates (chop, 8-bit ADC).

Another possible method for increasing real-time sampling rates is to use two or more serial links. For
example most PCs have two RS232 ports (more can be added by inserting serial cards), why not use both
serial ports to receive the data. Obviously the PIC only has one hardware UART, hence the solution is to use
the hardware UART plus a software UART (CSS C compiler automatically generates the code when non-
hardware PINs are selected, which is reconfigurable throughout the program). Two bytes are sent (10-bit
ADC) for each channel, hence put the first byte on COM1 and the second on COM2, this will double the
maximum sampling rate. Note the MAX232CPE chip is a dual RS232 line driver chip hence no extra
hardware is required, allow the additional software UART will push the PIC to the limits (should be OK at
20MHz).

×

=
Serial LinksN Baud Rate

20Sample Rate (Multipliable Serial Links)
No .of Channels

Number of
Channels

Max Sample Rate
at 230 Kbps (2 serial

links at 115 Kbps)

Max Sample rate
at 115 Kbps (2 serial
links at 56.6 Kbps)

Max Sample Rate at
67.2 Kbps (2 serial
links at 33.6 Kbps)

1 11.5 KHz 5.75 KHz 3.36 KHz
2 5.75 KHz 2.87 KHz 1.68 KHz
3 3.83 KHz 1.91 KHz 1.12 KHz
4 2.88 KHz 1.43 KHz 840 Hz

Figure 6.5c. Table showing the theoretical real-time sample rates (chop, 10-bit ADC, dual RS232 cable).

For faster sample rates, storage mode must be used, for example the PIC samples a waveform at 20 KHz
storing each reading into an array (e.g. external RAM chip). Then once a certain number of samples have
been taken (say 200) the PIC stops sampling and sends the readings to the PC (via RS232) in one large
block (including CRC or check sum), once ACK (Acknowledgement) is received from the PC the PIC starts
sampling again and the process repeats forever. Another option is to use a different transport medium (e.g.
USB / Parallel) which would allow for faster real-time sample rates.

Note the real-time communication protocol does not rely on the transport medium, hence if the transport
medium is changed the real-time protocol should be OK. Expect for maybe USB as USB ports can be shared
with other devices (many devices connected to the same port e.g. printer, scanner, mouse, etc…) hence the
communication protocol must be compliant with the USB standard.

6.6. Frame Structure: Storage Mode

Figure 6.6a shows the frame structure for the storage mode, each field is 1 byte in size, expect for the ‘data’
field which is variable and its size is specified in the ‘count’ field.

Since each frame could contain up to 255 data bits (large block of data) it is much more likely that an error
will error when compared to the short real-time frames. Hence the need for error detection, at present a 16-
bit CRC is included in the frame which will detect almost every possible error (including burst errors).

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 35 Chapter 6: Communication Protocol Development

But the generation of the CRC is processor hungry; at first it
was thought that it may not be suitable with the PIC. Although
it is possible to generate the CRC using a lookup table, this
reduces processor load, but this lookup table uses a lot of
RAM.

The plan is to use a 16-bit CRC for error detection, as this
practically guarantees that all errors are detected. But if it
turns out that it is impractical to implement on the PIC, a
simple checksum will be used instead, but the disadvantage
of this is that not all errors will be detected (burst errors will be
a problem). Note all fields in the frame are included in the
CRC (or maybe checksum) calculation e.g. SOF, COUNT,
and DATA[i] … DATA[n].

The ‘data’ field uses the same frames as specified for the
real-time frame structure. The big advantages of this is that
the code reusable e.g. subroutines/functions can be written
and used in the real-time and storage modes.

There are two options for checking if the frame is correct: -

1. Calculated the CRC for the received frame and compare with the received CRC.
2. Send the entire frame to the CRC function (including received CRC) and if the calculated CRC is

zero then the frame is correct.

6.7. Sample Rate: Storage Mode

Since operating in storage mode, the maximum sampling rate is only limited by the maximum sampling rate
of the PIC ADCs and not the RS232 link. The datasheet for the PIC16F877 specifies acquisition time
(TACQ): -

 TACQ = Amplifier Setting Time + Hold Capacitor Charging Time + Temperature Coefficient
 = TAMP + TC + TCOFF
 = 2µS + TC + [(Temperature – 25oC)(0.05µS/oC)]

 TC = CHOLD (RIC + RSS + RS) ln(1/2047)
 = -120pF(1kΩ + 7kΩ +10kΩ) ln(0.0004885)
 = 16.47µS

 TACQ = 2µS + 16.47µS + [(50oC – 25oC)(0.05µS/oC)]
 = 19.72µS

Therefore theoretically the PICs ADC can sample at (1/19.72µS) 50.7 KHz. But according to the datasheet
“after a conversion has completed, a 2.0 TAD delay must be complete before acquisition can begin again.
During this time, the holding capacitor is not connected to the selected A/D input channel.” [D1]

TAD is defined as the A/D conversion time per bit. For correct A/D conversions, the A/D conversion clock
(TAD) must be selected to ensure a minimum TAD time of 1.6µs. Assuming a minimum A/D conversion clock
(TAD) time of 1.6 µS (e.g. the PIC is running at 20 MHz with 32TOSC selected for TAD), the maximum sample
rate is: -

µ

= = =
+

1 1 43.63 (Ksps)
2 22.92MAX

AD

S KHz
TACQ T s

For faster sample rates an external ADC with direct memory access is required.

SOF (Start of
Frame)

COUNT (No. of
data bytes)

DATA [1]

DATA [n]

CRC low byte

CRC high byte

Figure 6.6a. Frame Structure: Storage Mode

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 36 Chapter 6: Communication Protocol Development

6.8. CRC16 (Cyclical Redundancy Check) used in Storage Mode

Procedure: -

1. Load a 16-bit register with FFFF hex (all ‘1’s). Call this the CRC register.

2. Exclusive OR the first 8-bit bytes of the message with the low order byte of the 16-bit CRC register,

putting the result in the CRC register.

3. Shift the CRC register one bit to the right, zero-filling the MSB. Extract and examine the LSB.

4. If the LSB was 0: Do nothing – proceed to step 5.

If the LSB was 1: EXOR the CRC register with the polynomial value 0xA001.

5. Repeat steps 3 and 4 until 8 shifts have been performed. When this is done, a complete 8-bit byte will
have been processed.

6. Repeat steps 2 through 5 for the next 8-bit byte of the message. Continue doing this until all the bytes

have been processed.

7. The final content of the CRC register is the CRC value.

8. Swap low & high bytes of CRC, Return CRC.

C code for producing CRC (pure calculation, no lookup table, PC Code): -
unsigned short CRC16(unsigned char *message, unsigned short data_length)
{
 unsigned short CRC = 0xFFFF, // CRC initialised with all '1's
 i, // Loop Control
 temp; // Temp for swap

 while (data_length--) // Loop until all bytes calculated
 {
 CRC=CRC^(*message++);

 for (i=0;i++<8;) // Shift all 8-bits
 {
 if (CRC & 0x0001) CRC = (CRC>>1) ^0xA001;
 else CRC>>=1;
 }
 }

 temp = CRC & 0xFF; // Temp storage for swap
 CRC = ((CRC>>8)&0xFF) + (temp<<8); // Swap high and low byte

 return (CRC); // Return calculated 16-bit CRC
}

C code for producing CRC (using lookup table): -
unsigned short CRC16(unsigned char *message, unsigned short data_length)
{

 /* Table of CRC values for high-order byte */

static unsigned char Table_CRC_Hi[] = {
 0X00, 0XC1, 0X81, 0X40, 0X01, 0XC0, 0X80, 0X41, 0X01, 0XC0, 0X80, 0X41, 0X00, 0XC1, 0X81,
 0X40, 0X01, 0XC0, 0X80, 0X41, 0X00, 0XC1, 0X81, 0X40, 0X00, 0XC1, 0X81, 0X40, 0X01, 0XC0,
 0X80, 0X41, 0X01, 0XC0, 0X80, 0X41, 0X00, 0XC1, 0X81, 0X40, 0X00, 0XC1, 0X81, 0X40, 0X01,
 0XC0, 0X80, 0X41, 0X00, 0XC1, 0X81, 0X40, 0X01, 0XC0, 0X80, 0X41, 0X01, 0XC0, 0X80, 0X41,
 0X00, 0XC1, 0X81, 0X40, 0X01, 0XC0, 0X80, 0X41, 0X00, 0XC1, 0X81, 0X40, 0X00, 0XC1, 0X81,
 0X40, 0X01, 0XC0, 0X80, 0X41, 0X00, 0XC1, 0X81, 0X40, 0X01, 0XC0, 0X80, 0X41, 0X01, 0XC0,
 0X80, 0X41, 0X00, 0XC1, 0X81, 0X40, 0X00, 0XC1, 0X81, 0X40, 0X01, 0XC0, 0X80, 0X41, 0X01,
 0XC0, 0X80, 0X41, 0X00, 0XC1, 0X81, 0X40, 0X01, 0XC0, 0X80, 0X41, 0X00, 0XC1, 0X81, 0X40,
 0X00, 0XC1, 0X81, 0X40, 0X01, 0XC0, 0X80, 0X41, 0X01, 0XC0, 0X80, 0X41, 0X00, 0XC1, 0X81,
 0X40, 0X00, 0XC1, 0X81, 0X40, 0X01, 0XC0, 0X80, 0X41, 0X00, 0XC1, 0X81, 0X40, 0X01, 0XC0,
 0X80, 0X41, 0X01, 0XC0, 0X80, 0X41, 0X00, 0XC1, 0X81, 0X40, 0X00, 0XC1, 0X81, 0X40, 0X01,
 0XC0, 0X80, 0X41, 0X01, 0XC0, 0X80, 0X41, 0X00, 0XC1, 0X81, 0X40, 0X01, 0XC0, 0X80, 0X41,
 0X00, 0XC1, 0X81, 0X40, 0X00, 0XC1, 0X81, 0X40, 0X01, 0XC0, 0X80, 0X41, 0X00, 0XC1, 0X81,
 0X40, 0X01, 0XC0, 0X80, 0X41, 0X01, 0XC0, 0X80, 0X41, 0X00, 0XC1, 0X81, 0X40, 0X01, 0XC0,
 0X80, 0X41, 0X00, 0XC1, 0X81, 0X40, 0X00, 0XC1, 0X81, 0X40, 0X01, 0XC0, 0X80, 0X41, 0X01,

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 37 Chapter 6: Communication Protocol Development

 0XC0, 0X80, 0X41, 0X00, 0XC1, 0X81, 0X40, 0X00, 0XC1, 0X81, 0X40, 0X01, 0XC0, 0X80, 0X41,
 0X00, 0XC1, 0X81, 0X40, 0X01, 0XC0, 0X80, 0X41, 0X01, 0XC0, 0X80, 0X41, 0X00, 0XC1, 0X81,
 0X40};

 /* Table of CRC values for low-order byte */

static char Table_CRC_Lo[] = {
 0X00, 0XC0, 0XC1, 0X01, 0XC3, 0X03, 0X02, 0XC2, 0XC6, 0X06, 0X07, 0XC7, 0X05, 0XC5, 0XC4,
 0X04, 0XCC, 0X0C, 0X0D, 0XCD, 0X0F, 0XCF, 0XCE, 0X0E, 0X0A, 0XCA, 0XCB, 0X0B, 0XC9, 0X09,
 0X08, 0XC8, 0XD8, 0X18, 0X19, 0XD9, 0X1B, 0XDB, 0XDA, 0X1A, 0X1E, 0XDE, 0XDF, 0X1F, 0XDD,
 0X1D, 0X1C, 0XDC, 0X14, 0XD4, 0XD5, 0X15, 0XD7, 0X17, 0X16, 0XD6, 0XD2, 0X12, 0X13, 0XD3,
 0X11, 0XD1, 0XD0, 0X10, 0XF0, 0X30, 0X31, 0XF1, 0X33, 0XF3, 0XF2, 0X32, 0X36, 0XF6, 0XF7,
 0X37, 0XF5, 0X35, 0X34, 0XF4, 0X3C, 0XFC, 0XFD, 0X3D, 0XFF, 0X3F, 0X3E, 0XFE, 0XFA, 0X3A,
 0X3B, 0XFB, 0X39, 0Xf9, 0XF8, 0X38, 0X28, 0XE8, 0XE9, 0X29, 0XEB, 0X2B, 0X2A, 0XEA, 0XEE,
 0X2E, 0XEF, 0XEF, 0XED, 0XED, 0XEC, 0X2C, 0XE4, 0X24, 0X25, 0XE5, 0X27, 0XE7, 0XE6, 0X26,
 0X22, 0XE2, 0XE3, 0X23, 0XE1, 0X21, 0X20, 0XE0, 0XA0, 0X60, 0X61, 0XA1, 0X63, 0XA3, 0XA2,
 0X62, 0X66, 0XA6, 0XA7, 0X67, 0XA5, 0X65, 0X64, 0XA4, 0X6C, 0XAC, 0XAD, 0X6D, 0XAF, 0X6F,
 0X6E, 0XAE, 0XAA, 0X6A, 0X6B, 0XAB, 0X69, 0XA9, 0XA8, 0X68, 0X78, 0XB8, 0XB9, 0X79, 0XBB,
 0X7B, 0X7A, 0XBA, 0XBE, 0X7E, 0X7F, 0XBF, 0X7D, 0XBD, 0XBC, 0X7C, 0XB4, 0X74, 0X75, 0XB5,
 0X77, 0XB7, 0XB6, 0X76, 0X72, 0XB2, 0XB3, 0X73, 0XB1, 0X71, 0X70, 0XB0, 0X50, 0X90, 0X91,
 0X51, 0X93, 0X53, 0X52, 0X92, 0X96, 0X56, 0X57, 0X97, 0X55, 0X95, 0X94, 0X54, 0X9C, 0X5C,
 0X5D, 0X9D, 0X5F, 0X9F, 0X9E, 0X5E, 0X5A, 0X9A, 0X9B, 0X5B, 0X99, 0X59, 0X58, 0X98, 0X88,
 0X48, 0X49, 0X89, 0X4B, 0X8B, 0X8A, 0X4A, 0X4E, 0X8E, 0X8F, 0X4F, 0X8D, 0X4D, 0X4C, 0X8C,
 0X44, 0X84, 0X85, 0X45, 0X87, 0X47, 0X46, 0X86, 0X82, 0X42, 0X43, 0X83, 0X41, 0X81, 0X80,
 0X40};

 unsigned char CRC_Hi = 0xFF; /* High byte of CRC initialised */
 unsigned char CRC_Lo = 0xFF; /* Low byte of CRC initialised */
 unsigned index=0; /* Will index into CRC lookup table */

 while (data_length--)
 {
 index = CRC_Hi ^ *message++; /* Calculate the CRC */
 CRC_Hi = CRC_Lo ^ Table_CRC_Hi[index];
 CRC_Lo = Table_CRC_Lo [index];
 }

 return (CRC_Hi << 8 | CRC_Lo);
}

Example CRC calculation: -
Message Length: 1
Message [0]: 0000 0010

Initialised CRC with all ‘1’s
CRC = 1111 1111 1111 1111

Exclusive OR the first 8-bytes of the message with the low order byte of the 16-bit CRC register, putting result into the CRC.
CRC: 1111 1111 1111 1111
Message: 0000 0000 0000 0010
NEW CRC: 1111 1111 1111 1101

LSB is ‘1’, >>1 (no. 1) & EOR with A001.
>>1: 0111 1111 1111 1110
A001: 1010 0000 0000 0001
NEW CRC: 1101 1111 1111 1111

LSB is ‘1’, >>1 (no. 2) & EOR with A001.
>>1: 0110 1111 1111 1111
A001: 1010 0000 0000 0001
NEW CRC: 1100 1111 1111 1110

LSB is ‘0’, >>1 (no. 3).
>>1: 0110 0111 1111 1111

LSB is ‘1’, >>1 (no. 4) & EOR with A001.
>>1: 0011 0011 1111 1111
A001: 1010 0000 0000 0001
NEW CRC: 1001 0011 1111 1110

LSB is ‘0’, >>1 (no. 5).
>>1: 0100 1001 1111 1111

LSB is ‘1’, >>1 (no. 6) & EOR with A001.
>>1: 0010 0100 1111 1111
A001: 1010 0000 0000 0001

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 38 Chapter 6: Communication Protocol Development

NEW CRC: 1000 0100 1111 1110

LSB is ‘0’, >>1 (no. 7).
>>1: 0100 0010 0111 1111

LSB is ‘1’, >>1 (no. 8) & EOR with A001.
>>1: 0010 0001 0011 1111
A001: 1010 0000 0000 0001
NEW CRC: 1000 0001 0011 1110 = 0x813E

Swap high & Low Bytes.
Cal CRC: 16001 decimal or 3E81 Hex

6.8.1 Comparison of Raw Calculation CRC & Lookup Table CRC

Theoretically the raw calculation CRC function produces it result slower than the lookup table CRC function,
but the lookup table will eat-up program memory (512 words). The objective of this simple experiment is to
prove that this is the case and to find out exactly the performance of each, this information will be used to
help decide, on which technique is best for this project. Simulations were carried out using Microchip
MPLAB.

Raw calculation CRC test program (crc.c): -
#include <16F877.h>

long int CRC16(char *message, int length);

main()
{
 long int crcANS;
 char test[5];

 test[0] = 5;
 test[1] = 4;
 test[2] = 3;
 test[3] = 2;
 test[4] = 1;

 crcANS = CRC16(test,5);

 Sleep();
}

long int CRC16(char *message,int length)
{
 /* 16-bit var's */
 long int CRC = 0xFFFF, /* CRC initialised with all '1's */
 i, /* Loop Control */
 temp; /* Temp for swap */

 while (length--) /* Loop until all bytes calculated*/
 {
 CRC=CRC^(*message++);

 for (i=0;i++<8;) /* Shift all 8-bits */
 {
 if (CRC & 0x0001) CRC = (CRC>>1) ^0xA001;
 else CRC>>=1;
 }
 }

 temp = CRC & 0xFF; /* Temp storage for swap */
 CRC = ((CRC>>8)&0xFF) + (temp<<8); /* Swap high and low byte */

 return (CRC); /* Return calculated 16-bit CRC */
}

Notice data types have been changed from that used in the PC version, e.g. char is 8-bit, short is 16-bit, int
is 32-bit and long is 64-bit on a PC, while char is 8-bit, short is 1-bit, int is 8-bit, and long is 16-bit on a PIC.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 39 Chapter 6: Communication Protocol Development

Abstract from crc.lst: -
MPASM

CCS PCM C Compiler, Version 2.707, 8851

 Filename: C:\WORK\COLIN\MPLAB\PROJECT\CRC\CRC.LST

 ROM used: 116 (1%)
 Largest free fragment is 2048
 RAM used: 12 (7%) at main() level
 22 (13%) worst case
 Stack: 1 locations
 ...
 ...

Test array setup containing 5 elements, the test array is then send to the CRC function which then calculates
the 16-bit CRC for the test array. Break point was inserted at the position of the Sleep () command, the
stopwatch windows was opened and reset. Program was then simulated (stopwatch starts) until the break
point is reached (stopwatch stops). Note the stopwatch time is the total time taken to execute all instructions
in the test program and not just the CRC16 function. This is fine as the two test programs are identical
except for the CRC16 function, therefore a good comparison can be made.

The screen dump of MPLAB after simulation (Raw Calculation): -

Figure 6.8.1a. Result of raw calculation CRC test

Total execution time for the raw calculation CRC test program was 1.64ms @4Mhz that’s 1638 Cycles.

Lookup table CRC test program (crcLT.c): -
#include <16F877.h>

/* Table of CRC values for high-order byte */
const char Table_CRC_Hi[256] = {

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 40 Chapter 6: Communication Protocol Development

 0X00, 0XC1, 0X81, 0X40, 0X01, 0XC0, 0X80, 0X41, 0X01, 0XC0, 0X80, 0X41, 0X00, 0XC1, 0X81,
 0X40, 0X01, 0XC0, 0X80, 0X41, 0X00, 0XC1, 0X81, 0X40, 0X00, 0XC1, 0X81, 0X40, 0X01, 0XC0,
 0X80, 0X41, 0X01, 0XC0, 0X80, 0X41, 0X00, 0XC1, 0X81, 0X40, 0X00, 0XC1, 0X81, 0X40, 0X01,
 0XC0, 0X80, 0X41, 0X00, 0XC1, 0X81, 0X40, 0X01, 0XC0, 0X80, 0X41, 0X01, 0XC0, 0X80, 0X41,
 0X00, 0XC1, 0X81, 0X40, 0X01, 0XC0, 0X80, 0X41, 0X00, 0XC1, 0X81, 0X40, 0X00, 0XC1, 0X81,
 0X40, 0X01, 0XC0, 0X80, 0X41, 0X00, 0XC1, 0X81, 0X40, 0X01, 0XC0, 0X80, 0X41, 0X01, 0XC0,
 0X80, 0X41, 0X00, 0XC1, 0X81, 0X40, 0X00, 0XC1, 0X81, 0X40, 0X01, 0XC0, 0X80, 0X41, 0X01,
 0XC0, 0X80, 0X41, 0X00, 0XC1, 0X81, 0X40, 0X01, 0XC0, 0X80, 0X41, 0X00, 0XC1, 0X81, 0X40,
 0X00, 0XC1, 0X81, 0X40, 0X01, 0XC0, 0X80, 0X41, 0X01, 0XC0, 0X80, 0X41, 0X00, 0XC1, 0X81,
 0X40, 0X00, 0XC1, 0X81, 0X40, 0X01, 0XC0, 0X80, 0X41, 0X00, 0XC1, 0X81, 0X40, 0X01, 0XC0,
 0X80, 0X41, 0X01, 0XC0, 0X80, 0X41, 0X00, 0XC1, 0X81, 0X40, 0X00, 0XC1, 0X81, 0X40, 0X01,
 0XC0, 0X80, 0X41, 0X01, 0XC0, 0X80, 0X41, 0X00, 0XC1, 0X81, 0X40, 0X01, 0XC0, 0X80, 0X41,
 0X00, 0XC1, 0X81, 0X40, 0X00, 0XC1, 0X81, 0X40, 0X01, 0XC0, 0X80, 0X41, 0X00, 0XC1, 0X81,
 0X40, 0X01, 0XC0, 0X80, 0X41, 0X01, 0XC0, 0X80, 0X41, 0X00, 0XC1, 0X81, 0X40, 0X01, 0XC0,
 0X80, 0X41, 0X00, 0XC1, 0X81, 0X40, 0X00, 0XC1, 0X81, 0X40, 0X01, 0XC0, 0X80, 0X41, 0X01,
 0XC0, 0X80, 0X41, 0X00, 0XC1, 0X81, 0X40, 0X00, 0XC1, 0X81, 0X40, 0X01, 0XC0, 0X80, 0X41,
 0X00, 0XC1, 0X81, 0X40, 0X01, 0XC0, 0X80, 0X41, 0X01, 0XC0, 0X80, 0X41, 0X00, 0XC1, 0X81,
 0X40 };

/* Table of CRC values for low-order byte */
const char Table_CRC_Lo[256] = {

 0X00, 0XC0, 0XC1, 0X01, 0XC3, 0X03, 0X02, 0XC2, 0XC6, 0X06, 0X07, 0XC7, 0X05, 0XC5, 0XC4,
 0X04, 0XCC, 0X0C, 0X0D, 0XCD, 0X0F, 0XCF, 0XCE, 0X0E, 0X0A, 0XCA, 0XCB, 0X0B, 0XC9, 0X09,
 0X08, 0XC8, 0XD8, 0X18, 0X19, 0XD9, 0X1B, 0XDB, 0XDA, 0X1A, 0X1E, 0XDE, 0XDF, 0X1F, 0XDD,
 0X1D, 0X1C, 0XDC, 0X14, 0XD4, 0XD5, 0X15, 0XD7, 0X17, 0X16, 0XD6, 0XD2, 0X12, 0X13, 0XD3,
 0X11, 0XD1, 0XD0, 0X10, 0XF0, 0X30, 0X31, 0XF1, 0X33, 0XF3, 0XF2, 0X32, 0X36, 0XF6, 0XF7,
 0X37, 0XF5, 0X35, 0X34, 0XF4, 0X3C, 0XFC, 0XFD, 0X3D, 0XFF, 0X3F, 0X3E, 0XFE, 0XFA, 0X3A,
 0X3B, 0XFB, 0X39, 0Xf9, 0XF8, 0X38, 0X28, 0XE8, 0XE9, 0X29, 0XEB, 0X2B, 0X2A, 0XEA, 0XEE,
 0X2E, 0XEF, 0XEF, 0XED, 0XED, 0XEC, 0X2C, 0XE4, 0X24, 0X25, 0XE5, 0X27, 0XE7, 0XE6, 0X26,
 0X22, 0XE2, 0XE3, 0X23, 0XE1, 0X21, 0X20, 0XE0, 0XA0, 0X60, 0X61, 0XA1, 0X63, 0XA3, 0XA2,
 0X62, 0X66, 0XA6, 0XA7, 0X67, 0XA5, 0X65, 0X64, 0XA4, 0X6C, 0XAC, 0XAD, 0X6D, 0XAF, 0X6F,
 0X6E, 0XAE, 0XAA, 0X6A, 0X6B, 0XAB, 0X69, 0XA9, 0XA8, 0X68, 0X78, 0XB8, 0XB9, 0X79, 0XBB,
 0X7B, 0X7A, 0XBA, 0XBE, 0X7E, 0X7F, 0XBF, 0X7D, 0XBD, 0XBC, 0X7C, 0XB4, 0X74, 0X75, 0XB5,
 0X77, 0XB7, 0XB6, 0X76, 0X72, 0XB2, 0XB3, 0X73, 0XB1, 0X71, 0X70, 0XB0, 0X50, 0X90, 0X91,
 0X51, 0X93, 0X53, 0X52, 0X92, 0X96, 0X56, 0X57, 0X97, 0X55, 0X95, 0X94, 0X54, 0X9C, 0X5C,
 0X5D, 0X9D, 0X5F, 0X9F, 0X9E, 0X5E, 0X5A, 0X9A, 0X9B, 0X5B, 0X99, 0X59, 0X58, 0X98, 0X88,
 0X48, 0X49, 0X89, 0X4B, 0X8B, 0X8A, 0X4A, 0X4E, 0X8E, 0X8F, 0X4F, 0X8D, 0X4D, 0X4C, 0X8C,
 0X44, 0X84, 0X85, 0X45, 0X87, 0X47, 0X46, 0X86, 0X82, 0X42, 0X43, 0X83, 0X41, 0X81, 0X80,
 0X40 };

long int CRC16(char *message, int length);

main()
{
 long int crcANS;
 char test[5];

 test[0] = 5;
 test[1] = 4;
 test[2] = 3;
 test[3] = 2;
 test[4] = 1;

 crcANS = CRC16(test,5);
 Sleep();
}

long int CRC16(char *message,int length)
{
 char CRC_Hi = 0xFF; /* High byte of CRC initialised */
 char CRC_Lo = 0xFF; /* Low byte of CRC initialised */
 long int CRC;
 int index=0; /* Will index into CRC lookup table */

 while (length--)
 {
 index = CRC_Hi ^ *message++; /* Calculate the CRC */
 CRC_Hi = CRC_Lo ^ Table_CRC_Hi[index];
 CRC_Lo = Table_CRC_Lo [index];
 }

 CRC = CRC_Hi;
 CRC = (CRC<<8) | CRC_Lo;
 return (CRC);
}

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 41 Chapter 6: Communication Protocol Development

Abstract from crcLT.lst: -
MPASM

CCS PCM C Compiler, Version 2.707, 8851

 Filename: C:\WORK\COLIN\MPLAB\PROJECT\CRC\CRCLT.LST

 ROM used: 600 (7%)
 Largest free fragment is 2048
 RAM used: 12 (7%) at main() level
 21 (12%) worst case
 Stack: 2 locations

Figure 6.8.1b. Result of lookup table CRC test

Total execution time for the lookup table CRC test program was 286.00µS @4Mhz that’s 286 Cycles.

Clearly the lookup table CRC (286µs) runs over 5 times (5.7) faster than the raw calculation CRC (1.64ms)
for this example. But unfortunately it is also clear that the lookup table CRC used 600 words of program
memory (7% of total) and the raw calculation CRC only used 116 words (1% of total) hence the CRC lookup
table uses 6 times more program memory than the raw calculation version. Obviously the reason for this is
because the lookup table CRC uses 512 words of program memory for its lookup table.

Evidently if speed is important and there is plenty of program memory available, the lookup table CRC is the
one to use. But if program memory is at a premium and speed is not important the raw calculation CRC is
the one to use.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 42 Chapter 6: Communication Protocol Development

6.9. Frame Structure: Control Protocol

Figure 6.9a shows the frame structure for the control protocol, each field is 1 byte
in size. Since this control protocol is used to directly control the PIC, it is important
that the PIC is able to check the frame before processing the information (e.g. the
PIC should ignore random noise or corrupt frames). Hence a 16-bit CRC (same as
used for storage mode) is used to make sure that the frame is valid before the PIC
implements the control message.

The CRC takes some time to calculate hence there are crude checks that are
carried out first before a CRC is calculated, as false control messages (random
noise) would severely affect system performance. Hence the PIC waits for the
SOF frame and ignores all other characters until a frame is detected, once a frame
is detected it then waits for 5 more bytes. If these 5 bytes are not received within a
certain time (e.g. max of 1.5ms gap between bytes) the PIC will timeout and return
to what it was doing before the message was detected. If 5 bytes are received the
frame is CRC check and if valid the message is decoded and implemented. Note it
is possible that random noise could generate a SOF (e.g. 0x01) and 5 further
bytes, but the CRC will make sure that the false frame is not implemented.

M = 0: Real-time Mode
M = 1: Storage Mode

M R1 R0 I C4 C3 C2 C1
b7 b6 b5 b4 b3 b2 b1 b0

SETUP_REG1

R1 R0 RATE Multiplier
0 0
0 1
1 0
1 1

X1, e.g. 1 to 255 Hz
X10, e.g. 10 to 2550 Hz
X100, e.g. 100 to 25,500 Hz
X1000, e.g. 1 kHz to 255 kHz

I = 0: Sample when PIC is awake
I = 1: Sample when PIC is sleeping

Cn = 0: Channel n disabled
Cn = 1: Channel n enabled

Figure 6.9b. SETUP_REG1

SETUP_REG1 is shown in figure 6.9b, this register
specifies real-time/storage mode, sample rate
multiplier, sample awake/sleeping and which
channels are enabled / disabled. Note sampling
when the PIC is sleeping is only an option for very
slow sample rates as it takes a long time for the PIC
to return to full speed after waking up. Recall that
sampling when the PIC is sleeping results in more
accurate ADC readings (less noise)

SETUP_REG2 is shown in figure 6.9c, this register
specifies the number of samples to be stored into
RAM (storage mode only), chop or alternate mode
and the voltage input range (change gain of op-amps). Notice that b7 is marked as ‘R’, this means that the
bit is not used and is reserved for future use.

Field RATE in figure 6.9a specifies the required sample rate, this figure is multiplied by the RATE multiplier
that is specified in SETIP_REG1 (figure 6.9b). For example if RATE is 100 and RATE multiplier is 10 (R1 =
0, R0 = 1) the specified sample rate is 100 x 10 = 1000 Hz.

SOF (Start of
Frame)

SETUP_REG1

SETUP_REG2

RATE

CRC low byte

CRC high byte

Figure 6.9a. Frame
structure: control protocol

R V3 V2 V1 S S2 S1 S0
b7 b6 b5 b4 b3 b2 b1 b0

SETUP_REG2
S2 S1 S0 Number of Samples
0 0 0

100
0 1 0
0 1 1
1 0 0

1 0 1
1 1 0
1 1 1

100
250
500
750
1000
2000
3000
4000

R: Reserved for future use

* Storage mode only, no effect in real-time mode.

S = 0: Chop Mode
S = 1: Alternate Mode
V2 V1 V0 Voltage Input Range
0 0 0

100
0 1 0
0 1 1
1 0 0

1 0 1
1 1 0
1 1 1

-1 to +1V
-2.5 to + 2.5V

-5 to +5V
-10 to +10V
-25 to +25V
-50 to +50V

-100 to +100V
-250 to +250V

Figure 6.9c. SETUP_REG2

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 43 Chapter 7: The Scope Program

7.0. THE SCOPE PROGRAM

This Windows based program, graphically displays waveforms without flicker, it has a good user interface
that is easy to use, and directly communicates with the PIC. RS232 transport medium has been selected,
this medium is easy to program, reliable and every PC comes with at least one RS232 port. But it is slow and
will limit the maximum sampling rate in the real-time mode. Therefore it is important that the application is
design to be flexible, as its probable that the program will be modified some time in the future for use with
another medium (e.g. Parallel, USB, etc…).

The development of this program is not fully completed, but has progressed sufficiently to display real-time
waveforms using various triggering methods, selectable time-base, selectable voltage scales, etc... Storage
mode operation and direct control of the PIC has not been implemented yet, as well as some advantaged
features like: streaming real-time data to disk, automatic frequency calculation, and the addition of user
configurable virtual channels (e.g. VC1 = CH1 + CH2, VC2 = CH1 * CH2, etc…).

Please note that the full source code is contained on the attached CD ROM, as a full printout would require
hundreds of pages. Allow important parts of the source code have been included in this chapter, along with
a brief English description on how the code works.

Figure 7.0a. Screen dump of scope.exe (V1.041a, 19/04/2002)

Notice that the display is split into two (see figure 7.0a), the left half displays the waveform and the right half
contain the controls. The attached control dialog can be hidden; by right clicking on the waveform display
and selecting [Sidebar] or by using the [View] menu (see Figure 7.0c).

At present four channels has been implemented. Data can be received in the
real-time mode using the RS232 serial port. The real-time mode
communications were first tested using the PIC simulator program, where
sinewaves, squarewaves and random waves at variable frequencies and
amplitudes were successfully sent to the scope program which correctly
displayed the waveforms. (Desktop PC running scope.exe linked to Laptop
running sim.exe via RS232 Null mode cable). Once the program was working
on the simulator it was tested using a PIC sampling real waveforms, the scope
program successfully displayed these waveform correctly, see chapter 11
(testing) for test results at various stages of development.

Figure 7.0b. Right click menu

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 44 Chapter 7: The Scope Program

Figure 7.0c. Screen dump of scope.exe with slide bar hidden

Figure 7.0d. Screen dump demonstrating auto-resize

Notice the small red triangle at the left of the graphical display, this triangle shows the zero point of the
displayed waveform. The user using the mouse can click on the triangle and drag it to a new position, hence
changing the zero point (see figure 7.0e). Notice if the waveform is too high or too low for the display the
top/bottom of the waveform will be cut off.

Figure 7.0e. Three screen dumps of scope.exe demonstrating the change of zero point

Notice the small red triangle at the top of the graphical display, this triangle shows the offset position of the
displayed waveform (middle of the screen represents zero offset). The user using the mouse can click on the
triangle and drag it to a new position, hence changing the waveform offset (see figure 7.0f). Notice that if the
waveform is offset to the right, it is possible to see data before the waveform triggered. This feature is mainly
useful for helping in the measurement of waveform period time (use in calculation of frequency) where the
waveform can be scrolled so that a peak is directly in line with a division line, making actuate measurement
easy.

Figure 7.0f. Three screen dumps of scope.exe demonstrating the change of waveform offset

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 45 Chapter 7: The Scope Program

Also notice that the waveform triggers on a low to high edge (software trigger), this is user adjustable in the
[Trig] tab of the controls dialog (see figure 7.0g). Notice the user has many options, level triggering means
that a trigger occurs when the waveform rises from below to above the user configurable offset level for
positive edged triggering and the waveform falls from above to below the user configurable offset level for
negative edged triggering. Edge triggering means that the program detects the positive or negative edges of
any waveform and at any voltage level, this guarantees that the waveform triggers without the need for user
intervention, unlike level mode were the waveform must pass through the selected offset level.

Figure 7.0g. Six screen dumps of scope.exe demonstrating different trigger settings

The user can select which channel to trigger off: CH1, CH2, CH3, or CH4. Notice that
there is another option called “IND.”, this means independent triggering, where each
channel has its one unique trigger point. It is not sure how useful this feature is as
generally for dual and quad trace operation waveforms are normally related is some
way and timing analysis is normally required. It was decided to include this function
for increased program flexibility as this allows for four unrelated waveforms to be
monitored simultaneously on the same scope display. Besides it normal practice for

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 46 Chapter 7: The Scope Program

commercial products to have useless features (Bells and Whistles) which will probably never be used in
practice, but helps give their product an edge over the competition.

The [Disp] tab of the controls dialog can enable/disable channels simply by clicking the tick box beside each
channel, change scope time-base and channel voltage scales (see figure 7.0h). Notice in figure 7.0h there
are two enabled channels both of which have zero offset, hence the offset triangle for both channels are in
exactly the same place (this is clear due to the colour of the triangle). This is not a problem (e.g. offset of
both channels does not change if user clicks on the offset triangle) as channel 1 has absolute priority, hence
only channel 1 offset will change separating the channel offsets. Note channel 2 has priority over channel 3
and channel 3 has priority over channel 4. A quick way of moving channel 4 offset for example, if all four
channel are enabled and the offset of each is in the same place, is to temporarily disabled channels 1 to 3,
move channel 4 offset and enable channels 1 to 3 again.

Figure 7.0h. Two screen dumps of scope.exe demonstrating different display settings

The [Sample] tab of the controls dialog sets the sample rate, mode,
and input range of the scope.

Note at present the ‘control’ communication protocol has not been
implemented, hence the selected sample rate will not actually change
the rate that the PIC is sampling. But it is important that the correct
sample rate is selected as this is used in the calculation of the time-
base, else the time-base selected in the [Disp] tab will be incorrect.

Note the input range is selected here, it was expected that this
information is sent to the PIC to adjust the gain of the op-amps, but
this has not been implement yet. Allow it is important that the correct
input range is selected as this changes the binary representation of
voltage (e.g. for a range of -2.5 to +2.5V, 0V = -2.5, 512 = 0V, 1024 =
2.5V and for a range of -5 to +5V, -5V = 0, 0V = 512, 5V = 1024).

Sampling mode is also selected here: Real-time scroll mode means
that the waveform is sampled using the real-time mode, but stored

onto the internal channel arrays in such away that the waveform appears to scroll across the screen (low
frequencies only, e.g. useful for ECG monitor). Real-time buffered mode means that data is buffered before
copying to the internal channels arrays and is triggered so that the waveform appears to be stable on the
display (e.g. useful for periodical waveforms). Storage mode has not been implemented yet, recall that the
PIC samples to RAM and then transmits the data to the PC in one large block with added CRC.

The grid configuration dialog box is shown in figure 7.0j; X specifies the number of horizontal squares (1 to
99), Y specifies the number of vertical squares (1 to 99). Note each square has 10 points; hence a maximum
resolution of 999 by 999 is possible (assuming Window’s desktop resolution is larger than this). The default
grid resolution is 10 x 8 (100 x 80), but 20 x 16 (200 x 160) is probably better suited for quad channel
operation. Note the higher the grid resolution the more processor hungry the scope program becomes,
hence extremely high resolutions are only recommend for high speed modern computers (e.g. 500MHz or
above).

Figure 7.0i. [Sample] Tab of controls dialog

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 47 Chapter 7: The Scope Program

The refresh rate specifies the time in milliseconds between
screen refreshes. For example 200 milliseconds is the default,
that’s a refresh rate of 1/0.2 = 5 Hz. Some traditional analogue
engineers who are use working with CRT displays will think that
this refresh rate is too low and will result in the screen flickering.
This is not the case, unlike CRT displays, the screen holds the
current display contains between refreshes, and only redraws
the changes made to the waveform when the screen is
refreshed (perhaps this should have been called the ‘update
rate’ rather than the ‘refresh rate’). The actual refresh rate is that
specified by Windows, which for a modern PC is above 100Hz
for a CRT display and 50/60Hz for a TFT display.

Note the lower this refresh rate (update rate) the more processor
hungry the scope program becomes. A 200 milliseconds update
rate will require a PC running at a minimum of 200MHz and at
50 milliseconds update rate will probably require a PC running at
least 800MHz to run smoothly, depending on the selected grid
resolution and type of video card in the system (hardware
acceleration).

The scope program was designed so that multiple scope windows can be displayed; each one with its own
selected channels enabled, impendent triggering, time-bases and scales. But it was not sure how useful this
feature might be and it may have caused problems during the development process; hence it was
considered this feature may be dropped on the finished application. Fortunately this did not cause as many
problems as first expected and it was decided to keep this feature, as it may have some use for specialist
applications and it’s another one of those features (“Bells and Whistles”) that sets this project apart from
other similar products on the market.

Figure 7.0k. Screen dump scope.exe demonstrating multiple scope views (Window’s screen resolution was 1600 x 1200dpi)

Figure 7.0j. Grid configuration dialog box

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 48 Chapter 7: The Scope Program

Figure 7.0k demonstrates the multiple windows feature, there are 5 views: The top left display, shows all four
channels triggering on CH1 at a time-base of 50ms/DIV. The middle left display, shows CH1, with a time-
base of 10ms/DIV. The bottom left display, shows CH4, with a 10ms/DIV time-base. The top right display
shows CH1 and CH3 at a time-base of 0.1s/DIV. The bottom right display shows all four channels at an
extremely high resolution at a time-base of 5ms/DIV and triggering off CH2. The only problem is that all
scope windows have the same name “Untilled”, clearly this needs to be improved (e.g. “Untilled1”,
“Untilled2”, etc…) as this is confusing to user, the reason for this is because the default automatic naming of
the windows was overwritten so that filenames could be placed on the title bar. There is no limit on how
many windows that can be opened simultaneously, perhaps until the computer runs out of memory, which on
a modern PC could be 1000s of windows.

The scope program is also capable of exporting the scope display to the windows clipboard in the form of a
bitmap and exporting the scope display to a bitmap file (*.bmp). The scope program also has its own file
format (*.sdf) for saving and opening waveform data and scope settings. Note functionally for printing the
scope display directly from the scope program is not fully complete, some additional work is required in this
area.

Figure 7.0l. Screen dump of about dialog

Figure 7.0m. Screen dump of about configuration

The scope program is capable of generating
software waveforms (see figure 7.0n), this was
used to test the graphical display and triggering
methods before the simulation program and PIC
hardware was ready for testing. Note this menu
will be removed in the final released version.

Another view exists (figure 7.0o), but has not been
implement. It was expected that the user would
enter a file name and press [Rec] to stream real-
time data to disk and press [Play] to play back
recorded real-time data.

When in pause mode the scroll bar labelled
‘position’ would have been used to manually scroll
through the record data.

The tick boxes for channels 1 to 4 were to be used
for telling the PIC which channel to sample. The
reason why the enable / disable channels (in
[Disp] tab) could not be used for this task is
because multiple scope windows can be opened
with different channels enable / disable hence a
global set of enable / disable channels is required
to specify which channels to sample.

Figure 7.0n. Screen dump of debug menu

Figure 7.0o. Screen dump of ASCP

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 49 Chapter 7: The Scope Program

7.1. Data Flow Diagram

CScopeDoc

Output / Input

*.sdf file *.bmp file Windows
Clipboard Printer RS232

Program

CAboutDlg
(About Dialog)

CChildFrame
(Scope Window)

CConfigPage1
(Communication)

CGridConfigDlg
(Grid Configuration)

CMainFrame
(Main Window)

CScopeApp

CScopeDoc

CScopeView (Graphical Display)

CControlsView
(Control Sidebar)

CControlsP1
(Sample Tab)

CControlsP2
(Disp Tab)

CControlsP3
(Trig Tab)

Windows
Registery

5

4

3

1

CConfigurationDlg

6

7 8

10

2

9

7.1.1. Data Flow Paths

The “Data Flow Diagram” shows how data flows between classes, but it does not give any details on the type
of data being transferred. The following is detailed information about data flow in all numbered paths shown
on the “Data Flow Diagram”: -

Path 1: CControlsP2 CScopeDoc

int m_TimeBaseSelection
int m_nCH3_VOLTS

int m_nCH1_VOLTS
int m_nCH4_VOLTS

int m_nCH2_VOLTS

Path 2: CControlsP3 CScopeDoc

int m_nTrigger
int m_nTriggerFormat

int m_nTriggerOffsetLevel int m_nTriggerType

Path 3: CMainFrame CScopeApp

int m_nSampleMode
int m_nCH1Volt[10004]
int m_nCH4Volt[10004]

int m_nBufferSize
int m_nCH2Volt[10004]
int m_nInputRange

int m_nPOS
int m_nCH3Volt[10004]
int m_SampleRateSelection

Path 4: CScopeView CGridConfigDlg

int x
COLORREF m_ColorGridBackGround;

int y
m_nRefreshRate

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 50 Chapter 7: The Scope Program

Path 5: ChildFrame CScopeView

m_bShowPanel

Path 6: CGridConfigDlg CScopeApp

m_nBufferSize

Path 7: CScopeView CScopeDoc

int m_TimeBaseSelection int
m_nCH3_VOLTS

int m_nCH1_VOLTS
int m_nCH4_VOLTS

int m_nCH2_VOLTS
int m_nTriggerType

int m_nTrigger
bool m_bCH1_ENABLE
bool m_bCH4_ENABLE

int m_nTriggerOffsetLevel
bool m_bCH2_ENABLE

int m_nTriggerFormat
bool m_bCH3_ENABLE

Path 8: CScopeView CScopeApp

int m_nCH1Volt[10004]
int m_nCH4Volt[10004]

int m_nCH2Volt[10004]

int m_nCH3Volt[10004]

Path 9: CScopeDoc *.sdf File

pApp-> m_nCH1Volt[10004]
pApp->m_nCH4Volt[10004]
SView->m_nCH1POS
SView->m_nCH4POS
SView->m_nCH3_Offset
pApp->m_nSampleMode
bool m_bCH2_ENABLE
int m_TimeBaseSelection
int m_nCH3_VOLTS
int m_nTriggerType

pApp->m_nCH2Volt[10004]
SView->x
SView->m_nCH2POS
SView->m_nCH1_Offset
SView->m_nCH4_Offset
pApp->m_SampleRateSelection
bool m_bCH3_ENABLE
int m_nCH1_VOLTS
int m_nCH4_VOLTS
SView->m_ColorGridBackGround

pApp->m_nCH3Volt[10004]
SView->y
SView->m_nCH3POS
SView->m_nCH2_Offset
pApp->m_nInputRange
bool m_bCH1_ENABLE
bool m_bCH4_ENABLE
int m_nCH2_VOLTS
int m_nTrigger
SView->m_nRefreshRate

Path 10: CScopeDoc CScopeApp

int m_nCH1Volt[10004]
int m_nCH4Volt[10004]
int m_SampleRateSelection

int m_nCH2Volt[10004]
int m_nInputRange

int m_nCH3Volt[10004]
int m_nSampleMode

7.2. The Grid

The grid design is shown in figure 7.2a, there are
10 vertical and 10 horizontal points per square.
The standard resolution has 10 horizontal squares
and 8 vertical squares.

The grid is dynamic, flexible and is one of the key
aspects of the scope program.

If the scope window is resized, the grid will
automatically resize. The grid resolution is also
user configurable; allow the resolution of each
square is fixed the number of vertical and
horizontal squares are user configurable.

There are two important arrays that must be filled
after the scope window has been resized or the
grid resolution has been changed (m_nGridY &
m_nGridX), these arrays are used to access
individual grid points.

For example the grid layout shown in figure 7.2a, has 100 horizontal (X) points and 80 vertical (Y) points.
The scope window size is retrieved from the system and stored in variables m_nClientWidth and

80

100

10

10

Figure 7.2a. Grid layout

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 51 Chapter 7: The Scope Program

m_nClientHeight. m_nClientWidth is divided by 100 (X) and m_nClientHeight is divided by 80 (Y), this gives
the gap in pixels between each grid point (note variables have been converted to floating point numbers for
increased accuracy). The array m_nGridX[n] is filled by looping from n = 1 to n = 100 (X) and multiplying n by
the gap between the horizontal grid points (convert back to data-type int after multiplication has taken place).
The array m_nGridY[n] is filled by looping from n = 1 to n = 80 (Y) and multiplying n by the gap between the
vertical grid points (convert back to data-type int after multiplication has taken place). Note there is also a
configurable boarder offset (nBD) that must be included in the calculation.

The two arrays can now be used as a coordinate system to access any part of the grid, for example the
bottom left edge of the grid is at coordinate m_nGridX[1] by m_nGridY[1] and the top right edge of the grid is
at coordinate m_nGridX[100] by m_nGridY[80]. Drawing of the grid and waveform traces is achieved using
this coordinate system, the main advantage of this is that it does not matter what size the scope display is,
the only thing that needs to change is the values contain within the coordinate arrays (extremely flexible).

Function PerpareGrid() fills the grid coordinate arrays: -
void CScopeView::PrepareGrid()
{
 double fW, fH;
 int n;

 int nBD = 10; /* Border */

 fW = ((double)(m_nClientWidth-(nBD*2)))/((double)x);
 fH = ((double)(m_nClientHeight-(nBD*2)))/((double)y);

 m_nGridX[0] = nBD;
 m_nGridY[0] = nBD;

 for (n = 1; n <=x;n++)
 {
 m_nGridX[n] = ((int)(fW * n))+nBD;

 }

 for (n = 1; n <=y;n++)
 {
 m_nGridY[n] = ((int)(fH * n))+nBD;
 }
}

Function OnDrawGrid() draws the grid using the grid coordinate system: -
void CScopeView::OnDrawGrid()
{
 /* --
 | Fuction: void CScopeView::OnDrawGrid() |
 | Description: Draws grid in memory then updates display. |
 | Return: Void. |
 | Date: 09/12/2001 |
 | Verison: 1.4 |
 | By: Colin McCord |
 --- */
 int n,i;
 CClientDC dc(this);
 CBitmap m_bitmapGrid, *m_bitmapOldGrid = NULL;

 // if we don't have one yet, set up a memory dc for the grid
 if (m_dcGrid.GetSafeHdc() == NULL) m_dcGrid.CreateCompatibleDC(&dc);

 m_bitmapGrid.CreateCompatibleBitmap(&dc, m_nClientWidth, m_nClientHeight);
 m_bitmapOldGrid = m_dcGrid.SelectObject(&m_bitmapGrid);
 m_bitmapOldGrid->DeleteObject(); // Make sure there is not a memory leak

 /* If the pen is not setup, do not continue */
 if(penGrid == NULL) return;

 /* Select the grid pen for use with the DC */
 CPen* pOldPen = m_dcGrid.SelectObject(penGrid);

 CBrush Brush;
 Brush.CreateSolidBrush(m_ColorGridBackGround); // Grid Back Colour

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 52 Chapter 7: The Scope Program

 m_dcGrid.FillRect(&m_ClientRect,&Brush);

 /* Draw Border */
 m_dcGrid.MoveTo(m_nGridX[0],m_nGridY[0]);
 m_dcGrid.LineTo(m_nGridX[x],m_nGridY[0]);
 m_dcGrid.LineTo(m_nGridX[x],m_nGridY[y]);
 m_dcGrid.LineTo(m_nGridX[0],m_nGridY[y]);
 m_dcGrid.LineTo(m_nGridX[0],m_nGridY[0]);

 /* Draw V Gray Lines */
 for (n=10; n < x;n=n+10)
 {
 for(i = m_nGridY[0]; i<m_nGridY[y];i++) m_dcGrid.SetPixel(m_nGridX[n],i,GRAY);
 }

 /* Draw H grey line */
 for (n=10; n < y; n=n+10)
 {
 for(i = m_nGridX[0]; i<m_nGridX[x];i++) m_dcGrid.SetPixel(i,m_nGridY[n],GRAY);
 }

 /* Draw Centre Axis */
 m_dcGrid.MoveTo(m_nGridX[x/2],m_nGridY[0]);
 m_dcGrid.LineTo(m_nGridX[x/2],m_nGridY[y]);
 m_dcGrid.MoveTo(m_nGridX[0],m_nGridY[y/2]);
 m_dcGrid.LineTo(m_nGridX[x],m_nGridY[y/2]);

 /* Draw V Ticks on H Centre */
 for (n=2; n < x; n=n+2)
 {
 m_dcGrid.MoveTo(m_nGridX[n],m_nGridY[(y/2)-1]);
 m_dcGrid.LineTo(m_nGridX[n],m_nGridY[(y/2)]);
 }

 /* Draw H Ticks on V Center */
 for (n=2; n < y; n=n+2)
 {
 m_dcGrid.MoveTo(m_nGridX[(x/2)],m_nGridY[n]);
 m_dcGrid.LineTo(m_nGridX[(x/2)+1],m_nGridY[n]);
 }

 m_dcGrid.SelectObject(pOldPen);

 /* Update Display */
 Invalidate(TRUE);
}

7.3. The Traces

The drawing of the traces looks extremely complex when looking at the big picture as channel offsets, zero
positions, time-base, sample rate, triggering method, channel disabled/enabled and voltage scales all affect
how the scope traces are drawn. Allow the basic principles behind the drawing of the waveforms are simple,
so let’s try and describe how the waveform traces are drawn step-by-step.

There are four large arrays (one for each channel) in class CScopeApp: -
int m_nCH1Volt[10000]; // Voltage * 1000
int m_nCH2Volt[10000]; // Voltage * 1000
int m_nCH3Volt[10000]; // Voltage * 1000
int m_nCH4Volt[10000]; // Voltage * 1000

These arrays are global and can be accessed from any part of the program. Sampled readings for each
channel are stored in these arrays; filled by the communication protocol, note the method used to fill these
arrays is depended on which mode is selected e.g. for scroll mode every location is moved one placed to the
left and the new reading is placed at the end of the array. Note the 10-bit ADC readings have already been
converted into voltage depending on the selected input voltage range and multiplied by 1000 to increase
resolution without having to use floating point numbers (e.g. for range -10 to 10V: -10V = -10000, 0V = 0 and
10V = 10000).

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 53 Chapter 7: The Scope Program

The basic principle is that the program continuously scans through these arrays updating the display at a
user configurable refresh rate.

Software interrupt timer for redrawing traces: -
void CScopeView::OnTimer(UINT nIDEvent)
{
 if (nIDEvent == nTimerRefresh)
 {
 KillTimer(nTimerRefresh);

 Trigger(); /** Cal Trigger Points */

 /* Set scales */
 m_nVPD_CH1 = pDoc->m_nCH1_VOLTS;
 m_nVPD_CH2 = pDoc->m_nCH2_VOLTS;
 m_nVPD_CH3 = pDoc->m_nCH3_VOLTS;
 m_nVPD_CH4 = pDoc->m_nCH4_VOLTS;

 /** Draw Traces */
 OnDrawCH1();
 OnDrawCH2();
 OnDrawCH3();
 OnDrawCH4();

 /* Enable Timer again */
 SetTimer(nTimerRefresh,m_nRefreshRate,NULL);
 }
 CView::OnTimer(nIDEvent);
}

The first thing to note is that the timer is stopped while executing the OnTimer() function and started again
once the redraw is finished. The reason for this is to reduce the chance of the program locking up because of
accumulating delays caused by the refresh rate selected by the user being shorter than the time required to
redraw the display. In reality the true refresh rate is not the rate specified by the user, but the time taken to
redraw the display plus the rate specified by the user, this insures that the program does not lockup
especially when running on slow PCs (<200 MHz).

Function trigger() is called to find the trigger point for all channels, then the channel voltages scales are set
to that selected by the combo box, then the channel traces are drawn.

This function calculates the trigger point: -
void CScopeView::Trigger()
{
 int a = pDoc->m_nTriggerOffsetLevel;

 /* CH1 Tigger */
 for(int i = 1;i <= 1000;i++)
 {
 if (pDoc->m_nTriggerType == 0)
 {
 if(pDoc->m_nTriggerFormat == 1) a = pApp->m_nCH1Volt[i-1]; // Edge Triggered

 /* trigger POS to NEG */
 if (pApp->m_nCH1Volt[i] >= a && pApp->m_nCH1Volt[i+1] < a)
 {
 m_nTriggerCH1 = i;

 /* Disable trigger for scroll mode */
 if (pApp->m_nSampleMode == 0) m_nTriggerCH1 = 0; // disbale trigger

 i = 1001;
 break;
 }

 }
 else
 {
 if(pDoc->m_nTriggerFormat == 1) a = pApp->m_nCH1Volt[i-1]; // Edge Triggered

 /* trigger NEG to POS */
 if (pApp->m_nCH1Volt[i] <= a && pApp->m_nCH1Volt[i+1] > a)
 {

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 54 Chapter 7: The Scope Program

 m_nTriggerCH1 = i;

 /* Disable trigger for scroll mode */
 if (pApp->m_nSampleMode == 0) m_nTriggerCH1 = 0; // disbale trigger

 i = 1001;
 break;
 }
 }

 }

 ...
 NOTE channel 2-4 trigger point calculated the same way as channel 1
 ...

 switch (pDoc->m_nTrigger)
 {
 case 0: // trig on CH1
 m_nTriggerCH2 = m_nTriggerCH1;
 m_nTriggerCH3 = m_nTriggerCH1;
 m_nTriggerCH4 = m_nTriggerCH1;
 break;
 case 1: // trig on CH2
 m_nTriggerCH1 = m_nTriggerCH2;
 m_nTriggerCH3 = m_nTriggerCH2;
 m_nTriggerCH4 = m_nTriggerCH2;
 break;
 case 2: // trig on CH3
 m_nTriggerCH1 = m_nTriggerCH3;
 m_nTriggerCH2 = m_nTriggerCH3;
 m_nTriggerCH4 = m_nTriggerCH3;
 break;
 case 3: // trig on CH4
 m_nTriggerCH1 = m_nTriggerCH4;
 m_nTriggerCH2 = m_nTriggerCH4;
 m_nTriggerCH3 = m_nTriggerCH4;
 break;
 }
}

Detection of the trigger point is simple; basically the program scans the array and looks for a high-to-low or a
low-to-high edge. The location of which is stored (m_nTriggerCH1..4), this producer is carried out for all four
channels. If a specific channel is selected as the trigger, the trigger points of the other channels are made
equal to the trigger point of the selected channel.

A memory DCs and pen is required for each trace: -
CPen* penCH1;
CDC m_dcCH1;

CDC m_dcCH2;
CPen* penCH2;

CDC m_dcCH3;
CPen* penCH3;

CDC m_dcCH4;
CPen* penCH4;

Variables are initialised in the CScopeView constructor: -
CScopeView::CScopeView()
{
 m_bitmapCH1 = NULL;

m_bitmapCH2 = NULL;
m_bitmapCH3 = NULL;
m_bitmapCH4 = NULL;

 m_nClientHeight= 0;
 m_nClientWidth = 0;
 x = 100;
 y = 80;

 /** Zero Point Positions **/

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 55 Chapter 7: The Scope Program

 m_nCH1POS = 40;
 m_nCH2POS = 20;
 m_nCH3POS = 50;
 m_nCH4POS = 60;

 m_nCH1_Offset = 0;
 m_nCH2_Offset = 0;
 m_nCH3_Offset = 0;
 m_nCH4_Offset = 0;

 m_nTriggerCH1 = 0;
 m_nVPD_CH1 = 100; /* 1 voltage per division */
 m_nVPD_CH2 = 100;
 m_nVPD_CH3 = 100;
 m_nVPD_CH4 = 100;

 penGrid =NULL;
 penCH1 = NULL;
 penCH2 = NULL;
 penCH3 = NULL;
 penCH4 = NULL;

 m_bChangeZeroCH1 = false;
 m_bChangeZeroCH2 = false;
 m_bChangeZeroCH3 = false;
 m_bChangeZeroCH4 = false;

 m_bChangeOffsetCH1 = false;

 m_nRefreshRate = 200; // Default refresh rate 200ms
}

Refresh timer, trace colours, grid colour and the grid background colour are setup here: -
void CScopeView::OnInitialUpdate()
{
 CView::OnInitialUpdate();
 pDoc =(CScopeDoc*)m_pDocument;
 pApp = (CScopeApp*)AfxGetApp();

 SetTimer(nTimerRefresh,m_nRefreshRate,NULL);

 penGrid = new(CPen);
 penGrid->CreatePen(PS_SOLID,1,WHITE);
 penCH1 = new(CPen);
 penCH1->CreatePen(PS_SOLID,2,LIGHTRED);
 penCH2 = new(CPen);
 penCH2->CreatePen(PS_SOLID,2,LIGHTGREEN);
 penCH3 = new(CPen);
 penCH3->CreatePen(PS_SOLID,2,LIGHTBLUE);
 penCH4 = new(CPen);
 penCH4->CreatePen(PS_SOLID,2,YELLOW);

 m_ColorGridBackGround = BLACK;

 OnDrawGrid();
}

This function is called when a channel voltage scale combo box is changed: -
void CControlsP2::OnChange()
{
 CString temp;

 /** Setup Channel 1 Volts per Dev **/
 GetDlgItemText(IDC_CH1_VOLT, temp);
 if (temp == _T("10mV/DIV")) pDoc->m_nCH1_VOLTS = 1;
 if (temp == _T("20mV/DIV")) pDoc->m_nCH1_VOLTS = 2;
 if (temp == _T("50mV/DIV")) pDoc->m_nCH1_VOLTS = 5;
 if (temp == _T(".1V/DIV")) pDoc->m_nCH1_VOLTS = 10;
 if (temp == _T(".2V/DIV")) pDoc->m_nCH1_VOLTS = 20;
 if (temp == _T(".5V/DIV")) pDoc->m_nCH1_VOLTS = 50;
 if (temp == _T("1V/DIV")) pDoc->m_nCH1_VOLTS = 100;
 if (temp == _T("2V/DIV")) pDoc->m_nCH1_VOLTS = 200;
 if (temp == _T("5V/DIV")) pDoc->m_nCH1_VOLTS = 500;
 if (temp == _T("10V/DIV")) pDoc->m_nCH1_VOLTS = 1000;
 if (temp == _T("20V/DIV")) pDoc->m_nCH1_VOLTS = 2000;

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 56 Chapter 7: The Scope Program

 if (temp == _T("50V/DIV")) pDoc->m_nCH1_VOLTS = 5000;

 ...
 Channel 2-4 done in exactly the same way as channel 1
 ...
}

This function prepares the traces: -
void CScopeView::PrepareTraces()
{
/* ---
 | Fuction: void CScopeView::PrepareTraces() |
 | Description: Creates trace memory DCs and bitmaps. |
 | Return: Void. |
 | Date: 15/03/2002 |
 | Verison: 1.1 |
 | By: Colin McCord |
 --- */

 CClientDC dc(this); // Screen DC.

 /*** Channel 1 ****/
 CBitmap *m_bitmapOldCH1 = NULL; // Pointer to old display bitmap

 m_bitmapCH1 = new CBitmap; // Create a new bitmap

 /** Create new bitmap and delete old, (Channel 1) **/
 if (m_dcCH1.GetSafeHdc() == NULL) m_dcCH1.CreateCompatibleDC(&dc);

 m_bitmapCH1->CreateCompatibleBitmap(&dc, m_nClientWidth, m_nClientHeight);
 m_bitmapOldCH1 = m_dcCH1.SelectObject(m_bitmapCH1);
 m_bitmapOldCH1->DeleteObject(); // Make Sure there is not a memory leak

 ...
 Channels 2-4 prepared in exactly the same way as channel 1
 ...

}

This function draws Channel 1: -
void CScopeView::OnDrawCH1()
{
/* ---
 | Fuction: void CScopeView::OnDrawCH1() |
 | Description: Draws CH1 waveform, in memory then updates |
 | display. |
 | Return: Void. |
 | Date: 04/04/2002 |
 | Verison: 1.9 |
 | By: Colin McCord |
 --- */

 CClientDC dc(this);
 int i,n,y1,y2,a=1,m_Skip, m_MUX;
 CBrush Brush;
 Brush.CreateSolidBrush(BLACK); // Set brush colour to black
 CRect CRectTEMP;

 // Channel 1 Member DC not setup yet
 if (m_dcCH1.GetSafeHdc() == NULL)
 {
 PrepareTraces();
 }

 /* If channel 1 pen is not created yet, do not continue */
 if (penCH1 == NULL) return;

 /* Select CH1 pen */
 CPen* pOldPen = m_dcCH1.SelectObject(penCH1);

 /* Clear display*/
 m_dcCH1.SetBkColor(BLACK);
 m_dcCH1.FillRect(&m_ClientRect,&Brush);

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 57 Chapter 7: The Scope Program

 /* If Channel 1 is disabled do not continue */
 if (pDoc->m_bCH1_ENABLE == false)
 {
 m_dcCH1.SelectObject(pOldPen);
 Invalidate(TRUE); // Redraw Display
 return;
 }

 if (pDoc->m_TimeBaseMUX < 0) // Increase Timebase
 {
 m_Skip = pDoc->m_TimeBaseMUX * -1;
 m_MUX = 1;
 }
 else // Reduce Timebase
 {
 m_Skip = 1;
 m_MUX = pDoc->m_TimeBaseMUX;
 }

/* Draw waveform to memory DC */
 for(i = m_nTriggerCH1-(m_nCH1_Offset*m_MUX/m_Skip);i <= 10000; i= i+m_MUX)
 {
 if(m_Skip >5000) break; // Check for possible overflow

 y1 = m_nCH1POS+pApp->m_nCH1Volt[i-m_MUX]/m_nVPD_CH1;
 if (y1 > y) y1 = y;
 if (y1 < 0) y1 = 0;
 if (a-m_Skip<0) a= m_Skip;
 if(i >=0) m_dcCH1.MoveTo(m_nGridX[a-m_Skip],m_nGridY[y1]);

 y2 = m_nCH1POS+pApp->m_nCH1Volt[i]/m_nVPD_CH1;
 if (y2 > y) y2 = y;
 if (y2 < 0) y2 = 0;
 if(i >=0) m_dcCH1.LineTo(m_nGridX[a],m_nGridY[y2]);

 a = a + m_Skip;

 if (a > x)
 {
 i = 10001;
 break;
 }
 }

 /*** draw zero point Arrow */
 m_dcCH1.MoveTo(8,m_nGridY[m_nCH1POS]);
 m_dcCH1.LineTo(2,m_nGridY[m_nCH1POS]-5);
 m_dcCH1.LineTo(2,m_nGridY[m_nCH1POS]+5);
 m_dcCH1.LineTo(8,m_nGridY[m_nCH1POS]);

 /* Draw Zero point dotted line */
 for(i = 10; i<m_nGridX[x]-3;i+=6)
 {
 for(n=0;n<=3;n++) m_dcCH1.SetPixel(i+n,m_nGridY[m_nCH1POS],LIGHTRED);
 }

 /*** draw offset Arrow */
 m_dcCH1.MoveTo(m_nGridX[x/2+m_nCH1_Offset],8);
 m_dcCH1.LineTo(m_nGridX[x/2+m_nCH1_Offset]-5,2);
 m_dcCH1.LineTo(m_nGridX[x/2+m_nCH1_Offset]+5,2);
 m_dcCH1.LineTo(m_nGridX[x/2+m_nCH1_Offset],8);

 m_dcCH1.SelectObject(pOldPen);
 Invalidate(TRUE); // Redraw Display
}

The code marked in red is the actual drawing of the waveform; basically the array is scanned and drawn to
the channel DC (m_dcCH1) using the grid coordinate arrays m_nGridX[] and m_nGridY[] . The code looks
more complex because of the following variables: m_nTriggerCH1 specifies the array trigger offset,
m_nCH1_Offset specifies the channel offset, m_Skip specifies the number of array locations to skip to
achieve the required time-base, m_MUX specifies the number of array location to duplicate to achieve the
required time-base, and m_nVPD_CH1 sets the voltage scale. Note drawing of the zero point and offset
arrows are also drawn in this function and all four channels are drawn in exactly the same way.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 58 Chapter 7: The Scope Program

This function is called by the system when the scope display is resized: -
void CScopeView::OnSize(UINT nType, int cx, int cy)
{
 CView::OnSize(nType, cx, cy);

 m_nClientWidth = cx;
 m_nClientHeight = cy;

 m_ClientRect.bottom = 0;
 m_ClientRect.left = 0;
 m_ClientRect.right = m_nClientWidth;
 m_ClientRect.top = m_nClientHeight;

PrepareGrid();
 PrepareTraces();
 OnDrawGrid();
 OnDrawCH1();
 OnDrawCH2();
 OnDrawCH3();
 OnDrawCH4();
}

Function OnSize() first retrieves the new size of the scope display from the system and updates the
m_nClientRect variable. Then it calls function PrepareGrid() to recalculate and fill the grid coordinate arrays.
Then prepares the traces, redraws the grid and all of the traces.

7.4. Storing and Restoring the Previous Position of the Main Frame.

Basically the window size and position is saved to the windows registry before the application closes and
restored when the program starts up.

Two functions used for saving and restoring windows position: -
///
// saving/restoring window state

static TCHAR BASED_CODE szSection[] = _T("Settings");
static TCHAR BASED_CODE szWindowPos[] = _T("WindowPos");
static TCHAR szFormat[] = _T("%u,%u,%d,%d,%d,%d,%d,%d,%d,%d");

static BOOL PASCAL NEAR ReadWindowPlacement(LPWINDOWPLACEMENT pwp)
{
 CString strBuffer = AfxGetApp()->GetProfileString(szSection, szWindowPos);
 if (strBuffer.IsEmpty())
 return FALSE;

 WINDOWPLACEMENT wp;
 int nRead = _stscanf(strBuffer, szFormat,
 &wp.flags, &wp.showCmd,
 &wp.ptMinPosition.x, &wp.ptMinPosition.y,
 &wp.ptMaxPosition.x, &wp.ptMaxPosition.y,
 &wp.rcNormalPosition.left, &wp.rcNormalPosition.top,
 &wp.rcNormalPosition.right, &wp.rcNormalPosition.bottom);

 if (nRead != 10)
 return FALSE;

 wp.length = sizeof wp;
 *pwp = wp;
 return TRUE;
}

static void PASCAL NEAR WriteWindowPlacement(LPWINDOWPLACEMENT pwp)
 // write a window placement to settings section of app's registry
{
 TCHAR szBuffer[sizeof("-32767")*8 + sizeof("65535")*2];

 wsprintf(szBuffer, szFormat,
 pwp->flags, pwp->showCmd,
 pwp->ptMinPosition.x, pwp->ptMinPosition.y,
 pwp->ptMaxPosition.x, pwp->ptMaxPosition.y,
 pwp->rcNormalPosition.left, pwp->rcNormalPosition.top,

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 59 Chapter 7: The Scope Program

 pwp->rcNormalPosition.right, pwp->rcNormalPosition.bottom);
 AfxGetApp()->WriteProfileString(szSection, szWindowPos, szBuffer);
}

///

This function restores window position from windows registry: -
void CMainFrame::InitialShowWindow(UINT nCmdShow)
{
 /** Restore window position from registry, by CKM 05/02/2002 **/
 WINDOWPLACEMENT wp;
 if (!ReadWindowPlacement(&wp))
 {
 ShowWindow(nCmdShow);
 return;
 }
 if (nCmdShow != SW_SHOWNORMAL) wp.showCmd = nCmdShow;
 SetWindowPlacement(&wp);
 ShowWindow(wp.showCmd);
}

Function CMainFrame::InitialShowWindow() is called from CScopeApp::InitInstance(): -
BOOL CScopeApp::InitInstance()
{

...

 // The main window has been initialized, so show and update it.
 pMainFrame->InitialShowWindow(m_nCmdShow);
 pMainFrame->UpdateWindow();

 return TRUE;
}

Before the window is destroyed its position is saved in the windows registry: -
void CMainFrame::OnClose()
{
 // before mainframe it is destroyed, save the position of the window
 WINDOWPLACEMENT wp;
 wp.length = sizeof wp;
 if (GetWindowPlacement(&wp))
 {
 wp.flags = 0;
 if (IsZoomed())
 wp.flags |= WPF_RESTORETOMAXIMIZED;
 // and write it to the windows registry
 WriteWindowPlacement(&wp);
 }

 CMDIFrameWnd::OnClose();
}

Note the same technique can be used for saving and restoring the position of the scope display window, but
at present multiple scope display windows can be used and it’s not ideal if they all open at exactly the same
place.

Figure 7.4a. Screen dump of window registry showing where the window position is stored

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 60 Chapter 7: The Scope Program

7.5. Setting-Up RS232 Communications

The configuration settings are easily configurable using
the configuration dialog from menu [Tools]
[Configuration]. This dialog is user friendly and easy to
use, notice that a tab control was used and at present
there is only one tab (communication), additional tabs
will be added at a later date (e.g. calibration). Note
when the user hits [OK] or [Apply] the configuration
settings are saved to the windows registry, [Apply]
button is only enabled if changes have been made, and
the [Restore Defaults] button is only enabled when the
current configuration differs from the defaults, see
figure 7.5a.

When user hits [OK] or [Apply] this function is called: -
void CConfigPage1::Save_Changes()
{
 UpdateData(TRUE);
 CScopeApp* pApp = (CScopeApp*)AfxGetApp();
 pApp->WriteProfileInt("Config","COM",m_Combo_COM.GetCurSel());
 pApp->WriteProfileInt("Config","Baud",m_Combo_Baud.GetCurSel());
 pApp->WriteProfileInt("Config","Byte Size",m_Combo_Byte_Size.GetCurSel());
 pApp->WriteProfileInt("Config","Parity",m_Combo_Parity.GetCurSel());
 pApp->WriteProfileInt("Config","Stop Bits",m_Combo_Stop_Bits.GetCurSel());
 pApp->WriteProfileInt("Config","Timer",GetDlgItemInt(IDC_TIMER));

 OnChange();
}

Screen dump showing where RS232 configuration is stored: -

Figure 7.5b. Screen dump of windows registry

Note direct access to the hardware is not allowed under Windows NT/2000/XP. Interaction with the serial
port is achieved through a file handle and various WIN32 communication API’s. This method is Windows
95/98/ME compatible.

This function initialises the communications using configuration settings from windows registry: -
void CMainFrame::InitalCom()
{
 /* 24/12/01 by colin mccord */

 CScopeApp* pApp = (CScopeApp*)AfxGetApp();

 int temp_int;
 DWORD baud;
 BYTE parity, byte, StopBits;

 temp_int = pApp->GetProfileInt("Config","COM",D_COM);
 if(temp_int == 0) m_sComPort = "Com1";

Figure 7.5a. Screen dump of the configuration dialog box

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 61 Chapter 7: The Scope Program

 else if(temp_int == 1) m_sComPort = "Com2";
 else if(temp_int == 2) m_sComPort = "Com3";
 else if(temp_int == 3) m_sComPort = "Com4";
 else m_sComPort = "Com1";

 temp_int = pApp->GetProfileInt("Config","Baud",D_BAUD);
 if (temp_int == 0) baud = 1200;
 else if(temp_int == 1) baud = 2400;
 else if(temp_int == 2) baud = 4800;
 else if(temp_int == 3) baud = 9600;
 else if(temp_int == 4) baud = 14400;
 else if(temp_int == 5) baud = 19200;
 else if(temp_int == 6) baud = 32768;
 else if(temp_int == 7) baud = 38400;
 else if(temp_int == 8) baud = 57600;
 else if(temp_int == 9) baud = 115200;
 else baud = 9600;

 temp_int = pApp->GetProfileInt("Config","Byte Size",D_BYTE);
 if(temp_int == 0) byte = 7;
 else if(temp_int == 1) byte = 8;
 else byte = 8;

 temp_int = pApp->GetProfileInt("Config","Parity",D_PARITY);
 if(temp_int == 0) parity = EVENPARITY;
 else if(temp_int == 1) parity = MARKPARITY;
 else if(temp_int == 2) parity = NOPARITY;
 else if(temp_int == 3) parity = ODDPARITY;
 else if(temp_int == 4) parity = SPACEPARITY;
 else partiy = NOPARITY;

 temp_int = pApp->GetProfileInt("Config","Stop Bits",D_STOP);
 if(temp_int == 0) StopBits = ONESTOPBIT;
 else if(temp_int == 1) StopBits = ONE5STOPBITS;
 else if(temp_int == 2) StopBits = TWOSTOPBITS;
 else StopBits = ONESTOPBIT;

 m_hCom = CreateFile(m_sComPort,
 GENERIC_READ | GENERIC_WRITE,
 0, // exclusive access
 NULL, // no security
 OPEN_EXISTING,
 0, // no overlapped I/O
 NULL); // null template

 // Check the returned handle for INVALID_HANDLE_VALUE and then
 // set the buffer sizes.

 m_bPortReady = SetupComm(m_hCom, 1000, 1000); // set buffer sizes

 m_bPortReady = GetCommState(m_hCom, &m_dcb);
 m_dcb.BaudRate = baud;
 m_dcb.ByteSize = byte;
 m_dcb.Parity = parity;
 m_dcb.StopBits = ONESTOPBIT;

 m_bPortReady = SetCommState(m_hCom, &m_dcb);

 m_bPortReady = GetCommTimeouts (m_hCom, &m_CommTimeouts);

 m_CommTimeouts.ReadIntervalTimeout = 3;
 m_CommTimeouts.ReadTotalTimeoutConstant = 3;
 m_CommTimeouts.ReadTotalTimeoutMultiplier = 3;
 m_CommTimeouts.WriteTotalTimeoutConstant = 10;
 m_CommTimeouts.WriteTotalTimeoutMultiplier = 10;

 m_bPortReady = SetCommTimeouts (m_hCom, &m_CommTimeouts);
}

This function is used to read one character from the RS232 serial port: -
bool CMainFrame::readchr(unsigned char *c)
{

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 62 Chapter 7: The Scope Program

 unsigned char Buffer[128];
 unsigned long a = 0;

 bReadRC = ReadFile(m_hCom, &Buffer, 1, &a, NULL);

 if (a == 0) return false; // No char received
 else
 {
 *c = Buffer[0];
 return true;
 }
}

This function is used to transmit one character to the RS232 serial port: -
void CMainFrame::trans(char c)
{
 char buffer[2];
 buffer[0] = c;
 bWriteRC = WriteFile (m_hCom, buffer, 1,&iBytesWritten,NULL);
}

7.6. Solving the Flickering Problem

When updating the screen, the screen must not flicker. This problem was solved by drawing the waveform
into a memory CDC (bitmap) and then updating the display by drawing only the changes.

Code for updating the display (grid and trace already drawn in their CDC): -
void CScopeView::OnPaint()
{
 CPaintDC dc(this); // device context for painting
 CDC memDC;
 CBitmap memBitmap;
 CBitmap* oldBitmap; // bitmap originally found in CMemDC

 // no real plotting work is performed here,
 // just putting the existing bitmaps on the client

 // to avoid flicker, establish a memory dc, draw to it
 // and then BitBlt it to the client
 memDC.CreateCompatibleDC(&dc) ;
 memBitmap.CreateCompatibleBitmap(&dc, m_nClientWidth, m_nClientHeight);
 oldBitmap = (CBitmap *)memDC.SelectObject(&memBitmap);

 if (memDC.GetSafeHdc() != NULL)
 {
 // first drop the grid on the memory dc
 memDC.BitBlt(0, 0, m_nClientWidth, m_nClientHeight, &m_dcGrid, 0, 0, SRCCOPY);

 // now add the plot on top as a "pattern" via SRCPAINT.
 // works well with dark background and a light plot

 /* Only paint channels that’s are enabled as this will reduce CPU load */
 if (pDoc->m_bCH1_ENABLE == true) // Only draw if CH1 is enabled
 {
 memDC.BitBlt(0, 0, m_nClientWidth, m_nClientHeight,
 &m_dcCH1, 0, 0, SRCPAINT); //SRCPAINT
 }

 if (pDoc->m_bCH2_ENABLE == true) // Only draw if CH2 is enabled
 {
 memDC.BitBlt(0, 0, m_nClientWidth, m_nClientHeight,
 &m_dcCH2, 0, 0, SRCPAINT); //SRCPAINT
 }

 if (pDoc->m_bCH3_ENABLE == true) // Only draw if CH3 is enabled
 {
 memDC.BitBlt(0, 0, m_nClientWidth, m_nClientHeight,
 &m_dcCH3, 0, 0, SRCPAINT); //SRCPAINT
 }

 if (pDoc->m_bCH4_ENABLE == true) // Only draw if CH4 is enabled
 {

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 63 Chapter 7: The Scope Program

 memDC.BitBlt(0, 0, m_nClientWidth, m_nClientHeight,
 &m_dcCH4, 0, 0, SRCPAINT); //SRCPAINT
 }

 // finally send the result to the display
 dc.BitBlt(0, 0, m_nClientWidth, m_nClientHeight,
 &memDC, 0, 0, SRCCOPY);

 }

 memDC.SelectObject(oldBitmap);
}

This function (created by wizard) has been modified to override standard windows refresh features: -
BOOL CScopeView::Create(LPCTSTR lpszClassName, LPCTSTR lpszWindowName, DWORD dwStyle, const RECT&
rect, CWnd* pParentWnd, UINT nID, CCreateContext* pContext)
{
 /* Overrides the Normal Refresh, stops flicker */
 static CString className = AfxRegisterWndClass(CS_HREDRAW | CS_VREDRAW);

 return CWnd::Create(className, lpszWindowName, dwStyle, rect, pParentWnd, nID, pContext);
}

7.7. Creating the Split Window View

This function creates the split view, it is called automatically by the framework: -
BOOL CChildFrame::OnCreateClient(LPCREATESTRUCT lpcs, CCreateContext* pContext)
{
 // create a splitter with 1 row, 2 columns
 if (!m_wndSplitter.CreateStatic(this, 1, 2))
 {
 TRACE0("Failed to CreateStaticSplitter\n");

 return FALSE;
 }

 // add the first splitter pane - the default view in column 0
 if (!m_wndSplitter.CreateView(0, 0,
 pContext->m_pNewViewClass, CSize(350, 100), pContext))
 {
 TRACE0("Failed to create first pane\n");

 return FALSE;
 }

 // add the second splitter pane - an input view in column 1
 if (!m_wndSplitter.CreateView(0, 1,
 RUNTIME_CLASS(CControlsView), CSize(0, 0), pContext))
 {
 TRACE0("Failed to create second pane\n");

 return FALSE;
 }

 // activate the input view
 SetActiveView((CView*)m_wndSplitter.GetPane(0,1));

 m_wndSplitter.LockBar(TRUE);

 m_wndSplitter.SetColumnInfo(1,250,100);

 m_bSplitterCreated = TRUE;
 m_bShowPanel = true;
 return TRUE;
}

This function is called when the display is resized, it sets the ratio of the split: -
void CChildFrame::OnSize(UINT nType, int cx, int cy)
{
 CMDIChildWnd::OnSize(nType, cx, cy);
 CRect rect;
 GetWindowRect(&rect);

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 64 Chapter 7: The Scope Program

 if(m_bSplitterCreated) // m_bSplitterCreated set in OnCreateClient
 {
 if (m_bShowPanel == true)
 {
 if(rect.Width()> 250)
 {
 m_wndSplitter.SetColumnInfo(0, rect.Width()-250, 0);
 }
 else
 {
 m_wndSplitter.SetColumnInfo(0,0, 0);
 }

 m_wndSplitter.SetColumnInfo(1, 250, 0);
 }
 else
 {
 m_wndSplitter.SetColumnInfo(0, rect.Width(), 0);
 m_wndSplitter.SetColumnInfo(1, 0, 0);
 }

 m_wndSplitter.RecalcLayout();
 }
}

This function hides and shows the side panel: -
void CChildFrame::HideShowPanel()
{
 CRect rect;
 GetWindowRect(&rect);

 if(m_bSplitterCreated)
 {
 if (m_bShowPanel == true) // Hide side panel
 {
 m_wndSplitter.SetColumnInfo(0, rect.Width(), 0);
 m_wndSplitter.SetColumnInfo(1, 0, 0);
 m_bShowPanel = false;
 }
 else // Show Side Panel
 {
 if(rect.Width()> 200)
 {
 m_wndSplitter.SetColumnInfo(0, rect.Width()-250, 0);
 }
 else
 {
 m_wndSplitter.SetColumnInfo(0,0, 0);
 }
 m_wndSplitter.SetColumnInfo(1, 250, 0);
 m_bShowPanel = true;
 }

 m_wndSplitter.RecalcLayout();
 }
}

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 65 Chapter 7: The Scope Program

7.8. Saving / Opening Scope Data

The scope program has the capability of saving and opening waveform data along with the current settings
(e.g. selected time-base, sample rate, enabled channels, scope resolution, etc…). This is one of the key
advantages that the PC based scope has over traditional analogue scopes. Traditionally users of analogue
scopes had to draw on graph paper the scope waveforms if a permanent record was required.

This saving of scope data feature is far more useful than taking a screen dump of the screen or copying the
scope waveform to the windows clipboard. Obviously taking a screen dump of the screen, using the windows
clipboard, and exporting the scope display to a bitmap are useful for importing an image of the scope display
into applications like Microsoft Word, but these images cannot be manipulated (e.g. channel time-base). The
saving and opening of the scope data is far more useful for keeping a record of an event for analysis at a
later time, because the scope controls are fully functional, for example time-base, center points of
waveforms, channel offset, grid resolution and enable/disable channels are adjustable.

Figure 7.8a. Scope data saved to File1.sdf (Scope V1.040a, 07/04/2002)

*.sdf is the file extension used, it is short for Scope Data File.

If the user clicks on menu item [File] [Save] the following function is called: -
void CScopeDoc::OnFileSave()
{
 // 07/04/2002 by CKM

 if((_access(m_Filename, 0)) == -1)
 {
 OnFileSaveAs();
 }
 else
 {
 Save();
 }
}

Basically the OnFileSave() function calls the OnFileSaveAs() function if there is no current file (untitled) or
the Save() function to save changes to the current file.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 66 Chapter 7: The Scope Program

If user clicks on menu item [File] [Save As] the following function is called: -
void CScopeDoc::OnFileSaveAs()
{
 // 07/04/2002 by CKM
 CFileDialog dlg (FALSE, _T("*.sdf"), m_Filename, OFN_HIDEREADONLY,_T("Scope Data

File(*.sdf)|*.sdf||"));

 if (IDOK == dlg.DoModal())
 {
 /* Check for existence */
 if((_access(dlg.GetPathName(), 0)) != -1)
 {
 if(AfxMessageBox("File '" + dlg.GetPathName() + "' Already exists. Do you

 want to replace the existing file ?", MB_YESNO | MB_ICONINFORMATION) !=
 IDYES)

 return;
 }

 m_Filename = dlg.GetPathName();
 Save();
 }
}

Basically the OnFileSaveAs() function using a windows standard CFileDialog box to ask the user to specify a
filename and directory. The function also checks if the selected filename already exists, if it does the user
gets the option to override the file or to cancel save operation. Function Save() is called, if a valid filename
has been entered and user has not cancelled the save operation.

Figure 7.8b. Windows standard CFileDialog box

This function creates and writes the scope data file: -
void CScopeDoc::Save()
{
 // 07/04/2002 by CKM
 CView* pView = GetActiveView();
 if (pView == NULL) return;

 CChildFrame* pChild = (CChildFrame*)pView->GetParentFrame();
 CScopeView* SView = (CScopeView*) pChild->m_wndSplitter.GetPane(0,0);

 CScopeApp* pApp = (CScopeApp*)AfxGetApp();
 FILE *infile;

 int i = 0;

 if((infile=fopen(m_Filename,"wr"))==NULL)
 {
 AfxMessageBox("Unable to create file");
 return;
 }

 rewind(infile);

 /* Save Channel 1,2,3 & 4 */

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 67 Chapter 7: The Scope Program

 for(i=0;i<10000;i++) fprintf(infile,"%d\n",pApp->m_nCH1Volt[i]);
 for(i=0;i<10000;i++) fprintf(infile,"%d\n",pApp->m_nCH2Volt[i]);
 for(i=0;i<10000;i++) fprintf(infile,"%d\n",pApp->m_nCH3Volt[i]);
 for(i=0;i<10000;i++) fprintf(infile,"%d\n",pApp->m_nCH4Volt[i]);

 /* Save Variables */
 fprintf(infile,"%d\n", SView->x);
 fprintf(infile,"%d\n", SView->y);
 fprintf(infile,"%d\n",SView->m_nCH1POS);
 fprintf(infile,"%d\n",SView->m_nCH2POS);
 fprintf(infile,"%d\n",SView->m_nCH3POS);
 fprintf(infile,"%d\n",SView->m_nCH4POS);
 fprintf(infile,"%d\n",SView->m_nCH1_Offset);
 fprintf(infile,"%d\n",SView->m_nCH2_Offset);
 fprintf(infile,"%d\n",SView->m_nCH3_Offset);
 fprintf(infile,"%d\n",SView->m_nCH4_Offset);
 fprintf(infile,"%d\n",pApp->m_nInputRange);
 fprintf(infile,"%d\n",pApp->m_nSampleMode);
 fprintf(infile,"%d\n",pApp->m_SampleRateSelection);
 fprintf(infile,"%d\n",m_bCH1_ENABLE);
 fprintf(infile,"%d\n",m_bCH2_ENABLE);
 fprintf(infile,"%d\n",m_bCH3_ENABLE);
 fprintf(infile,"%d\n",m_bCH4_ENABLE);
 fprintf(infile,"%d\n",m_TimeBaseSelection);
 fprintf(infile,"%d\n",m_nCH1_VOLTS);
 fprintf(infile,"%d\n",m_nCH2_VOLTS);
 fprintf(infile,"%d\n",m_nCH3_VOLTS);
 fprintf(infile,"%d\n",m_nCH4_VOLTS);
 fprintf(infile,"%d\n",m_nTrigger);
 fprintf(infile,"%d\n",m_nTriggerType);
 fprintf(infile,"%d\n",SView->m_ColorGridBackGround);
 fprintf(infile,"%d\n",SView->m_nRefreshRate);

 fclose(infile);

 SetTitle(m_Filename);
}

Notice that function Save() uses the old ASIC C method for saving files, this method is 100% windows
compatible (including long filenames) and is preferred by most C++ programmers. Basically a pointer to the
file is setup (*infile) and the ASIC C function fprintf() is used to save scope data to the file using the ASCII
format. Writing the file in binary and not ASCII would produce a more efficient file, but this file would not be
readable in notepad for example. First the four data arrays (one for each channel) are saved, then all the key
variables are saved (e.g. channel center point position m_nCH1POS, channel offset m_nCH1_Offset etc...).

If user clicks on menu item [File] [Open] the following function is called: -
void CScopeDoc::OnFileOpen()
{
 // 07/04/2002 by CKM
 CView* pView = GetActiveView();
 if (pView == NULL) return;

 CChildFrame* pChild = (CChildFrame*)pView->GetParentFrame();
 CScopeView* SView = (CScopeView*) pChild->m_wndSplitter.GetPane(0,0);

 CScopeApp* pApp = (CScopeApp*)AfxGetApp();
 FILE *infile;
 int i;
 int temp;

 CFileDialog dlg (TRUE, _T("*.sdf"), m_Filename, OFN_HIDEREADONLY,_T("Scope Data

File(*.sdf)|*.sdf||"));

 if (IDOK == dlg.DoModal())
 {
 m_Filename = dlg.GetPathName();

 if((infile=fopen(m_Filename,"rw"))==NULL)
 {
 AfxMessageBox("Unable to open file");
 return;
 }

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 68 Chapter 7: The Scope Program

 rewind(infile);

 /* Open Channel 1 */
 for(i=0;i<10000;i++)
 {
 fscanf(infile,"%d\n",&temp);
 pApp->m_nCH1Volt[i] = temp;
 }

 /* Open Channel 2 */
 for(i=0;i<10000;i++)
 {
 fscanf(infile,"%d\n",&temp);
 pApp->m_nCH2Volt[i] = temp;
 }

 /* Open Channel 3 */
 for(i=0;i<10000;i++)
 {
 fscanf(infile,"%d\n",&temp);
 pApp->m_nCH3Volt[i] = temp;
 }

 /* Open Channel 4 */
 for(i=0;i<10000;i++)
 {
 fscanf(infile,"%d\n",&temp);
 pApp->m_nCH4Volt[i] = temp;
 }

 fscanf(infile,"%d\n",&SView->x);
 fscanf(infile,"%d\n",&SView->y);
 fscanf(infile,"%d\n",&SView->m_nCH1POS);
 fscanf(infile,"%d\n",&SView->m_nCH2POS);
 fscanf(infile,"%d\n",&SView->m_nCH3POS);
 fscanf(infile,"%d\n",&SView->m_nCH4POS);
 fscanf(infile,"%d\n",&SView->m_nCH1_Offset);
 fscanf(infile,"%d\n",&SView->m_nCH2_Offset);
 fscanf(infile,"%d\n",&SView->m_nCH3_Offset);
 fscanf(infile,"%d\n",&SView->m_nCH4_Offset);
 fscanf(infile,"%d\n",&pApp->m_nInputRange);
 fscanf(infile,"%d\n",&pApp->m_nSampleMode);
 fscanf(infile,"%d\n",&pApp->m_SampleRateSelection);
 fscanf(infile,"%d\n",&m_bCH1_ENABLE);
 fscanf(infile,"%d\n",&m_bCH2_ENABLE);
 fscanf(infile,"%d\n",&m_bCH3_ENABLE);
 fscanf(infile,"%d\n",&m_bCH4_ENABLE);
 fscanf(infile,"%d\n",&m_TimeBaseSelection);
 fscanf(infile,"%d\n",&m_nCH1_VOLTS);
 fscanf(infile,"%d\n",&m_nCH2_VOLTS);
 fscanf(infile,"%d\n",&m_nCH3_VOLTS);
 fscanf(infile,"%d\n",&m_nCH4_VOLTS);
 fscanf(infile,"%d\n",&m_nTrigger);
 fscanf(infile,"%d\n",&m_nTriggerType);
 fscanf(infile,"%d\n",&SView->m_ColorGridBackGround);
 fscanf(infile,"%d\n",&SView->m_nRefreshRate);

 fclose(infile);

 UpdateAllViews(NULL,HINT_OPEN,NULL);
 SView->PrepareGrid();
 SView->PrepareTraces();
 SView->OnDrawGrid();
 SView->OnDrawCH1();
 SView->OnDrawCH2();
 SView->OnDrawCH3();
 SView->OnDrawCH4();
 }
 SetTitle(m_Filename);
}

A standard Windows CFileDialog is used to allow the user to select the file to open, then a pointer to the file
is setup. Once again the old ASIC C method of accessing files is used, this time using the function fscanf() to
read the file line-by-line. The data is retrieved from the data file in exactly the same order as it was saved;
once all fields have been acquired the scope display is refreshed.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 69 Chapter 7: The Scope Program

Figure 7.8c. Example: File1.sdf has been opened, then CH1/CH2 was disabled with voltage / time-base scales modified

Figure 7.8c. demonstrates the potential of this feature, File1.sdf has been loaded. Channel 1 and Channel 2
has been disabled (Hidden), voltage and time-base scales have been modified. Zero point of channels 3 and
4 has been moved and a large offset has been applied to channel 3.

Figure 7.8d. Demonstrating aliasing by selecting a out of range time-base

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 70 Chapter 7: The Scope Program

It is important to remember that the saved waveforms are with respect to the original sample rate. The scope
program increases the time-base by skipping readings and decreases the time-base by duplicating readings.
As shown in figure 7.8d. it is possible for aliasing to occur if the selected time-base requires for less than 2
samples per cycle to be displayed, hence it is important to make sure the sample-rate is optimal for the
waveform being monitored before saving.

File1.sdf (235kB): -
0
298
589
867
1126
1360
1563
1732
1861
1949
1994
1994
1949
1861
1732
1563
1360
1126
867
589
298
0
-298
-589
-867
-1126
-1360
-1563
-1732
-1861
-1949
-1994
-1994
-1949
-1861
-1732
-1563
-1360
-1126
-867
-589
-298
0
298
589
867
1126
1360
1563
1732
1861
1949
1994
1994
1949
1861
1732
1563
1360
1126

The file format is simple the data is listed in one large column. The data shown above is part of the data for
channel 1; clearly it is a sine-wave. The values are actual voltage readings that have been multiplied by 1000
to improve accuracy, dividing by 1000 will convert back to the voltage, for example 298 is 0.298 V, 589 is
5.89V and the peak 1994 is 1.994 Volts.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 71 Chapter 7: The Scope Program

7.9. Copying the Scope Display to the Windows Clipboard

The scope program has the ability to copy the scope display to the windows clipboard in the form of a
bitmap; the paste command in many Windows applications (e.g. Word) will import the scope image. The user
can use the right-click menu (as shown in figure 7.9a), the edit menu, the shortcut key [Ctrl+C], or the copy
toolbar icon.

Figure 7.9a. Screen dump demonstrating how to copy the scope display to the clipboard (Scope V1.038a, 04/04/2002)

Figure 7.9b is an image of the
scope display that was copied
into the Windows clipboard
and pasted into Microsoft
Word (This document).

Only the scope waveforms are
copied and not the entire
scope display as was the case
for the screen dump shown in
figure 7.9a.

It maybe useful for other
information like time-base and
channel voltage scales to be
included. This change is
recommended and should be
adopted sometime in the
future, because the scope
waveforms are useless
without knowledge of the time-
base and voltages scales
used.

 This function copies the scope display to the clipboard: -

Figure 7.9b. Scope display was pasted into this document from the clipboard

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 72 Chapter 7: The Scope Program

void CScopeView::OnEditCopy()
{

/* ---
 | Fuction: void CScopeView::OnEditCopy() |
 | Description: Copies the scope display to the Windows |
 | clipboard. |
 | Return: Void. |
 | Date: 15/02/2002 |
 | Verison: 1.0 |
 | By: Colin McCord |
 --- */

 CRect rect;
 CClientDC dc(this);
 CDC memDC;
 CBitmap bitmap;

 GetClientRect(&rect);

 // Create memDC
 memDC.CreateCompatibleDC(&dc);
 bitmap.CreateCompatibleBitmap(&dc, rect.Width(), rect.Height());
 CBitmap* pOldBitmap = memDC.SelectObject(&bitmap);

 // Fill in memDC
 memDC.FillSolidRect(rect, dc.GetBkColor());

 // Redraw grid to memory DC
 if (memDC.GetSafeHdc() != NULL)
 {
 // first drop the grid on the memory dc
 memDC.BitBlt(0, 0, m_nClientWidth, m_nClientHeight,
 &m_dcGrid, 0, 0, SRCCOPY);

 // now add the plot on top as a "pattern" via SRCPAINT.
 // works well with dark background and a light plot
 memDC.BitBlt(0, 0, m_nClientWidth, m_nClientHeight,
 &m_dcCH1, 0, 0, SRCPAINT); //SRCPAINT

 memDC.BitBlt(0, 0, m_nClientWidth, m_nClientHeight,
 &m_dcCH2, 0, 0, SRCPAINT); //SRCPAINT

 memDC.BitBlt(0, 0, m_nClientWidth, m_nClientHeight,
 &m_dcCH3, 0, 0, SRCPAINT); //SRCPAINT

 memDC.BitBlt(0, 0, m_nClientWidth, m_nClientHeight,
 &m_dcCH4, 0, 0, SRCPAINT); //SRCPAINT
 }

 // Copy contents of memDC to clipboard
 OpenClipboard();
 EmptyClipboard();
 SetClipboardData(CF_BITMAP, bitmap.GetSafeHandle());
 CloseClipboard();

 // Clean up
 memDC.SelectObject(pOldBitmap);
 bitmap.Detach();
}

7.10. Exporting the Scope Display as a Bitmap (BMP) File

The scope program has the ability to save the scope display as a bitmap file. The user clicks on [Export] in
the [File] menu (see figure 7.10a), then a standard windows save dialogue box appears (see figure 7.10b) to
ask the user were to save the file.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 73 Chapter 7: The Scope Program

Figure 7.10a. User clicks [Export]

Figure 7.10b. Save dialogue box appears

Figure 7.10c shows the contains of the exported
file scope.bmp.

Saving the scope display to a BMP file would
have been fairly simple if a handle to a device-
independent bitmap existed. Simply write
BITMAPINFOHEADER information followed by
the contents of the bitmap. The three fields that
have to be set in the BITMAPINFOHEADER are
the bfType which should always be "BM", the
bfSize which is the size of the bitmap including
the infoheader and the bfOffBits which is the
offset to the bitmap bits from the start of the file.

But unfortunately the scope display is a device-
dependent bitmap. Therefore a DIB (Device
Independent Bitmap) must first be created from it.

The following function converts a DDB (Device Dependent Bitmap) to a DIB (Device Independent Bitmap): -
HANDLE CScopeView::DDBToDIB(CBitmap &bitmap, DWORD dwCompression, CPalette *pPal)
{
/* ---
 | Fuction: HANDLE CScopeView::DDBToDIB(...) |
 | Description: Convert Device-Dependent Bitmap (DDB) to |
 | Device-independent Bitmap (DIB). |
 | Return: Void. |
 | Date: 16/02/2002 |
 | Verison: 1.3 |
 | By: Colin K McCord |
 --- */

 // DDBToDIB - Creates a DIB from a DDB
 // bitmap - Device dependent bitmap
 // dwCompression- Type of compression - see BITMAPINFOHEADER
 // pPal - Logical palette

 BITMAP bm;
 BITMAPINFOHEADER bi;
 LPBITMAPINFOHEADER lpbi;
 DWORD dwLen;
 HANDLE hDIB;
 HANDLE handle;
 HDC hDC;

Figure 7.10c. Screen dump of exported file scope.bmp

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 74 Chapter 7: The Scope Program

 HPALETTE hPal;

 ASSERT(bitmap.GetSafeHandle());

 // The function has no arg for bitfields
 if(dwCompression == BI_BITFIELDS)
 return NULL;

 // If a palette has not been supplied use defaul palette
 hPal = (HPALETTE) pPal->GetSafeHandle();
 if (hPal==NULL)
 hPal = (HPALETTE) GetStockObject(DEFAULT_PALETTE);

 // Get bitmap information
 bitmap.GetObject(sizeof(bm),(LPSTR)&bm);

 // Initialize the bitmapinfoheader
 bi.biSize = sizeof(BITMAPINFOHEADER);
 bi.biWidth = bm.bmWidth;
 bi.biHeight = bm.bmHeight;
 bi.biPlanes = 1;
 bi.biBitCount = bm.bmPlanes * bm.bmBitsPixel;
 bi.biCompression = dwCompression;
 bi.biSizeImage = 0;
 bi.biXPelsPerMeter = 0;
 bi.biYPelsPerMeter = 0;
 bi.biClrUsed = 0;
 bi.biClrImportant = 0;

 // Compute the size of the infoheader and the color table
 int nColors = (1 << bi.biBitCount);

 dwLen = bi.biSize + nColors * sizeof(RGBQUAD);

 // We need a device context to get the DIB from
 hDC = ::GetDC(NULL);

 hPal = SelectPalette(hDC,hPal,FALSE);
 RealizePalette(hDC);

 // Allocate enough memory to hold bitmapinfoheader and color table
 hDIB = GlobalAlloc(GMEM_FIXED,dwLen);

 if (!hDIB)
 {
 SelectPalette(hDC,hPal,FALSE);
 ::ReleaseDC(NULL,hDC);
 return NULL;
 }

 lpbi = (LPBITMAPINFOHEADER)hDIB;

 *lpbi = bi;

 // Call GetDIBits with a NULL lpBits param, so the device driver
 // will calculate the biSizeImage field
 GetDIBits(hDC, (HBITMAP)bitmap.GetSafeHandle(), 0L, (DWORD)bi.biHeight,
 (LPBYTE)NULL, (LPBITMAPINFO)lpbi, (DWORD)DIB_RGB_COLORS);

 bi = *lpbi;

 // If the driver did not fill in the biSizeImage field, then compute it
 // Each scan line of the image is aligned on a DWORD (32bit) boundary
 if (bi.biSizeImage == 0){
 bi.biSizeImage = ((((bi.biWidth * bi.biBitCount) + 31) & ~31) / 8)
 * bi.biHeight;

 // If a compression scheme is used the result may infact be larger
 // Increase the size to account for this.
 if (dwCompression != BI_RGB)
 bi.biSizeImage = (bi.biSizeImage * 3) / 2;
 }

 // Realloc the buffer so that it can hold all the bits
 dwLen += bi.biSizeImage;
 if (handle = GlobalReAlloc(hDIB, dwLen, GMEM_MOVEABLE))

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 75 Chapter 7: The Scope Program

 hDIB = handle;
 else{
 GlobalFree(hDIB);

 // Reselect the original palette
 SelectPalette(hDC,hPal,FALSE);
 ::ReleaseDC(NULL,hDC);
 return NULL;
 }

 // Get the bitmap bits
 lpbi = (LPBITMAPINFOHEADER)hDIB;

 // FINALLY get the DIB
 BOOL bGotBits = GetDIBits(hDC, (HBITMAP)bitmap.GetSafeHandle(),
 0L, // Start scan line
 (DWORD)bi.biHeight, // # of scan lines
 (LPBYTE)lpbi // address for bitmap bits
 + (bi.biSize + nColors * sizeof(RGBQUAD)),
 (LPBITMAPINFO)lpbi, // address of bitmapinfo
 (DWORD)DIB_RGB_COLORS); // Use RGB for colour table

 if(!bGotBits)
 {
 GlobalFree(hDIB);
 SelectPalette(hDC,hPal,FALSE);
 ::ReleaseDC(NULL,hDC);
 return NULL;
 }

 SelectPalette(hDC,hPal,FALSE);
 ::ReleaseDC(NULL,hDC);
 return hDIB;
}

Convert the scope display to a bitmap (DDB) and ask the user for a filename: -
void CScopeView::OnFileExport()
{
/* ---
 | Fuction: void CScopeView::OnFileExport() |
 | Description: User specifies filename using CFileDialog, |
 | then the scope display is save to that |
 | filename using the standard bitmap |
 | graphic format. |
 | Return: Void. |
 | Date: 16/02/2002 |
 | Verison: 1.1 |
 | By: Colin K McCord |
 --- */

 HANDLE hDIB;
 CRect rect;
 CClientDC dc(this);
 CDC memDC;
 CBitmap bitmap;

 GetClientRect(&rect);

 // Create memDC
 memDC.CreateCompatibleDC(&dc);
 bitmap.CreateCompatibleBitmap(&dc, rect.Width(), rect.Height());
 CBitmap* pOldBitmap = memDC.SelectObject(&bitmap);

 // Fill in memDC
 memDC.FillSolidRect(rect, dc.GetBkColor());

 // Redraw grid to memory DC
 if (memDC.GetSafeHdc() != NULL)
 {
 // first drop the grid on the memory dc
 memDC.BitBlt(0, 0, m_nClientWidth, m_nClientHeight,
 &m_dcGrid, 0, 0, SRCCOPY);

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 76 Chapter 7: The Scope Program

 // now add the plot on top as a "pattern" via SRCPAINT.
 // works well with dark background and a light plot
 memDC.BitBlt(0, 0, m_nClientWidth, m_nClientHeight,
 &m_dcCH1, 0, 0, SRCPAINT); //SRCPAINT

 memDC.BitBlt(0, 0, m_nClientWidth, m_nClientHeight,
 &m_dcCH2, 0, 0, SRCPAINT); //SRCPAINT

 memDC.BitBlt(0, 0, m_nClientWidth, m_nClientHeight,
 &m_dcCH3, 0, 0, SRCPAINT); //SRCPAINT

 memDC.BitBlt(0, 0, m_nClientWidth, m_nClientHeight,
 &m_dcCH4, 0, 0, SRCPAINT); //SRCPAINT

 }

 /* Convert Device-Dependent Bitmap (DDB) to Device-independent Bitmap (DIB) */
 hDIB = DDBToDIB(bitmap, BI_RGB, NULL);

 CFileDialog dlg (FALSE, _T("*.bmp"), _T("Scope"), OFN_HIDEREADONLY,_T("Windows or OS/2
 Bitmap (*.bmp)|*.bmp||"));
 dlg.m_ofn.lpstrTitle = "Export Scope Display";
 if (IDOK == dlg.DoModal())
 {

 /* Check for existence */
 if((_access(dlg.GetPathName(), 0)) != -1)
 {
 if(MessageBox("File '" + dlg.GetPathName() + "' Already exists. Do you want
 to replace the existing file ?","Export Scope Display", MB_YESNO |
 MB_ICONINFORMATION) != IDYES)
 return;
 }

 WriteDIB(dlg.GetPathName(),hDIB); // Save as Bitmap

 }

}

Write bitmap to specified file: -
BOOL CScopeView::WriteDIB(CString szFile, HANDLE hDIB)
{
/* ---
 | Fuction: BOOL CScopeView::WriteDIB(........) |
 | Description: Writes bitmap to specified file. |
 | Return: Void. |
 | Date: 16/02/2002 |
 | Verison: 1.1 |
 | By: Colin K McCord |
 --- */

 // WriteDIB - Writes a DIB to file
 // Returns - TRUE on success
 // szFile - Name of file to write to
 // hDIB - Handle of the DIB

 BITMAPFILEHEADER hdr;
 LPBITMAPINFOHEADER lpbi;

 if (!hDIB)
 return FALSE;

 CFile file;
 if(!file.Open(szFile, CFile::modeWrite|CFile::modeCreate))
 return FALSE;

 lpbi = (LPBITMAPINFOHEADER)hDIB;

 int nColors = 1 << lpbi->biBitCount;

 // Fill in the fields of the file header
 hdr.bfType = ((WORD) ('M' << 8) | 'B'); // is always "BM"
 hdr.bfSize = GlobalSize (hDIB) + sizeof(hdr);

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 77 Chapter 7: The Scope Program

 hdr.bfReserved1 = 0;
 hdr.bfReserved2 = 0;
 hdr.bfOffBits = (DWORD) (sizeof(hdr) + lpbi->biSize +
 nColors * sizeof(RGBQUAD));

 // Write the file header
 file.Write(&hdr, sizeof(hdr));

 // Write the DIB header and the bits
 file.Write(lpbi, GlobalSize(hDIB));

 return TRUE;

}

7.11. Owner Drawn Menus with Bitmaps

The scope program uses owner drawn menus with bitmaps. To save time a freeware class (BCMenu.h)
written by Brent Corkum was used (download from [W4]). This class can mimic the new MS Office XP style
of menus (Used in scope program), or the old MS Office 97 style of menus. Figures 7.11a shows a screen
dump of Microsoft Word XP with its file menu open, while figure 7.11b shows the file menu of the Scope
program. Notice that the menu style of the Scope program is similar, but not perfect, to that of Word XP. It is
clear that Brent Corkum has done a good job developing this class and it was decided after testing on
Windows 98/2000/XP for the scope program to make use of his class as it made the program more
professional looking and more user-friendly (Icons in the menus).

Figure 7.11a. Microsoft Word XP file menu

Figure 7.11b. Scope Ver1.036a file Menu

“This class, BCMenu, implements owner drawn menus derived from the CMenu class. The purpose of which
is to mimic the menu style used in Visual C++ 5.0 and MS Word. I can't take credit for all the code; some
portions of it were taken from code supplied by Ben Ashley and Girish Bharadwaj. The difference between
their codes and this one is quite simple; this one makes it very easy to build these cool menus with bitmaps
into your application. I've removed the Icon loading stuff and replaced it with Bitmaps. The bitmaps allow you
to use the 16X15 toolbar bitmaps directly from your toolbars in the resource editor. As well, there is no
scaling of the bitmaps so they always look good. You can also load Bitmap resources and define bitmaps for
your check marks. I've also added the default checkmark drawing stuff, separators, proper alignment of
keyboard accelerator text, keyboard shortcuts, proper alignment of popup menu items, proper system colour
changes when the Display Appearance changes, plus bug fixes to the Ben Ashley's LoadMenu function for

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 78 Chapter 7: The Scope Program

complex submenu systems. I made quite a few other modifications as well, too many to list or remember. I
also use the disabled bitmap dithering function of Jean-Edouard Lachand-Robert to create the disabled state
bitmaps. I must admit, it does a much better job then the DrawState function. If you find any bugs, memory
leaks, or just better ways of doing things, please let me know. I used Visual C++ 5.0 and I have not tested
compatibility with earlier VC versions. I've tested it on Win 95/NT at various resolutions and colour palette
sizes.” Brent Corkum [W4]

Title block from BCMenu.h: -
//***
// BCMenu.h : header file
// Version : 3.0
// Date : January 2002
// Author : Brent Corkum
// Email : corkum@rocscience.com
// Latest Version : http://www.rocscience.com/~corkum/BCMenu.html
//
// Bug Fixes and portions of code supplied by:
//
// Ben Ashley,Girish Bharadwaj,Jean-Edouard Lachand-Robert,
// Robert Edward Caldecott,Kenny Goers,Leonardo Zide,
// Stefan Kuhr,Reiner Jung,Martin Vladic,Kim Yoo Chul,
// Oz Solomonovich,Tongzhe Cui,Stephane Clog,Warren Stevens,
// Damir Valiulin
//
// You are free to use/modify this code but leave this header intact.
// This class is public domain so you are free to use it any of
// your applications (Freeware,Shareware,Commercial). All I ask is
// that you let me know so that if you have a real winner I can
// brag to my buddies that some of my code is in your app. I also
// wouldn't mind if you sent me a copy of your application since I
// like to play with new stuff.
//***

7.11.1. Integrating Brent Corkum’s BCMenu Class with the Scope Program

Step 1: Add #include “BCMenu.cpp” to stdafx.cpp: -
// stdafx.cpp : source file that includes just the standard includes
// Scope.pch will be the pre-compiled header
// stdafx.obj will contain the pre-compiled type information
#include "stdafx.h"
#include "UsefulSplitterWnd.cpp"
#include "XTabCtrl.cpp"
#include "StatLink.cpp"
#include "BCMenu.cpp"
#include "ColorStatic.cpp"

Step 2: Add #include “BCMenu.h”, m_default and m_menu to MainFrm.h: -
// MainFrm.h : interface of the CMainFrame class
//
///

#if !defined(AFX_MAINFRM_H__8C66EB30_6DEB_4044_863D_D90EA5FE5723__INCLUDED_)
#define AFX_MAINFRM_H__8C66EB30_6DEB_4044_863D_D90EA5FE5723__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#include "BCMenu.h" // Bitmap Menus

class CMainFrame : public CMDIFrameWnd
...
public:
 void ComRealTimeBuffered();
 void ComRealTimeScroll();
 BCMenu m_default;
 BCMenu m_menu;
...

Step 3: Add function NewMenu to class CMainFrame (Notice menu bitmaps are from toolbars): -

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 79 Chapter 7: The Scope Program

HMENU CMainFrame::NewMenu()
{
 static UINT toolbars[]=
 {
 IDR_MAINFRAME,
 IDR_TOOLBAR
 };

 // Load the menu from the resources
 m_menu.LoadMenu(IDR_SCOPETYPE);

 // One method for adding bitmaps to menu options is
 // through the LoadToolbars member function. This method
 // allows you to add all the bitmaps in a toolbar object
 // to menu options (if they exist). The first function
 // parameter is an array of toolbar id's. The second is
 // the number of toolbar id's. There is also a function
 // called LoadToolbar that just takes an id.
 m_menu.LoadToolbars(toolbars,2);

 return(m_menu.Detach());
}

Step 4: Add function NewDefaultMenu() to class CMainFrame: -
HMENU CMainFrame::NewDefaultMenu()
{
 m_default.LoadMenu(IDR_MAINFRAME);
 m_default.LoadToolbar(IDR_MAINFRAME);
 return(m_default.Detach());
}

Step 5: Edit InitInstance() function in class CScopeApp: -
BOOL CScopeApp::InitInstance()
{
 ...

 // create main MDI Frame window
 CMainFrame* pMainFrame = new CMainFrame;
 if (!pMainFrame->LoadFrame(IDR_MAINFRAME))
 return FALSE;
 m_pMainWnd = pMainFrame;

 // This code replaces the MFC created menus with
 // Ownerdrawn versions
 pDocTemplate->m_hMenuShared=pMainFrame->NewMenu();
 pMainFrame->m_hMenuDefault=pMainFrame->NewDefaultMenu();

 // This simulates a window being opened if you don't have
 // a default window displayed at start-up
 pMainFrame->OnUpdateFrameMenu(pMainFrame->m_hMenuDefault);

 ...

}

Step 6: Add the message handler for the WM_MEASUREITEM message: -
void CMainFrame::OnMeasureItem(int nIDCtl, LPMEASUREITEMSTRUCT lpMeasureItemStruct)
{
 //This handler ensure that the popup menu items are
 // drawn correctly

 BOOL setflag=FALSE;

 if(lpMeasureItemStruct->CtlType==ODT_MENU)
 {
 if(IsMenu((HMENU)lpMeasureItemStruct->itemID))
 {
 CMenu* cmenu =
 CMenu::FromHandle((HMENU)lpMeasureItemStruct->itemID);

 if(m_menu.IsMenu(cmenu)||m_default.IsMenu(cmenu))
 {
 m_menu.MeasureItem(lpMeasureItemStruct);
 setflag=TRUE;

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 80 Chapter 7: The Scope Program

 }
 }
 }

 if(!setflag)CMDIFrameWnd::OnMeasureItem(nIDCtl, lpMeasureItemStruct);
}

Step 7: Add the message handler for the WM_MENUCHAR message: -
LRESULT CMainFrame::OnMenuChar(UINT nChar, UINT nFlags, CMenu* pMenu)
{
 //This handler ensures that keyboard shortcuts work
 LRESULT lresult;
 if(m_menu.IsMenu(pMenu)||m_default.IsMenu(pMenu))
 lresult=BCMenu::FindKeyboardShortcut(nChar, nFlags, pMenu);
 else
 lresult=CMDIFrameWnd::OnMenuChar(nChar, nFlags, pMenu);
 return(lresult);
}

Step 8: Add the message handler for the WM_ INITMENUPOPUP message: -
void CMainFrame::OnInitMenuPopup(CMenu* pPopupMenu, UINT nIndex, BOOL bSysMenu)
{
 //This handler updates the menus from time to time
 CMDIFrameWnd::OnInitMenuPopup(pPopupMenu, nIndex, bSysMenu);

 CMDIFrameWnd::OnInitMenuPopup(pPopupMenu, nIndex, bSysMenu);
 if(!bSysMenu)
 {
 if(m_menu.IsMenu(pPopupMenu)||m_default.IsMenu(pPopupMenu))
 BCMenu::UpdateMenu(pPopupMenu);
 }

}

Step 9: Specify XP menu style for all versions of Microsoft windows and not just XP (Edit BCMenu.cpp): -
#include "stdafx.h" // Standard windows header file
#include "BCMenu.h" // BCMenu class declaration
#include <afxpriv.h> // SK: makes A2W and other spiffy AFX macros work

...

static CPINFO CPInfo;
// how the menu's are drawn in win9x/NT/2000
UINT BCMenu::original_drawmode=BCMENU_DRAWMODE_XP; //Use BCMENU_DRAWMODE_ORIGINAL for Original
BOOL BCMenu::xp_select_disabled=FALSE;
// how the menu's are drawn in winXP
UINT BCMenu::xp_drawmode=BCMENU_DRAWMODE_XP;
BOOL BCMenu::original_select_disabled=TRUE;

enum Win32Type{
 Win32s,
 Windoze95,
 WinNT3,
 WinNT4orHigher
};

...

That’s it; the scope program now has professional looking owner drawn MS Office XP style bitmap menus.

Step 10: This class is also applied to the right click pop-up menu: -
void CMainFrame::OnContextMenu(CWnd* pWnd, CPoint point)
{
 BCMenu popmenu;

 popmenu.LoadMenu(IDR_GRID_POPUP);
 popmenu.LoadToolbar(IDR_MAINFRAME);

 BCMenu *psub = (BCMenu *)popmenu.GetSubMenu(0);
 psub->TrackPopupMenu(TPM_LEFTALIGN|TPM_RIGHTBUTTON,point.x,point.y,this);
 popmenu.DestroyMenu();
}

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 81 Chapter 7: The Scope Program

7.12. Windows 95/98 Compatibility Problem (scope v1.008a, 20/12/2001)

The ‘Scope’ program is being developed on Windows 2000 (service pack 2); Windows 2000 is a stable and
reliable operating system, unlike other Microsoft operating systems (e.g. Windows 95, Windows 98 and
Windows ME). It is important that the scope program runs on all versions of Microsoft Windows, as Windows
95, 98 and ME are still widely used.

On the 20th of December 2001, the scope program (Version 1.008a) was tested on Windows 98 and it was
discovered there was a significant problem. The CPU load was high, and the system memory resources
were disappearing extremely quickly, after about a minute the system was completely unusable. At first it
was not understood why this was happening, as the program worked on Windows 2000 without any
problems, with a CPU load of less than 2%. The tests were carried out on the same system (dual boot:
Windows 2000 or Window 98 OSR 2), 800MHz AMD processor, 256MB PC133 RAM, and Creative Labs 3D
Blaster GeForce 3 Titanium 200 64MB 3D accelerator video card.

Figure 7.12a: Screen dump of ‘System Monitor’, ‘Resource Meter’ and ‘Scope’ V1.008a running in Windows 98

Figure 7.12a clearly shows that there is a problem; CPU load is high, systems resources are dropping fast
and free physical memory has been completely used up. Note that this screen dump was taken after 10
seconds, the system resources continue dropping; after a minute the system resources were less than 10%
and the system was completely unusable.

The reason why the screen dump (figure 7.12a) was taken after 10 seconds was because the system
resources got so low that it was impossible to capture the screen. Screen dump (figure 7.12b) was taken
after 40 seconds, notice that it was impossible to get a colour image, after a minute it was completely
impossible to capture the screen.

Clearly there must be a big memory leak problem.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 82 Chapter 7: The Scope Program

Figure 7.12b: Screen dump of Windows 98 running ‘Scope’
V1.008a taken after 40 seconds

Figure 7.12c: Screen dump of Windows 2000 running ‘Scope’

V1.008a

Figure 7.12c clearly shows that Windows 2000 does not have any problems running scope V1.008a, the
CPU load is less and 2% and the memory usage is stable. At first it was not understood why it was working
in Windows 2000 and not Windows 98.

On the 24th December 2001 the problem was solved, there was indeed a memory leak. Every 100ms the
screen is refreshed, e.g. a new bitmap is created and the waveform is drawn to the bitmap, this bitmap is
then drawn to the screen, but the existing screen bitmap was being lost in memory. Therefore 10-times a
second, a bitmap the size of the graphical display was being lost in memory, eating-up memory resources.

The solution was to setup a pointer to this old bitmap, and delete the object.
void CScopeView::OnDrawCH1()
{
 ...
 CBitmap *m_bitmapOldCH1 = NULL;
 ...
 if (m_dcCH1.GetSafeHdc() == NULL) // if we don't have one yet, set up a memory dc for ch1
 {
 m_dcCH1.CreateCompatibleDC(&dc);
 m_bitmapCH1.CreateDiscardableBitmap(&dc, m_nClientWidth, m_nClientHeight);
 m_bitmapOldCH1 = m_dcCH1.SelectObject(&m_bitmapCH1);
 }
 else
 {
 m_bitmapCH1.CreateDiscardableBitmap(&dc, m_nClientWidth, m_nClientHeight);
 m_bitmapOldCH1 = m_dcCH1.SelectObject(&m_bitmapCH1);
 }

 m_bitmapOldCH1->DeleteObject(); // Make Sure there is not a memory leak
 ...
}

Figure 7.12d: Screen dump of Windows 98 running ‘Scope’

V1.010a

Figure 7.12e: Screen dump of Windows 2000 running ‘Scope’

V1.010a

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 83 Chapter 7: The Scope Program

Screen dump (figure 7.12d) clearly shows that this solved the problem, CPU load is now 12%, and system
resources (including physical memory) are stable. Figure 7.12e clearly shows that the modifications did not
affect the operation of the ‘scope’ program in Windows 2000, CPU load is less than 2% and memory usage
is stable.

The reason why ‘Scope’ version 1.008a worked in Windows 2000 is because it is a far superior operating
system that can deal with memory leaks, while Windows 98 cannot deal with memory leaks (one of the
reasons why it’s so unstable). This experiment clearly demonstrates how much better Windows 2000 is than
Windows 98, also notice that the CPU load is much lower in Windows 2000 (<2%) when compared with
Windows 98 (≈12%).

7.13. Windows XP Compatibility Problem (scope v1.017a, 05/02/2002)

On the 3rd of February 2002 it was discovered that there is a problem when running the scope program in
Windows XP, CPU load was high, which increased when the scope display was enlarged. AT first it was not
understood why this could be happening as the program had no problems running in Windows 98 and
Windows 2000. Note Windows XP running on laptop (AMD 1GHz, 8MB 3D video card, 256MB of PC133
RAM) and Windows 2000/98 dual boot running on desktop (AMD 800MHz, 64MB 3D video card, 256MB of
PC133 RAM).

The colours settings in the display control panel (Win XP) was changed from 24-bit to 16-bit, this reduced
CPU load. But in Windows 2000 the colours are set to 32-bit and the CPU load is less than 2%, and in
Windows 98 the colours are also set to 32-bit and the CPU load is less than 10%. Clearly Windows XP is
trying to display the scope graphics at full colour specified in the display control panel.

The program creates a new bitmap (in XP same number of colours as the system) every time the screen is
refreshed and deletes the old bitmap to make sure there is not a memory leak. Clearly this is bad
programming practice as it is not necessary to create a new bitmap every time, but only when the screen is
resized. The code will be modified in the near future so that this is the case, this will reduce CPU load but the
problem remains when the window is being resized. It makes sense to try and also modify the code so that
only a 256 colour bitmap is created, and not one with same number of colours as the system, in reality the
scope display will use less than 16 colours (no need for 16-bit/24-bit/32-bit colour).

The big question is why this problem is not present in Windows 2000, there are two possible reasons: -

1. Windows 2000 may limit the number of colours that can be used by the program, e.g. the scope
display is not 32-bit colour as used by the system.

2. The high end Creative Labs 3D Blaster GeForce 3 Titanium 200 64MB (400MHz DDR RAM) 3D

accelerator video card in the desktop (running dual boot Windows 98/Windows 2000) is able to
do some of the work. Although the scope program is not using DirectX or OpenGL hence this is
unlikely.

Figure 7.13a. Screen dump of Compatibility option in Win XP

Figure 7.13b. Screen dump of display properties in Win XP

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 84 Chapter 7: The Scope Program

Figure 7.13a shows the compatibility options available for the scope program running in Windows XP; notice
the “Run in 256 colours” option. If this option is clicked the program is limited to 256 colours (this works).
Figure 7.13b shows the display properties in Window XP, note when running in 16-bit colour mode the scope
program runs smoothly.

7.14. Additional Video Card Features That May Explain Low CPU Usage

The scope program when running on the desktop system running Windows 2000 (800MHz AMD processor,
256MB PC133 RAM, and Creative Labs 3D Blaster GeForce 3 Titanium 200 64MB 3D accelerator video
card) uses less than 2% of the CPU load. But when tested on a UUJ computer (lab: 6C49, computer: Intel
P4 1.5GHz, 256MB RAM, Windows 2000), it was shocking to note that the scope program was using 10% of
the CPU, that’s 5-times more than that of the 800Mhz desktop system even though its clock speed is almost
half the speed. OK AMD processors are faster than Intel’s (e.g. 800MHz AMD is equal to 1GHz Intel P4), but
not by this amount so something else much be making up the difference.

Clearly the video card must be accelerating windows graphics as well as direct X, and open GL and may be
the reason for the low CPU usage on the desktop, when compared to the laptop and university machines. It
was noticed that Geforce 3 video card drivers have added new features to windows that makes it probable
that the video card is hardware accelerating standard windows operations.

Figure 7.14a. Demonstrating the transparent window feature, added to the windows system menu by the video card drivers.

Figure 7.14a demonstrates the transparent window feature that was added to the windows system menu by
video card drivers. Clearly this feature requires hardware acceleration; hence it is plausible that all windows
based drawing is being acceleration by hardware.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 85 Chapter 7: The Scope Program

Figure 7.14b. nView Menu Extension Options

Figure 7.14c. nView Desktop Manager

Clearly the scope program is far too processor hungry and future modification is required to make it more
efficient. Allow if 10% of the processor is used for a 1.5GHz machine, this means the program should run on
a 150 MHz machine (perhaps poorly). By reducing the refresh rate of the scope display (or using a high-end
video card) the scope program could be ran on slower machines, it has been tested on a p90 and runs
smoothly with a refresh rate of 200 milliseconds, but the CPU load is at 100% and scope controls are
sluggish to react to user input.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 86 Chapter 8: The Simulator Program

8.0. THE SIMULATOR PROGRAM

This program is a windows dialog based program written in Microsoft Visual C++ 6.0, Figure 8.0a shows a
screen dump of the main dialog. The program is easy to use; the user selects the type of waveform,
amplitude and frequency for each channel. The PC based scope program will automatically enable / disable
channels using the ‘control’ protocol (user can override using the tick boxes beside channel number).

Figure 8.0a. Screen dump of sim.exe V1.007a - 29/03/2002

If a channel is disabled all of its controls are greyed (i.e. ch3 and ch4 are disabled in figure 8.0a), notice that
the user has the option to specify real-time, storage or auto (controlled by PC). At present ‘auto’ and
‘storage’ mode have not been implemented. There are two large edit boxes that were designed to be used to
display RX and TX history in a low level format, for debugging purposes, this feature was not implemented
because there were no communication problems during development.

The program was used to test the communication protocols (real-time, storage, control) and graphical scope
display (including triggering methods) at different baud rates. Note accurate timing is not simulated as this is
difficult to achieve, hence the best way of testing the timing is on an actual PIC (hence the frequency settings
for each channel are to be used as a guild and are not accurate).

Note the amplitude value of each channel is between 0 to 5V assuming this range is selected on the scope
program (e.g. input range). It was foreseen that the scope program would control the input range, but this
has not implement (shortage of time, future development), hence for the amplitude values on the simulator
program to be accurate the correct range must be selected. This program can still be used to test other
voltage input ranges, for example the simulator program 5V represents an ADC reading of 1024, and 0V
represents an ADC reading of 0, hence if -10 to 10 V range on the scope program is selected 5V will
represent 10V, 2.5V will represent 0V and 0V will represent -10V.

Simulation of all four channels is possible, after the user has setup each channel, communication with the
scope program is enabled by clicking the [Enable] button. The user can even specify a simulated sample
rate, basically specifying how many real-time frames are transmitted per second.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 87 Chapter 8: The Simulator Program

Figure 8.0b shows a screen dump of the ‘Options’ dialog box, which is used to configure the RS232 serial
port in a user-friendly manner.

Figure 8.0b. Screen dump of options dialog in sim.exe V1.007a – 29/03/2002

Figure 8.0c shows a screen dump of the ‘About’ dialog box, which displays information about the program
and the author, including some useful hyperlinks.

Figure 8.0c. Screen dump of about dialog in sim.exe V1.007a – 29/03/2002

8.1. How Channel Simulation Is Achieved?

A real-time software interrupt is used to call the communication protocol function ‘ComProtocolTop()’. When
an interrupt occurs the program first checks that communications is enabled, if its enabled function

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 88 Chapter 8: The Simulator Program

‘ComProtocolTop()’ is called, then it sets the timer (delay until next interrupt) based on the specified
‘simulated sample rate’, so that the specified number of samples per second is actually transmitted per
second.

This function is called on software interrupt: -
void CSimDlg::OnTimer(UINT nIDEvent)
{
 double timer,freq;

 if(nIDEvent == ID_TIMER_COMS)
 {
 KillTimer(ID_TIMER_COMS);
 if (m_Enable == true) ComProtocolTop();

 /** Set the timer based on the value in the sample rate edit box */
 freq = (double)GetDlgItemInt(IDC_SAMPLERATE);
 timer = (1.0/freq)*10000.0;
 SetTimer(ID_TIMER_COMS,(int)timer,NULL);
 }

 ...

 CDialog::OnTimer(nIDEvent);
}

This function is called by the OnTImer function: -
void CSimDlg::ComProtocolTop()
{
 int i;
 UpdateData(TRUE);

 /** RealTime **/
 if (IsDlgButtonChecked(IDC_REALTIME))
 {
 for (i = 1; i<10;i++)
 {
 if (m_EnableCH1 == TRUE) SimCH1();
 if (m_EnableCH2 == TRUE) SimCH2();
 if (m_EnableCH3 == TRUE) SimCH3();
 if (m_EnableCH4 == TRUE) SimCH4();
 }
 }
}

This function simulates CH1 (all four channels are done the same way): -
void CSimDlg::SimCH1()
{
 /** 15/03/2002, by CKM Version 1.6 */

 unsigned short temp;
 unsigned char ch1_b1, ch1_b2;

 double value;
 double freq = 50.0;
 double amp;

 amp = (double)GetDlgItemInt(IDC_AMP_CH1,NULL,TRUE);
 freq = (double)GetDlgItemInt(IDC_FREQ_CH1) * 200;

 if(m_nCH1WaveType == SINE)
 {
 value = amp * sin((2*3.14159 *freq *t1));
 temp = (unsigned short)(512.0+(102.4 * value));
 t1 = t1 + 1;
 if (t1 > freq) t1 = 1.0;
 }

 if(m_nCH1WaveType == SQUARE)
 {
 value = 10 * sin((2*3.14159 *freq *t1));
 if (value >0) value = amp;

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 89 Chapter 8: The Simulator Program

 else value = amp * -1.0;
 temp = (unsigned short)(512.0+(102.39 * value));
 t1 = t1 + 1;
 if (t1 > freq) t1 = 1.0;
 }

 if(m_nCH1WaveType == RANDOM)
 {
 temp = rand()%1024;
 }

 ch1_b1 = temp >> 5;
 ch1_b1 = ch1_b1 & 0x1F; // & 00011111

 ch1_b2 = (unsigned char)temp;
 ch1_b2 = ch1_b2 | 0x80; // | 1000 0000

 trans (ch1_b1);
 trans (ch1_b2);
}

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 90 Chapter 9: Test Program

9.0. TEST PROGRAM

Test.exe is a MS DOS based application designed to test the digital hardware (using RS232), it has many
features and has a user-friendly interface, allow some of the test procedures are low-level designed for use
by an engineer and not the average person. Full source code is found in appendix 2.

Note allow this is a DOS program it will run under Windows, even though Windows NT/2000/XP do not allow
direct access to the hardware (e.g. RS232), it will simulate the operation of the RS232 UART allowing DOS
based programs to access the serial port as long as another program is not already using the required port.

9.1. User Manual

Main menu, user has 9 options (just hit the key corresponding to the required function): -
PC-Based Oscilloscope Test Program

RX Terminal -- hit 1
TX Terminal -- hit 2
Manual RTU frame with CRC -- hit 3
Manual RTU frame no CRC -- hit 4
Simulated Random Noise -- hit 5
Loop-back test -- hit 6
Change Baud Rate -- hit 7
About -- hit 8
Quit -- hit Q

[1] RX Terminal

RX Terminal

Waiting for message (press a key to stop)

Simple RX Terminal, basically every character that is received from COM 1, is printed on the screen using
the ASICII format. Note some non-alphanumerical characters have special functions, e.g. Backspace, Bell,
etc… If [anykey] is pressed the program returns to the main menu.

This function can be used to test the PICs RS232 (transmit mode) and all of the hardware involved, e.g. PIC
UART, MAX232 and cable. It can also be used to help debug the PIC software, e.g. printf() (CCS code) can
be used to display variable information in order to try and workout what is happening.

[2] TX Terminal

TX Terminal

Type your message hit [ENTER] to transmit: -

Simple TX terminal, the user types in a message and then hits the [ENTER] key to transmitted the message
through RS232. Note after transmission the ‘RX Terminal’ function is automatically called, so that any replay
can be received.

This function can be used to test the PICs RS232 (receive mode) and all of the hardware involved, e.g. PIC
UART, MAX232 and cable. Since ‘RX terminal’ is called automatically after transmission, it is possible to fully
test RS232 communications, e.g. setup the PIC so that it transmits every character it receives. If the received
message is the same as the transmitted message clearly RS232 communications is working.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 91 Chapter 9: Test Program

[3] Manual RTU frame with CRC

Manual RTU frame with added CRC

Enter RTU_frame in byte's enter 'DF' when finished
RTU_frame[0] (e.g 01) = 01
RTU_frame[1] (e.g 01) = 02
RTU_frame[2] (e.g 01) = df
Calculated CRC (Hex): 81E1
Total Frame Length (Dec): 4

Sending RTU Frame (HEX): -
1 2 81 E1

Finished Sending RTU Frame

User manually enters a frame of data in hexadecimal, once 0xDF is entered the program assumes that the
frame is complete and calculates the 16-bit CRC which is added to the end of the frame. The whole frame is
then transmitted through RS232.

This function can be used to generate test ‘storage mode’ frames when testing the scope program and test
‘control protocol’ frames for manually controlling the PIC.

[4] Manual RTU frame no CRC

Manual RTU frame no CRC

Enter RTU_frame in byte's enter 'DF' when finished
RTU_frame[0] (e.g 01) = 1
RTU_frame[1] (e.g 01) = 2
RTU_frame[2] (e.g 01) = df
Total Frame Length (Dec): 2

Sending RTU Frame (HEX): -
1 2

Finished Sending RTU Frame

User manually enters a frame of data in hexadecimal, once 0xDF is entered the program assumes that the
frame is complete and transmits the frame. This function can be used to generate test ‘real-time’ frames.

[5] Simulated Random Noise

Simulated Random Noise

No delay between bytes -- Hit 1
Random delay (0 to 100ms) between bytes -- hit 2
User sets delay in milliseconds -- hit 3
Cancel - Return to Main Menu -- hit 4

This function simulates random noise; there are three formats to choose from. The first transmits random
bytes through RS232 continuously with no delay between the bytes. The second has a random delay
between bytes and the third has a user configurable delay between the bytes.

This function is used to test the reliability of both the scope.exe program and the PIC embedded software.
For example simulated noise is sent to the scope.exe program for a couple of hours, during this time the
program must not crash and when the random noise has been removed the program must continue to
operate normally.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 92 Chapter 9: Test Program

[6] Loop-Back Test

 Test Started: 11:02:23

 Testing 100% - FAIL
 * Test 1 - FAIL
 * Test 2 - FAIL
 * Test 3 - FAIL

 Test Finished: 11:02:25

Three tests are carried out: -

Test 1: Data 0 255 0 is transmitted with a 16-bit CRC and compared with the received block
(514 bytes).

Test 2: Random data from 0 to 255 is transmitted with a 16-bit CRC and compared with the received
block (514 bytes).

Test 3: Random data 0x00 or 0xFF is transmitted with a 16-bit CRC and compared with the received
block (514 bytes).

This function can test the PC serial port by connecting pin2 and pin3 together (RX & TX), or PIC software
can be written to fully test communications by transmitting every character it receives. If this test is
successfully, it is certain that communications between the PC and the PIC is extremely good as this test
requires an extremely good clean connection (will fail if one character has been corrupted).

[7] Change Baud Rate

 Baud Rate (Current = 009600 bps)

 115200 bps -- bit 1
 57600 bps -- hit 2
 38400 bps -- hit 3
 19200 bps -- hit 4
 14400 bps -- hit 5
 9600 bps -- hit 6
 4800 bps -- hit 7
 2400 bps -- hit 8
 1200 bps -- hit 9
 No Change -- hit 0

User can change the baud rate by hitting the appropriate key.

[8] About

| Final Year Project EEE516J4 |
| University of Ulster |
| BEng (hons) Electronic Systems |
| |
| Date: 22/02/2002 |
| Revision: 1.05 |
By: Colin K McCord

Information about the program and the author.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 93 Chapter 9: Test Program

9.2. How is RS232 Communications Achieved?

Setup UART constants and RS232 buffer: -
#define COM 0x3f8 /* COM1=0x3f8, COM2=0x2f8 */
#define RBR 0 /* Receive Buffer Register */
#define THR 0 /* Transmit Holding Reg. */
#define DLL 0 /* Divisor Latch LSB */
#define DLM 1 /* Divisor Latch MSB */
#define IER 1 /* Interrupt Enable Reg. */
#define IIR 2 /* Interrupt ID Register */
#define FCR 2
#define AFR 2
#define LCR 3 /* Line Control Register */
#define MCR 4 /* Modem Control Register */
#define LSR 5 /* Line Status Register */
#define MSR 6 /* Modem Status Register */
#define SCR 7 /* The Scratch Register */
#define I8259M 0x21
#define I8259 0x20 /* The address of the 8259 */
#define EOI 0x20 /* The end of int command */

#define IRQ 4
#define SIZE 512 /* Buffer size */

char buffer[SIZE]; /* Receiving buffer */
char *i_get, *i_put; /* Pointer to buffer */
unsigned int baud; /* Baud Rate */

Initialise UART (set speed, set data format, set ISR address etc…): -
int line,mask; /* Comm parameters */

void interrupt(*old_handler)();
old_handler=getvect(IRQ+8); /* Old ISR address */

i_put=i_get=buffer; /* Pointer initialisation */
memset(buffer,0,SIZE); /* Buffer initialisation */

baud=0x0c; /* 0x01 = 115200 bps
 0x02 = 57600 bps
 0x03 = 38400 bps
 0x06 = 19200 bps
 0x0c = 9600 bps */

line=0x03; /* 8 bits, non parity, 1 stop */

/* initialisation */
outportb(COM+IER,0);
inportb(COM+LSR);
inportb(COM+MSR);
inportb(COM+IIR);
inportb(COM+RBR);

/* set speed */
outportb(COM+LCR, inportb(COM+LCR) | 0x80);
outportb(COM+DLM,baud>>8);
outportb(COM+DLL,baud&0xff);
outportb(COM+LCR,inportb(COM+LCR) & 0x7f);

/* set data format */
outportb(COM+LCR,line);
outportb(COM+MCR,0x0b);
outportb(COM+IER,0x01);

/* set ISR address */
disable();
setvect (IRQ+8,com_handler);
enable();

mask=inportb(I8259M);
mask &=~(1<<IRQ);
outportb(I8259M,mask);

Interrupt routine for storing incoming characters on the buffer: -
void interrupt com_handler()

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 94 Chapter 9: Test Program

{
 /* ---
 | Function: com_handler |
 | Description: Interrupt's normal program operation when |
 | incoming character's are detected and |
 | store's them on the buffer. |
 | Input: none |
 | Output: Incoming character's stored on buffer |
 | Return: none |
 --- */

 *i_put++=inportb(COM+RBR);
 if(i_put==&buffer[SIZE]) i_put=buffer;
 outportb(I8259,EOI);
}

Transmitting a single character: -
void trans(int c)
{
 /* ---
 | Function: trans |
 | Description: Wait's until UART is ready and then |
 | transmits a single character. |
 | Input: Character 'c' |
 | Output: Transmit 'c' through COM port using RS232 |
 | Return: none |
 --- */

 while(!(inportb(COM+LSR) & 0x20));
 outportb(COM+THR,c);
}

Receiving a single character: -
int readchr (char *c)
{
 /* ---
 | Function: readchr |
 | Description: Check's if character has been received, |
 | store's received character into 'c' |
 | Input: Address of character 'c' |
 | Output: 'c' now contains received character |
 | Return: 0 when character is present else -1 |
 --- */

 if (i_get==i_put) return(-1);
 *c=*i_get++;
 if(i_get==&buffer[SIZE]) i_get=buffer;
 return (0);
}

Changing the baud rate after Initialisation: -
void baud_rate(void)
{
 /* ---
 | Function: baud_rate(void) |
 | Description: User selects, baud rate via keyboard |
 | Input: keyboard |
 | Output: baud rate changed |
 | Return: none |
 --- */

 int rate; /* Baud Rate */

 /* 0x01 = 115200 bps
 0x02 = 57600 bps
 0x03 = 38400 bps
 0x06 = 19200 bps
 0x08 = 14400 bps
 0x0c = 9600 bps */
 clrscr();

 rate = (115200 / baud);
 if(baud != 1)
 printf(" Baud Rate (Current = %.6u bps)",rate);

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 95 Chapter 9: Test Program

 else
 printf(" Baud Rate (Current = 115200 bps)");
 printf("\n------------------------------------");
 printf("\n 115200 bps -- bit 1");
 printf("\n 57600 bps -- hit 2");
 printf("\n 38400 bps -- hit 3");
 printf("\n 19200 bps -- hit 4");
 printf("\n 14400 bps -- hit 5");
 printf("\n 9600 bps -- hit 6");
 printf("\n 4800 bps -- hit 7");
 printf("\n 2400 bps -- hit 8");
 printf("\n 1200 bps -- hit 9");
 printf("\n No Change -- hit 0");

 switch(getch())
 {
 case '1':
 baud = 0x01;
 break;
 case '2':
 baud = 0x02;
 break;
 case '3':
 baud = 0x03;
 break;
 case '4':
 baud = 0x06;
 break;

 case '5':
 baud = 0x08;
 break;
 case '6':
 baud = 0x0c;
 break;

 case '7':
 baud = 0x18;
 break;

 case '8':
 baud = 0x30;
 break;

 case '9':
 baud = 0x60;
 break;

 default:
 clrscr();
 return;

 }

 /* set speed */
 outportb(COM+LCR, inportb(COM+LCR) | 0x80);
 outportb(COM+DLM,baud>>8);
 outportb(COM+DLL,baud&0xff);
 outportb(COM+LCR,inportb(COM+LCR) & 0x7f);

 rate = 115200 / baud;
 if(baud != 1) printf("\n\nBaud Rate Changed to %u bps",rate);
 else printf("\n\nBaud Rate Changed to 115200 bps",rate);
 clrscr();
}

The source code is reasonable readably (lots of comments and partitioned into many functions), hence if the
reader of this report wises to find out how any other aspect of the program works see appendix ### for the
complete source code.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 96 Chapter 10: PIC Software Development

10.0. PIC SOFTWARE DEVELOPMENT

The philosophy used during the development of the PIC code was to keep it simple, straightforward,
comprehensible, and to a minimum. There are many small programs designed for testing the hardware and
ideas, each program is labelled mark 1, 2, 3, etc… The end result is that the PIC code is gradually built up
step-by-step, instead of writing the entire program at once. This ensures that operational results are
obtained, as testing producers are carried out at each stage, while if the program was written all at once,
there is little chance it will work and could prove difficult to debug.

The high-level programming language C was chosen and not the low-level assembly code normally
associated with PIC programming. There are many advantages for using C including: ease of programming,
ease of modification, reusability of code, use of standard functions (e.g. printf, getc, putc, etc…), etc… But
there is one drawback, C code is much less efficient, for example typically code produced by the C compiler
(CCS) is at least twice as large as that programmed in assembly. Since the PIC16F877 has a large program
store (8k) and runs at 20MHz this drawback is not a problem.

10.1. Mark 1.c (Test RS232 Communications)

This program is extremely simple; basically it initialises RS232 communications and transmits “Testing…”
once a second (see figure 10.1a). This program was used to test RS232 communications (transmit mode),
including MAX232, PIC UART and cable. The PIC is connected to a PC which is running the DOS-based test
program in RX terminal mode to receive the incoming characters.

Start

Setup RS232:
Hardware UART,
baud rate 9600

Transmit
“Testing…" 1 Second Delay

Figure 10.1a. Mark 1 flowchart

Mark 1.c source code: -
/* --
 | FILE : mark 1.c |
 | PROJECT : Low Cost PC Based Oscilloscope |
 | DESC : Test RS232 |
 | == |
 | DATE : 19/02/2002 |
 | BY : Colin K McCord |
 | VERSION : 1.0 |
 -- */

#include <16F877.h>
#device PIC16F877 *=16 ADC=10

#fuses HS,NOWDT,NOPROTECT,NOLVP
#use delay(clock = 4000000) // 4MHz clock, change this value if using different clock speed.
#use rs232(baud=9600, xmit = PIN_C6, rcv = PIN_C7, parity = N, bits = 8)

main()
{
 while(TRUE)
 {
 /* Note printf could be used but this function is wasteful and will not be used */
 putc('T'); // Transmit T
 putc('e'); // Transmit e
 putc('s'); // Transmit s
 putc('t'); // Transmit t
 putc('i'); // Transmit i
 putc('n'); // Transmit n
 putc('g'); // Transmit g

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 97 Chapter 10: PIC Software Development

 putc('.'); // Transmit .
 putc('.'); // Transmit .
 putc('.'); // Transmit .

 delay_ms(1000); // Preset delay, repeat every second
 }
}

10.2. Mark 2.c (Fully Test RS232 Communications)

This program is extremely simple; basically it initialises RS232 communications and waits for an incoming
character, once a character is received the character is transmitted, this process repeats forever (see figure
10.2a). This program is used to fully test RS232 communications, using the test program in TX terminal
mode to transmit a message and then in RX terminal mode to receive a message. A more comprehensive
test can be carried out using the test program in the loop-back test mode; if this test passes it is certain that
RS232 communications are optimal.

Start

Setup RS232:
Hardware UART,
baud rate 9600

Wait for an
incoming
character

Transmit the
received
character

Figure 10.2a. Mark 2 flowchart

Mark 2.c source code: -
/* ---
 | FILE : mark_2.c |
 | PROJECT : Low Cost PC Based Oscilloscope |
 | DESC : Test Serial Communications, waits for an |
 | incoming char and transmits the char. |
 | == |
 | DATE : 19/02/2002 |
 | BY : Colin K McCord |
 | VERSION : 1.0 |
 -- */

#include <16F877.h>
#device PIC16F877 *=16 ADC=10

#fuses HS,NOWDT,NOPROTECT,NOLVP
#use delay(clock = 4000000)
#use rs232(baud=9600, xmit = PIN_C6, rcv = PIN_C7, parity = N, bits = 8)

main()
{
 /* Note kbhit() can be used to check for incoming char before calling getc() */
 while(TRUE)
 {
 putc(getc()); // Wait for incoming char and transmit....
 }

}

10.3. Mark 3.c (Real-Time Mode: 1 Channel, Fixed Sampling Delay)

This program reads ADC channel AN0 and transmits the reading through RS232 using the real-time frame
structure with a fixed sampling delay of 10mS (that’s a sample rate of 100Hz) before repeating (see figure
10.3a). This program is extremely useful, as it tests the ADC, the scope program, and the real-time frame
structure. The sample rate is fixed; allow the sample delay can be manually modified (e.g. 1ms = 1000Hz)
and the program recompiled and load into the PIC, hence testing of different sample rates is possible.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 98 Chapter 10: PIC Software Development

Start

Setup RS232:
Hardware UART,
baud rate 9600

Setup ADC:
10-bits, right

justified

Select channel
AN0

20µs delay Read ADC

Convert reading
into real-time

frame structure
Transmit

real-time frame

10ms delay
(100Hz)

Figure 10.3a. Mark 3 flowchart

Mark 3.c source code: -
/* --
 | FILE : mark_3.c |
 | PROJECT : Low Cost PC Based Oscilloscope |
 | DESC : Read CH1 ADC, transmit result through |
 | : RS232 using the real-time frame format. |
 | == |
 | DATE : 19/02/2002 |
 | BY : Colin K McCord |
 | VERSION : 1.1 |
 -- */

#include <16F877.h>
#device PIC16F877 *=16 ADC=10

// use #device adc = 10 to implement a 10-bit conversion,
// otherwise the default is 8-bits.

#fuses HS,NOWDT,NOPROTECT,NOLVP
#use delay(clock = 4000000)
#use rs232(baud=9600, xmit = PIN_C6, rcv = PIN_C7, parity = N, bits = 8)

main()
{
 // NOTE: by default in CCS all var's are unsigned
 long int adcValue; // 16-bit storage for ADC reading
 char adcHI,adcLO; // 8-bit storage for real-time frames.

 setup_adc_ports(A_ANALOG); // RA0 - RA4 Analogue, RE0 - RE2 digital
 setup_adc(ADC_CLOCK_INTERNAL); // Use internal ADC clock.
 set_adc_channel(0);

 delay_us(20); // Delay for sampling cap to charge

 while(TRUE)
 {
 adcValue = read_adc(); // Get ADC reading

 /* Convert 16-bit adcValue to Real-time frame structure, CH1 */
 adcHI = (char)((adcValue >> 5)& 0x1f); // 0|0|0|d9|d8|d7|d6|d5
 adcLO = (char)((adcValue & 0x1f)|0x80); // 1|0|0|d4|d3|d2|d1|d0

 putc(adcHI); // Transmit Byte 1 (d9...d5)
 putc(adcLO); // Transmit Byte 2 (d4...d0)

 delay_ms(10); // Preset delay, repeat every 10ms
 }
}

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 99 Chapter 10: PIC Software Development

10.4. Mark 4.c (Test RS232, Baud-Rate Set by Dip-Switches)

Same as mark 1.c with the addition of function SetBaudRate(), this function sets the UART baud-rate based
on the positions of the DIP switches that are connected to port E. This program is used to test the reading of
the DIP switches and RS232 communications at different baud rates. Note that the PIC must be running at
20MHz because the percentage error for 115Kbps is too large at slower clock speeds.

Mark 4.c source code: -
/* --
 | FILE : mark_4.c |
 | PROJECT : Low Cost PC Based Oscilloscope |
 | DESC : Test RS232, baud rate set by dip switches. |
 | == |
 | DATE : 01/03/2002 |
 | BY : Colin K McCord |
 | VERSION : 1.0 |
 -- */

#include <16F877.h>
#device PIC16F877 *=16 ADC=10

#fuses HS,NOWDT,NOPROTECT,NOLVP

#byte PORTE = 0x09 // PortE lives in File 9

/* Note 20MHz clock must be used for 115,000 bps, the % error is to large at slower speeds */
#use delay(clock = 20000000) // 20MHz clock, change this value if using different clock speed.
#use rs232(baud=9600, xmit = PIN_C6, rcv = PIN_C7, parity = N, bits = 8)

#use fast_io(E) // Fast access to PortE (don't fiddle with TRISE)

/* Forward declaration of functions */
void SetBaudRate();

main()
{
 set_tris_e(0x17); // TRISE = 00010111; RE2,RE1 and RE0 TTL Inputs

 SetBaudRate();

 while(TRUE)
 {
 /* Note printf could be used but this function is wasteful and will not be used */
 putc('T'); // Transmit T
 putc('e'); // Transmit e
 putc('s'); // Transmit s
 putc('t'); // Transmit t
 putc('i'); // Transmit i
 putc('n'); // Transmit n
 putc('g'); // Transmit g
 putc('.'); // Transmit .
 putc('.'); // Transmit .
 putc('.'); // Transmit .

 delay_ms(1000); // Preset delay, repeat every second
 }
}

void SetBaudRate()
{
 switch(PORTE & 0x07) // Read dip switches and setup baud rate
 {
 case 0: set_uart_speed(4800); break;
 case 1: set_uart_speed(9600); break;
 case 2: set_uart_speed(14400); break;
 case 3: set_uart_speed(19200); break;
 case 4: set_uart_speed(32768); break;
 case 5: set_uart_speed(38400); break;
 case 6: set_uart_speed(57600); break;
 case 7: set_uart_speed(115200); break;
 }
}

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 100 Chapter 10: PIC Software Development

10.5. Mark 5.c (Fully Test RS232 Communications, Adjustable Baud-Rate)

Same as mark2.c with the addition of function SetBaudRate(), this function sets the UART baud-rate based
on the positions of the DIP switches that are connected to port E. This program is used to fully test RS232
communications at different baud rates.

Mark 5.c source code: -
/* ---
 | FILE : mark_5.c |
 | PROJECT : Low Cost PC Based Oscilloscope |
 | DESC : Test Serial Communications, waits for an |
 | incoming char and transmits the char. Baud |
 | rate set by dip switches. |
 | == |
 | DATE : 01/03/2002 |
 | BY : Colin K McCord |
 | VERSION : 1.0 |
 -- */

#include <16F877.h>
#device PIC16F877 *=16 ADC=10

#fuses HS,NOWDT,NOPROTECT,NOLVP

#byte PORTE = 0x09 // PortE lives in File 9

/* Note 20MHz clock must be used for 115,000 bps, the % error is to large at slower speeds */
#use delay(clock = 20000000) // 20MHz clock.
#use rs232(baud=9600, xmit = PIN_C6, rcv = PIN_C7, parity = N, bits = 8)

/* Forward declaration of functions */
void SetBaudRate();

main()
{
 set_tris_e(0x17); // TRISE = 00010111; RE2,RE1 and RE0 TTL Inputs
 SetBaudRate();

 /* Note kbhit() can be used to check for incoming char before calling getc() */
 while(TRUE)
 {
 putc(getc()); // Wait for incoming char and transmit....
 }

}

void SetBaudRate()
{
 switch(PORTE & 0x07) // Read dip switches and setup baud rate
 {
 case 0: set_uart_speed(4800); break;
 case 1: set_uart_speed(9600); break;
 case 2: set_uart_speed(14400); break;
 case 3: set_uart_speed(19200); break;
 case 4: set_uart_speed(32768); break;
 case 5: set_uart_speed(38400); break;
 case 6: set_uart_speed(57600); break;
 case 7: set_uart_speed(115200); break;
 }
}

10.6. Mark 6.c (Real-Time Mode: 1 Channel, Fixed Delay, Adjustable Baud-Rate)

Same as mark3.c with the addition of function SetBaudRate(), this function sets the UART baud-rate based
on the positions of the DIP switches that are connected to port E. This program is used to test the real-time
communications protocol and scope program at different baud rates.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 101 Chapter 10: PIC Software Development

Mark 6.c source code: -
/* --
 | FILE : mark_6.c |
 | PROJECT : Low Cost PC Based Oscilloscope |
 | DESC : Read CH1 ADC, transmit result through |
 | : RS232 using the real-time frame format. |
 | : Baud rate set by dip-switches. |
 | == |
 | DATE : 01/03/2002 |
 | BY : Colin K McCord |
 | VERSION : 1.2 |
 -- */

#include <16F877.h>
#device PIC16F877 *=16 ADC=10

// use #device adc = 10 to implement a 10-bit conversion,
// otherwise the default is 8-bits.

#fuses HS,NOWDT,NOPROTECT,NOLVP

#byte PORTE = 0x09 // PortE lives in File 9

/* Note 20MHz clock must be used for 115,000 bps, the % error is to large at slower speeds */
#use delay(clock = 20000000)
#use rs232(baud=9600, xmit = PIN_C6, rcv = PIN_C7, parity = N, bits = 8)

#use fast_io(E) // Fast access to PortE (don't fiddle with TRISE)

/* Forward declaration of functions */
void SetBaudRate();

main()
{
 // NOTE: by default in CCS all var's are unsigned
 long int adcValue; // 16-bit storage for ADC reading
 char adcHI,adcLO; // 8-bit storage for real-time frames.
 set_tris_e(0x17); // TRISE = 00010111; RE2,RE1 and RE0 TTL Inputs
 SetBaudRate();

 setup_adc_ports(A_ANALOG); // RA0 - RA4 Analogue, RE0 - RE2 digital
 setup_adc(ADC_CLOCK_INTERNAL); // Use internal ADC clock.
 set_adc_channel(0);

 delay_us(20); // Delay for sampling cap to charge

 while(TRUE)
 {
 adcValue = read_adc(); // Get ADC reading

 /* Convert 16-bit adcValue to Real-time frame structure, CH1 */
 adcHI = (char)((adcValue >> 5)& 0x1f); // 0|0|0|d9|d8|d7|d6|d5
 adcLO = (char)((adcValue & 0x1f)|0x80); // 1|0|0|d4|d3|d2|d1|d0

 putc(adcHI); // Transmit Byte 1 (d9...d5)
 putc(adcLO); // Transmit Byte 2 (d4...d0)

 delay_ms(1); // Preset delay, repeat every 1ms, that’s 1000 Hz
 // baud rate must be at least 20000bps, try 32768bps.
 }
}

void SetBaudRate()
{
 switch(PORTE & 0x07) // Read dip switches and setup baud rate
 {
 case 0: set_uart_speed(4800); break;
 case 1: set_uart_speed(9600); break;
 case 2: set_uart_speed(14400); break;
 case 3: set_uart_speed(19200); break;
 case 4: set_uart_speed(32768); break;
 case 5: set_uart_speed(38400); break;
 case 6: set_uart_speed(57600); break;
 case 7: set_uart_speed(115200); break;
 }
}

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 102 Chapter 10: PIC Software Development

10.7. Mark 7.c (Test Timer Interrupts)

This program uses all of the PICs built-in timers, basically timers 0-2 are setup to cause an interrupt. An
interrupt subroutine has been written for each timer; at preset intervals (0.5s, 0.25s, & 0.1s) a message is
transmitted to the PC. The main program is stuck in a loop transmitting “main…” every second, Timer0_ISR
transmits “Interrupt_T0…” every 0.5s, Timer1_ISR transmits “Interrupt_T1” every 0.25s and Timer2_ISR
transmits “Interrupt_T2” 10-times a second. These messages are received using a PC running the DOS
based test program in RX terminal mode, hence testing of the PIC timer interrupts including crude timing
analysis is achieved, for example there should be two “Interrupt_T0…” messages between every “Main…”.
See figure 10.7a for a simplified flowchart of the program.

Timer0_ISR

Transmit
“Interrupt_T0…"

Return

Has 0.5s
elapsed

yes

no

Timer1_ISR

Transmit
“Interrupt_T1…"

Return

Has 0.25s
elapsed

yes

no

Timer2_ISR

Transmit
“Interrupt_T2…"

Return

Has 0.1s
elapsed

yes

no

Start

Setup RS232:
Hardware UART,
baud rate 9600

Read Dip
Switches and set

baud-rate

Setup Timer 0, 1,
& 2

Enable Global
Interrupts

Transmit
“Main…"

1 Second delay

Figure 10.7a. Mark 7 flowchart

Mark 7.c source code: -
/* --
 | FILE : mark_7.c |
 | PROJECT : Low Cost PC Based Oscilloscope |
 | DESC : Test timer interrupts |
 | == |
 | DATE : 05/03/2002 |
 | BY : Colin K McCord |
 | VERSION : 1.1 |
 -- */

#include <16F877.h>
#device PIC16F877 *=16 ADC=10

#fuses HS,NOWDT,NOPROTECT,NOLVP

#byte PORTE = 0x09 // PortE lives in File 9

/* Note 20MHz clock must be used for 115,000 bps, the % error is to large at slower speeds */
#use delay(clock = 20000000)
#use rs232(baud=9600, xmit = PIN_C6, rcv = PIN_C7, parity = N, bits = 8)

#use fast_io(E) // Fast access to PortE (don't fiddle with TRISE)

#define T0_INTS_PER_SEC 76 // (20,000,000/(4*256*256))
#define T1_INTS_PER_SEC 76 // (20,000,000/(4*1*65536))

byte int_count0; // Number of T0 interrupts left before a 0.5s has elapsed.
byte int_count1; // Number of T1 interrupts left before a 0.25s has elapsed.
byte int_count2; // Number of T2 interrupts left before a 100 msec has elapsed.

#int_rtcc // RTCC (timer0) interrupt, called every time RTCC overflows (255->0)
Timer0_ISR()
{

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 103 Chapter 10: PIC Software Development

 if(--int_count0==0)
 {
 printf("Interrupt_T0..."); // Every 0.5 seconds.
 int_count0 = T0_INTS_PER_SEC/2;
 }
}

#INT_TIMER1 // timer1 interrupt, called every time timer1 overflows (65536->0)
Timer1_ISR()
{
 if(--int_count1==0)
 {
 printf("Interrupt_T1..."); // Every 0.25 seconds.
 int_count1 = T1_INTS_PER_SEC/4;
 }
}

#INT_TIMER2 // timer2 interrupt
Timer2_ISR()
{
 if(--int_count2==0)
 {
 printf("Interrupt_T2..."); // Every 0.1 seconds.
 int_count2 = 100;
 }
}

/* Forward declaration of functions */
void SetBaudRate();

main()
{
 set_tris_e(0x17); // TRISE = 00010111; RE2,RE1 and RE0 TTL Inputs
 SetBaudRate();

 /** Setup timer0 (RTCC) **/
 int_count0 = T0_INTS_PER_SEC/2; // 0.5 seconds
 set_rtcc(0);
 setup_counters(RTCC_INTERNAL,RTCC_DIV_256);
 enable_interrupts(RTCC_ZERO);

 /** Setup timer1 **/
 int_count1 = T1_INTS_PER_SEC/4; //0.25 second
 setup_timer_1(T1_DIV_BY_1 | T1_INTERNAL);
 set_timer1(0);
 enable_interrupts(INT_TIMER1);

 /** Setup timer2 **/
 int_count2 = 100; // 0.1 second
 setup_timer_2 (T2_DIV_BY_4,125,9); // interrupt every 1ms
 set_timer2(0);
 enable_interrupts(INT_TIMER2);

 enable_interrupts(GLOBAL);

 while(TRUE)
 {
 printf("Main...");
 delay_ms(1000); // 1 second delay
 }
}

void SetBaudRate()
{
 switch(PORTE & 0x07) // Read dip switches and setup baud rate
 {
 case 0: set_uart_speed(4800); break;
 case 1: set_uart_speed(9600); break;
 case 2: set_uart_speed(14400); break;
 case 3: set_uart_speed(19200); break;
 case 4: set_uart_speed(32768); break;
 case 5: set_uart_speed(38400); break;
 case 6: set_uart_speed(57600); break;
 case 7: set_uart_speed(115200); break;
 }
}

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 104 Chapter 10: PIC Software Development

10.8. Mark 8.c (Real-Time Mode: Dual Channel, Fixed Delay, Adjustable Baud-Rate)

Same as mark6.c expect that instead of just sampling channel 1 the program chops between channel 1 and
channel 2 (see figure 10.8a). This program is used to test the scope program in dual trace mode, triggering
methods and stability of a trace when the other is being used as the trigger. Note the configuration of the
ADC has been modified so that 32Tosc is used and not the internal RC oscillator. The reason for this change
is that the PIC16F877 datasheet states “When the device frequencies are greater than 1MHz, the RC A/D
conversion clock source is only recommended for sleep operation”.

Start

Setup RS232:
Hardware UART,
baud rate 9600

Setup ADC:
10-bits, right

justified

Select channel
AN0

20µs delay

Read ADC
Convert reading

into real-time
frame structure

Transmit
real-time frame

Select channel
AN1

10ms delay
(100Hz)20µs delay

Read ADC

Convert reading
into real-time

frame structure
Transmit

real-time frame

Select channel
AN0

Read Dip
Switches and set

baud-rate

Figure 10.8a. Mark 8 flowchart

Mark 8.c source code: -
/* --
 | FILE : mark_8.c |
 | PROJECT : Low Cost PC Based Oscilloscope |
 | DESC : Read CH1 & CH2, transmit result through |
 | : RS232 using the real-time frame format. |
 | : Baud rate set by dip-switches. |
 | == |
 | DATE : 05/03/2002 |
 | BY : Colin K McCord |
 | VERSION : 1.4 |
 -- */

#include <16F877.h>
#device PIC16F877 *=16 ADC=10

// use #device adc = 10 to implement a 10-bit conversion,
// otherwise the default is 8-bits.

#fuses HS,NOWDT,NOPROTECT,NOLVP

#byte PORTE = 0x09 // PortE lives in File 9

/* Note 20MHz clock must be used for 115,000 bps, the % error is to large at slower speeds */
#use delay(clock = 20000000)
#use rs232(baud=9600, xmit = PIN_C6, rcv = PIN_C7, parity = N, bits = 8)

#use fast_io(E) // Fast access to PortE (don't fiddle with TRISE)

/* Forward declaration of functions */
void SetBaudRate();

main()
{

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 105 Chapter 10: PIC Software Development

 // NOTE: by default in CCS all var's are unsigned
 long int adcValue; // 16-bit storage for ADC reading
 char adcHI,adcLO; // 8-bit storage for real-time frames.

 set_tris_e(0x17); // TRISE = 00010111; RE2,RE1 and RE0 TTL Inputs
 SetBaudRate();

 setup_adc_ports(A_ANALOG); // RA0 - RA4 Analogue, RE0 - RE2 digital
 setup_adc(ADC_CLOCK_DIV_32);
 set_adc_channel(0);

 delay_us(20); // Delay for sampling cap to charge

 while(TRUE)
 {
 adcValue = read_adc(); // Get ADC reading

 /* Convert 16-bit adcValue to Real-time frame structure, CH1 */
 adcHI = (char)((adcValue >> 5)& 0x1f); // 0|0|0|d9|d8|d7|d6|d5
 adcLO = (char)((adcValue & 0x1f)|0x80); // 1|0|0|d4|d3|d2|d1|d0

 putc(adcHI); // Transmit Byte 1 (d9...d5)
 putc(adcLO); // Transmit Byte 2 (d4...d0)

 set_adc_channel(1);
 delay_us(20); // Delay for sampling cap to charge

 adcValue = read_adc(); // Get ADC reading

 /* Convert 16-bit adcValue to Real-time frame structure, CH2 */
 adcHI = (char)(((adcValue >> 5)& 0x1f)|0x20); // 0|0|1|d9|d8|d7|d6|d5
 adcLO = (char)((adcValue & 0x1f)|0xA0); // 1|0|1|d4|d3|d2|d1|d0

 putc(adcHI); // Transmit Byte 1 (d9...d5)
 putc(adcLO); // Transmit Byte 2 (d4...d0)

 set_adc_channel(0);
 delay_ms(10); // Preset delay, repeat every 10ms, that’s 100 Hz
 }
}

void SetBaudRate()
{
 switch(PORTE & 0x07) // Read dip switches and setup baud rate
 {
 case 0: set_uart_speed(4800); break;
 case 1: set_uart_speed(9600); break;
 case 2: set_uart_speed(14400); break;
 case 3: set_uart_speed(19200); break;
 case 4: set_uart_speed(32768); break;
 case 5: set_uart_speed(38400); break;
 case 6: set_uart_speed(57600); break;
 case 7: set_uart_speed(115200); break;
 }
}

10.9. Mark 9.c (Real-Time Mode: Four Channels, Chop, Interrupt Time-Base)

This program uses timer 2 (PIC built-in timer) as the time-base, the timer causes an interrupt every 20µS.
The variable ‘TimeBaseMUX’ is the time-base multiplier (e.g. 100 Hz = 10ms, hence TimeBaseMUX = 500).
Note no sampling is done during the interrupt routine as all interrupts are disabled while an interrupt is being
processed, hence the interrupt routine needs to take less than 20µS to execute or timing would be
inaccurate (e.g. say the interrupt routine execution time was longer than 20µS, during this time timer 2
cannot cause any more interrupts, hence accurate timing is lost). The main program loops continuously
checking the ‘bSample’ flag, if the flag is true the function Sample_RealTime() is called, else it continues to
loop. The ‘bSample’ flag is set in the time-base interrupt routine, keeping the interrupt routine short.

Interrupt driven time-base has one big advantage over using preset delays: delay routines do not take into
consideration processing delays (e.g. waiting for UART buffer to empty), while the PICs real-time timer will

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 106 Chapter 10: PIC Software Development

continue to count no matter what the PIC is doing, and will cause an interrupt every 20µS (assuming
interrupt routine is finished before it is time to called it again).

This program samples all four channels (chop mode). For example channel 1 is sampled, then channel 2,
then channel 3 and then channel 4. See figure 10.9a for a simplified flowchart of the program.

Start

Setup RS232:
Hardware UART,
baud rate set by

DIP switches

Setup ADC:
10-bits, right

justified, select
channel AN0

bSample
== TRUE

Setup Timer 2:
Interrupt every

20µs

bSample
= FALSE

20µs delay

TimeBaseMUX
= 50

(1000Hz)
Read ADC

Convert reading
into real-time

frame structure

Transmit
real-time frame

Select channel
AN1

20µs delay

Convert reading
into real-time

frame structure

Read ADC

Transmit
real-time frame

Yes

No

Select channel
AN2

20µs delay

Read ADC
Convert reading

into real-time
frame structure

Transmit
real-time frame

Select channel
AN3

20µs delay

Read ADC

Convert reading
into real-time

frame structure
Transmit

real-time frame

Select channel
AN0

20µs delay

ReturnTimer2_ISR TimeBase
== 0

DEC
TimeBase

TimeBase =
TimeBaseMUX

bSample
 = TRUEY

N
Figure 10.9a. Mark 9 flowchart

Mark 9.c source code: -
/* --
 | FILE : mark_9.c |
 | PROJECT : Low Cost PC Based Oscilloscope |
 | DESC : real-time sampling using Interrupt |
 | : timebase, time-base is fixed. All channels |
 | : are sampled CH1 to CH4 chop mode. |
 | : Baud rate set by dip-switches. |
 | == |

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 107 Chapter 10: PIC Software Development

 | DATE : 20/03/2002 |
 | BY : Colin K McCord |
 | VERSION : 1.5 |
 -- */

#include <16F877.h>
#device PIC16F877 *=16 ADC=10

// use #device adc = 10 to implement a 10-bit conversion,
// otherwise the default is 8-bits.

#fuses HS,NOWDT,NOPROTECT,NOLVP,NOBROWNOUT

#byte PORTE = 0x09 // PortE lives in File 9

/* Note 20MHz clock must be used for 115,000 bps, the % error is to large at slower speeds */
#use delay(clock = 20000000)
#use rs232(baud=9600, xmit = PIN_C6, rcv = PIN_C7, parity = N, bits = 8)

#use fast_io(E) // Fast access to PortE (don't fiddle with TRISE)

long int TimeBase;
long int TimeBaseMUX;
char bSample;

/* Forward declaration of functions */
void SetBaudRate();
void Sample_RealTime();

/** TimeBase Interrupt called every 20uS that's 50KHz MAX **/
#INT_TIMER2
Timer2_ISR()
{
 // Sample Frequency = TimeBaseMUX * 20uS, e.g. 100Hz (1mS) = 20uS * 500
 if (--TimeBase==0)
 {
 TimeBase = TimeBaseMUX;
 bSample = TRUE;
 }

}

main()
{
 bSample = FALSE;

 set_tris_e(0x17); // TRISE = 00010111; RE2,RE1 and RE0 TTL Inputs
 SetBaudRate();

 setup_adc_ports(A_ANALOG); // RA0 - RA4 Analog, RE0 - RE2 digital
 setup_adc(ADC_CLOCK_DIV_32);
 set_adc_channel(0);

 delay_us(20); // Delay for sampling cap to charge

 /** Setup Time-Base timer2 **/ // 1/(20,000,000/(4*1*100*1)) = 20uS
 setup_timer_2 (T2_DIV_BY_1,100,1); // interrupt every 20us, that’s 50Khz max
 set_timer2(0);
 enable_interrupts(INT_TIMER2);

 TimeBaseMUX = 50; // 1000 Hz
 TimeBase = TimeBaseMUX; // e.g. 50000 / 100 for 100 Hz (thats 500 * 20us = 10mS)

 enable_interrupts(GLOBAL);

 while(TRUE)
 {
 if(bSample == TRUE)
 {
 bSample = FALSE;
 Sample_RealTime();
 }
 }
}

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 108 Chapter 10: PIC Software Development

void Sample_RealTime()
{
 // 20/03/2002. verision 1.0. sample ch1 to ch4, Chop Mode

 // NOTE: by default in CCS all var's are unsigned
 long int adcValue; // 16-bit storage for ADC reading
 char adcHI,adcLO; // 8-bit storage for real-time frames.

 /*** Channel 1 ***/
 adcValue = read_adc(); // Get ADC reading

 /* Convert 16-bit adcValue to Real-time frame structure, CH1 */
 adcHI = (char)((adcValue >> 5)& 0x1f); // 0|0|0|d9|d8|d7|d6|d5
 adcLO = (char)((adcValue & 0x1f)|0x80); // 1|0|0|d4|d3|d2|d1|d0

 putc(adcHI); // Transmit Byte 1 (d9...d5)
 putc(adcLO); // Transmit Byte 2 (d4...d0)

 /*** Channel 2 ***/
 set_adc_channel(1);
 delay_us(20); // Delay for sampling cap to charge

 adcValue = read_adc(); // Get ADC reading

 /* Convert 16-bit adcValue to Real-time frame structure, CH2 */
 adcHI = (char)(((adcValue >> 5)& 0x1f)|0x20); // 0|0|1|d9|d8|d7|d6|d5
 adcLO = (char)((adcValue & 0x1f)|0xA0); // 1|0|1|d4|d3|d2|d1|d0

 putc(adcHI); // Transmit Byte 1 (d9...d5)
 putc(adcLO); // Transmit Byte 2 (d4...d0)

 /*** Channel 3 ***/
 set_adc_channel(2);
 delay_us(20); // Delay for sampling cap to charge

 adcValue = read_adc(); // Get ADC reading

 /* Convert 16-bit adcValue to Real-time frame structure, CH3 */
 adcHI = (char)(((adcValue >> 5)& 0x1f)|0x40); // 0|1|0|d9|d8|d7|d6|d5
 adcLO = (char)((adcValue & 0x1f)|0xC0); // 1|1|0|d4|d3|d2|d1|d0

 putc(adcHI); // Transmit Byte 1 (d9...d5)
 putc(adcLO); // Transmit Byte 2 (d4...d0)

 /*** Channel 4 ***/
 set_adc_channel(3);
 delay_us(20); // Delay for sampling cap to charge

 adcValue = read_adc(); // Get ADC reading

 /* Convert 16-bit adcValue to Real-time frame structure, CH4 */
 adcHI = (char)(((adcValue >> 5)& 0x1f)|0x60); // 0|1|1|d9|d8|d7|d6|d5
 adcLO = (char)((adcValue & 0x1f)|0xE0); // 1|1|1|d4|d3|d2|d1|d0

 putc(adcHI); // Transmit Byte 1 (d9...d5)
 putc(adcLO); // Transmit Byte 2 (d4...d0)

 /** Back to Channel 1 */
 set_adc_channel(0);
 delay_us(20); // Delay for sampling cap to charge

}

void SetBaudRate()
{
 switch(PORTE & 0x07) // Read dip switches and setup baud rate
 {
 case 0: set_uart_speed(4800); break;
 case 1: set_uart_speed(9600); break;
 case 2: set_uart_speed(14400); break;
 case 3: set_uart_speed(19200); break;
 case 4: set_uart_speed(32768); break;

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 109 Chapter 10: PIC Software Development

 case 5: set_uart_speed(38400); break;
 case 6: set_uart_speed(57600); break;
 case 7: set_uart_speed(115200); break;
 }
}

10.10. Mark 10.c (Test External RAM Chip)

This program carries out three tests: -

1. Fill all memory locations with 0xFFh and check.
2. Fill all memory locations with 0x00h and check.
3. Fill all memory locations with the LSB of the address and check.

RS232 communication is used to relay the results to the PC; the DOS based program test.exe used in RX
terminal mode is used to receive and display the results. This program is designed to test the functions used
to access the RAM (ReadRAM, WriteRAM), and every location on the RAM chip.

Notice that there are 1 cycle delays in the ReadRAM and WriteRAM functions these delays make sure that
the address and data lines are value before a read or write operation is completed. Note the RAM chip used
has a reassembly fast access time; hence the RAM may operate correctly with these delays removed. This
program is in preparation for storage mode operation.

/* --
 | FILE : mark_c10.c |
 | PROJECT : Low Cost PC Based Oscilloscope |
 | DESC : Test RAM Chip |
 | == |
 | DATE : 21/03/2002 |
 | BY : Colin K McCord |
 | VERSION : 1.2 |
 -- */

#include <16F877.h>
#device PIC16F877 *=16 ADC=10

// use #device adc = 10 to implement a 10-bit conversion,
// otherwise the default is 8-bits.

#fuses HS,NOWDT,NOPROTECT,NOLVP,NOBROWNOUT

#byte PORTB = 0x06 // PortB lives in File 6 (data bus)
#byte PORTC = 0x07 // PortC lives in File 7 (address bus A12 to A8, RX, TX & R/W)
#byte PORTD = 0x08 // PortD lives in File 8 (address bus A0 to A7)
#byte PORTE = 0x09 // PortE lives in File 9 (used for DIP switches)

#bit RW = PORTC.5 // RW = 0 for Write, and 1 for read

/* Note 20MHz clock must be used for 115,000 bps, the % error is to large at slower speeds */
#use delay(clock = 20000000)
#use rs232(baud=9600, xmit = PIN_C6, rcv = PIN_C7, parity = N, bits = 8)

#use fast_io(B) // Fast access to PortB (don't fiddle with TRISB)
#use fast_io(C) // Fast access to PortB (don't fiddle with TRISB)
#use fast_io(D) // Fast access to PortD (don't fiddle with TRISD)
#use fast_io(E) // Fast access to PortE (don't fiddle with TRISE)

/* Forward declaration of functions */
void SetBaudRate();
void WriteRAM(long int address, char data);
char ReadRAM(long int address);

main()
{
 long int i;
 long int pass, fail;
 set_tris_c(0xC0); // TRISD = 11000000; RC0 to RC5 TTL Outputs
 // bits 7&6 must be set for UART to work
 set_tris_d(0x00); // TRISD = 00000000; RD0 to RD7 TTL Outputs
 port_b_pullups(FALSE); // Don't use internal pull up resistors

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 110 Chapter 10: PIC Software Development

 SetBaudRate();

 while(TRUE)
 {
 delay_ms(5000); // 5 Sec delay

 printf("TEST RAM CHIP...");

 /** RAM Test 1 write 0xFF into all locations and check **/
 printf("\n\nTest 1 - Fill RAM with 0xFF --->");
 pass = 0; // Reset Pass counter
 fail = 0; // Reset Fail counter

 for (i=0;i<8192;i++) // Write 0xFF to all locations
 {
 WriteRAM(i,0xFF);
 }

 for (i=0;i<8192;i++)
 {
 if(ReadRAM(i) == 0xFF) pass++;
 else fail++;
 }

 printf(" Passes = %lu, Fails = %lu", pass,fail);

 /** RAM Test 2 write 0x00 into all locations and check **/
 printf("\n\nTest 2 - Fill RAM with 0x00 --->");
 pass = 0; // Reset Pass counter
 fail = 0; // Reset Fail counter

 for (i=0;i<8192;i++) // Write 0x00 to all locations
 {
 WriteRAM(i,0x00);
 }

 for (i=0;i<8192;i++)
 {
 if(ReadRAM(i) == 0x00) pass++;
 else fail++;
 }

 printf(" Passes = %lu, Fails = %lu", pass,fail);

 /** RAM Test 3 write LSB of address into all locations and check **/
 printf("\n\nTest 3 - Fill RAM with LSB of Address --->");
 pass = 0; // Reset Pass counter
 fail = 0; // Reset Fail counter

 for (i=0;i<8192;i++) // Write LSB of address to all locations
 {
 WriteRAM(i,(char)i);
 }

 for (i=0;i<8192;i++)
 {
 if(ReadRAM(i) == (char)i) pass++;
 else fail++;
 }

 printf(" Passes = %lu, Fails = %lu", pass,fail);

 printf("\n\nEnd of RAMTEST, Hopefully work can now start on storage mode.\n\n");

 }

sleep();
}

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 111 Chapter 10: PIC Software Development

void SetBaudRate()
{
 // Verison 1.1, 22/3/2002, by CKM

 set_tris_e(0x17); // TRISE = 00010111; RE2,RE1 and RE0 Inputs
 // Parallel slave mode is ON, e.g. TTL Inputs, on Port E and D

 switch(PORTE & 0x07) // Read dip switches and setup baud rate
 {
 case 0: set_uart_speed(4800); break;
 case 1: set_uart_speed(9600); break;
 case 2: set_uart_speed(14400); break;
 case 3: set_uart_speed(19200); break;
 case 4: set_uart_speed(32768); break;
 case 5: set_uart_speed(38400); break;
 case 6: set_uart_speed(57600); break;
 case 7: set_uart_speed(115200); break;
 }

 set_tris_e(0x07); // Turn OFF Parallel Slave Mode as this affects port D (Address Bus)
}

void WriteRAM(long int address, char data)
{
 // 20/03/2002, version 1.0 by Colin McCord

 set_tris_b(0x00); // TRISE = 00000000; RB0 to RB7 TTL Outputs (data bus)

 RW = 1; // Don't Write until address and data bus is setup.

 // Set Address
 PORTD = (char)address; // Set A7..A0
 PORTC = ((PORTC & 0xE0) | (address>>8)); // Set A12..A8

 PORTB = data; // Put data on the data bus

 delay_cycles(1); // 200nS delay, same as NOP, (1/20,000,000)*4*1) = 200nS
 // make sure address & data is valid before write

 RW = 0; // Write data to specified address

 delay_cycles(1); // 200nS delay (same as NOP), make sure write is finished
 RW = 1; // Back to Read Mode
}

char ReadRAM(long int address)
{
 // 20/03/2002, version 1.0 by Colin McCord

 set_tris_b(0xFF); // TRISE = 11111111; RB0 to RB7 TTL Inputs

 RW = 1; // Put RAM chip in Read Mode

 // Set Address
 PORTD = ((char)address); // Set A7..A0
 PORTC = ((PORTC & 0xE0) | (address>>8)); // Set A12..A8

 delay_cycles(1); // 200nS delay, same as NOP, (1/20,000,000)*4*1) = 200nS
 // make sure data is valid before reading

 return PORTB;
}

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 112 Chapter 10: PIC Software Development

10.11. Mark 11.c (Main Program)

Main

Setup RS232 and
ADC

Setup Timer 2:
Interrupt every

20us

SOF
Received

Call Function
‘ControlProtocol’

bSample ==
TRUE

yes

no

no
M == 1

yes

Call Function
‘StorageMode’

yes

Call Function
‘Real-timeMode’

no

TimeBaseMUX
= 50

(1000Hz)

ControlProtocol

I = 0,
timeout = 1

Char
Received

I = I + 1,
timeout = 1

Delay 10us,
timeout++

Timeout
> 100

yes

no

no

I >= 5

RXBuffer[I] =
Received char

no

Return

CRC
Check

fail

Implement control
message (ie. Set
TimeBaseMUX)

pass

yes

yes

Real-timeMode

S
0

Sample CH1, and
transmit reading
using real-time
frame structure

Sample CH2, and
transmit reading
using real-time
frame structure

Sample CH3, and
transmit reading
using real-time
frame structure

Sample CH4, and
transmit reading
using real-time
frame structure

C1 C2
0

1 1 1

C3
0

C3

1

0

Delay 20us Delay 20us Delay 20us Delay 20us

Return

K++

K < 1000

Sample CH1, and
transmit reading
using real-time
frame structure

yes

1

K < 2000

C1 K = 1001

1

0

Sample CH2, and
transmit reading
using real-time
frame structure

C2

1

K = 2001

K < 3000
no no

C3

yes yes

0

Sample CH3, and
transmit reading
using real-time
frame structure

K < 4000

C4K = 3001

Sample CH4, and
transmit reading
using real-time
frame structure

1 1

yes

0

K = 0

0

bSample = FALSE

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 113 Chapter 10: PIC Software Development

ReturnTimer2_ISR TimeBase
== 0

DEC
TimeBase

TimeBase =
TimeBaseMUX

bSample
 = TRUEY

N

StorageMode

J > Samples

Transmit array[]
to PC using

storage mode
frame structure

J = 0

C1 array[J++] =
CH1 ADC reading

20us delay for
sampling capacitor

to charge

yes

no

1

C2 array[J++] =
CH2 ADC reading

20us delay for
sampling capacitor

to charge

1

C3 array[J++] =
CH3 ADC reading

20us delay for
sampling capacitor

to charge

1

C4 array[J++] =
CH4 ADC reading

20us delay for
sampling capacitor

to charge

1

0

0

0

0

Return

bSample = FALSE

Note the Mark11.c program is not complete and the flowcharts above are draft flowcharts.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 114 Chapter 11: Test Results

11.0. TEST RESULTS

11.1. Test Session 1: FG Wilson Lab (26/02/2002)

The circuit diagram shown in figure 11.1a was constructed on prototype board, with RS232 communication
connected to laptop (COM1, 1GHz AMD processor, 256MHz SDRAM, 8MB 3D accelerator card, running
windows XP).

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

RA0/AN0

RA1/AN1

RA2/AN2/VREF-

RA3/AN3/VREF+

RA4/TOCKI

Vdd

Vss

OSC1/CLKIN

OSC2/CLKOUT

RC0/T1OSO/T1CKI

RC1/T1OSI/CCP2

RC2/CCP1

RC3/SCK/SCL

RD0/PSP0

RD1/PSP1

PIC16F877-20/P

RB7/PGD

RB6/PGC

RB5

RB4

RB3/PGM

RB2

RB1

RB0/INT

Vdd

Vss

RD7/PSP7

RD6/PSP6

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5/SD0

RC4/SDI/SDA

RD3/PSP3

RD2/PSP2

MCLR/VPPTHV

RA5/AN4/SS

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7 1

2

3

4

5

6

7

8

9

D
B

9

4/10/20MHz

C6
33pF

C7
33pF

CH1

VC
C

V
C

C

16

2

6

14

7

13

89

12

10

11

5

4

3

1

15

VCC
C1+

C1-

V+

C2+

C2-

V-

+5V to +10V
Voltage
Doubler

+10V to -10V
Voltage
Inverter

GND

C4
1uF

C3
1uF

C1
1uF

C2
1uF

C5
1uF

MAX232CPE

VCC

VC
C

Figure 11.1a. Test Circuit Diagram 1

11.1.1. Test 1: Test RS232 Communications (TX only)

Program mark1.c (version: 1.0) was compiled and loaded into PIC using Microchip MPLAB. This program is
extremely simple, basically it transmits “Testing…” continuously with a 1 second delay between each
“Testing…”. The DOS based test program (test.exe, version 1.05) was used in RX terminal mode to receive
the incoming characters.

Screen dump of text.exe after a couple of minutes: -
RX Terminal

Waiting for message (press a key to stop)
Testing...Testing...Testing...Testing...Testing...Testing...Testing...Testing...
Testing...Testing...Testing...Testing...Testing...Testing...Testing...Testing...
Testing...Testing...Testing...Testing...Testing...Testing...Testing...Testing...
Testing...Testing...Testing...Testing...Testing...Testing...Testing...Testing...
Testing...Testing...Testing...Testing...Testing...Testing...Testing...Testing...
Testing...Testing...Testing...Testing...Testing...Testing...Testing...Testing...
Testing...Testing...Testing...Testing...Testing...Testing...Testing...Testing...
Testing...Testing...Testing...Testing...Testing...Testing...Testing...Testing...
Testing...Testing...Testing...Testing...Testing...Testing...Testing...Testing...
Testing...Testing...Testing...Testing...Testing...Testing...Testing...Testing...
Testing...Testing...Testing...Testing...Testing...Testing...Testing...Testing...
Testing...Testing...Testing...Testing...Testing...Testing...Testing...Testing...
Testing...Testing...Testing...Testing...Testing...Testing...Testing...Testing...
Testing...Testing...Testing...Testing...Testing...

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 115 Chapter 11: Test Results

Clearly the test was a success, and it has been proven that the transmit mode of the RS232 communications
is working. Note: Baud rate = 9600bps, OSC = 4 MHz, RS232 cable length (unshielded) = 1.5m.

11.1.2. Test 2: Fully Test RS232 Communications

Program mark2.c (Version: 1.0) was compiled and loaded into PIC using Microchip MPLAB. This program is
extremely simple; basically it waits for an incoming character and transmits it. This is a very simple method of
fully testing the RS232 communication (PIC software, PIC, MAX232, cable, and wiring). The DOS based test
program (test.exe, version 1.05) was used to carryout two separate tests. The first used the TX terminal to
transmit a message, then the RX terminal is used to receive the message, if the RX & TX messages are
identical the test is successful. The second used the loop back test function of the test program; this stresses
the communications as a large amount of data is transmitted and compared with the received block of data.

Screen dump of test program (test.exe) in TX terminal mode then RX terminal mode: -
TX Terminal

Type your message, hit [ENTER] to transmit: -

Testing RS232 Communications

Sending Messaging: -
Testing RS232 Communications

Message sent successfully.

RX Terminal

Waiting for message (press a key to stop)
Testing RS232 Communications

Screen dump of test program (test.exe) after loop back test was completed: -
 Test Started: 13:37:31

 Testing 100% - PASS
 * Test 1 - PASS
 * Test 2 - PASS
 * Test 3 - PASS

 Test Finished: 13:37:33

Hit any [Key] to return to main menu

Clearly the RS232 communication tests were successful, note: baud rate = 9600bps, OSC = 4 MHz, RS232
cable length (unshielded) = 1.5m.

11.1.3. Test 3: Test ADC

Program mark3.c (Version: 1.1) was compiled and loaded into PIC using Microchip MPLAB. This program is
a little more complex than the first two, basically it reads ADC CH1 (AN0), and transmits the result through
RS232 using the real-time frame format, every 10ms (sample rate of 100Hz). The scope.exe (version
1.023a) program was used to display the real-time frames graphically, and a calibrated digital signal
generator was use to generate a 0 to 5V (e.g. 5V peak to peak with a DC offset of 2.5V) sinewave at a
variable frequency (e.g. 2Hz, 5Hz, 10Hz, etc…). Portable commercial digital storage oscilloscope was used
to make sure that the signal generator output was 0 to 5V as values outside this range would damage the
PICs ADC (analogue circuit not constructed at this stage).

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 116 Chapter 11: Test Results

Note: Sample rate = 100Hz, 100 horizontal samples are displayed on the scope display (10 samples per
division). Hence scope time-base is 0.1 seconds per division that’s 10Hz. Note: time-base is fixed on this
version of the scope program.

1Hz sinewave (0-5V) connected to CH1 (AN0), see figure 11.1.3a. 10 division per cycle, hence the
calculated frequency of the waveform is 1/(10 * 0.1) = 1Hz.

Figure 11.1.3a. Screen dump of scope program (sample rate = 100Hz, input wave = 1Hz sinewave 0-5V)

2Hz sinewave (0-5V) connected to CH1 (AN0), see figure 11.1.3b. 5 divisions per cycle, hence the
calculated frequency of this waveform is 1/(5 * 0.1) = 2Hz.

Figure 11.1.3b. Screen dump of scope program (sample rate = 100Hz, input wave = 2Hz sinewave 0-5V)

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 117 Chapter 11: Test Results

5Hz sinewave (0-5V) connected to CH1 (AN0), see figure 11.1.3c. 2 divisions per cycle, Hence the
calculated frequency of this waveform is 1/(2 * 0.1) = 5Hz.

Figure 11.1.3c. Screen dump of scope program (sample rate = 100Hz, input wave = 5Hz sinewave 0-5V)

10Hz sinewave (0-5V) connected to CH1 (AN0), see figure 11.1.3d. 1 divisions per cycle, hence the
calculated frequency of this waveform is 1/(1 * 0.1) = 10Hz.

Figure 11.1.3d. Screen dump of scope program (sample rate = 100Hz, input wave = 10Hz sinewave 0-5V)

20Hz sinewave (0-5V) connected to CH1 (AN0), see figure 11.1.3e. 0.5 divisions per cycle, hence the
calculated frequency of this waveform is 1/(0.5 * 0.1) = 20Hz. But waveform is under sampled and heavily

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 118 Chapter 11: Test Results

distorted, recall that the pulse interpolator display type (scope.exe uses this) required at least 10 sample /
cycle before a recognisable sinewave can be plotted.

Figure 11.1.3e. Screen dump of scope program (sample rate = 100Hz, input wave = 20Hz sinewave 0-5V)

50Hz sinewave (0-5V) connected to CH1 (AN0), see figure 11.1.3f. Something real strange has happened
here, clearly the result of under sampling.

Figure 11.1.3f. Screen dump of scope program (sample rate = 100Hz, input wave = 50Hz sinewave 0-5V)

100Hz sine-wave (0-5V) connected to CH1 (AN0), see figure 11.1.3g. 10 divisions per cycle, hence the
calculated frequency of this waveform is 1/(10 * 0.1) = 1Hz. Clearly not correct, the reason for this is that the

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 119 Chapter 11: Test Results

sample rate is not high enough and because sine-waves are periodical it is possible to get false time-base
readings (e.g. aliasing). This will be a mayor concern at a later stage in the project, and will be investigated
fully.

Figure 11.1.3g. Screen dump of scope program (sample rate = 100Hz, input wave = 100Hz sinewave 0-5V)

200Hz sinewave (0-5V) connected to CH1 (AN0), see figure 11.1.3h. 5 divisions per cycle, hence the
calculated frequency of this waveform is 1/(5 * 0.1) = 2Hz. This signal is clearly an alias of the original signal
(false signal).

Figure 11.1.3h. Screen dump of scope program (sample rate = 100Hz, input wave = 200Hz sinewave 0-5V)

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 120 Chapter 11: Test Results

11.1.4. Conclusion

Clearly the three tests that were carried out were completely successful and work can now start on the main
real-time embedded program. Test 3, was extremely useful, as it was able to test fully the graphically display
for a fixed sample rate. The triggering (negative to positive, 0 to positive in this case) worked, but the
waveform was not completely stable, as the amplitude of samples varied slightly (due to noise, or/and
tolerance of ADC) hence the waveform was continuously changing very slightly; sampling when the PIC is
sleeping may reduce noise, hence a more stable waveform could be displayed (too slow to be practical). The
PIC datasheet recommends not to use the ADCs internal oscillator when the PIC is running above 1MHz
(unless sampling is done when PIC is sleeping), mark3.c uses the ADCs internal oscillator (not good) and
this could explain why the waveform was continuously changing slightly (e.g. noise form PIC oscillator).

It was discovered that it is possible for the scope program to display perfect sine-waves at false time-based
readings when the waveform is under sampled. This is a common problem which all digital scopes have
called ‘aliasing’, frequency above half the sample frequency should be filter out. Note it may be possible to
use this as an advantage as it makes it possible to monitor waveforms much higher than the sampling rate,
improving the performance of the PC based scope program (if the real frequency could be detected).

11.2. Test Session 2: FG Wilson Lab (05/03/2002)

The circuit diagram shown in figure 11.2a was constructed on prototype board, with RS232 communication
connected to laptop (COM1, 1GHz AMD processor, 256MHz SDRAM, 8MB 3D accelerator card, running
windows XP).

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

RA0/AN0

RA1/AN1

RA2/AN2/VREF-

RA3/AN3/VREF+

RA4/TOCKI

Vdd

Vss

OSC1/CLKIN

OSC2/CLKOUT

RC0/T1OSO/T1CKI

RC1/T1OSI/CCP2

RC2/CCP1

RC3/SCK/SCL

RD0/PSP0

RD1/PSP1

PIC16F877-20/P

RB7/PGD

RB6/PGC

RB5

RB4

RB3/PGM

RB2

RB1

RB0/INT

Vdd

Vss

RD7/PSP7

RD6/PSP6

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5/SD0

RC4/SDI/SDA

RD3/PSP3

RD2/PSP2

MCLR/VPPTHV

RA5/AN4/SS

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7 1

2

3

4

5

6

7

8

9

D
B

9
4/10/20MHz

C6
33pF

C7
33pF

CH1

DIP SW R2
1k

R3
1k

R4
1k

VC
C

VCC

V
C

C

16

2

6

14

7

13

89

12

10

11

5

4

3

1

15

VCC
C1+

C1-

V+

C2+

C2-

V-

+5V to +10V
Voltage
Doubler

+10V to -10V
Voltage
Inverter

GND

C4
1uF

C3
1uF

C1
1uF

C2
1uF

C5
1uF

MAX232CPE

VCC

VC
C

Figure 11.2a. Test Circuit Diagram 2

11.2.1. Test 4: Test RS232 Communications (Baud Rate set by DIP Switches)

Program mark4.c was compiled and loaded into the PIC using Microchip MPLAB. This program is extremely
simple (basically the same as mark1.c expect baud rate is set by the DIP switches), basically it reads the DIP
switches and sets the baud rate, then it transmits “Testing…” continuously with a 1 second delay between
each “Testing…”. The DOS based test program (test.exe, version 1.05) was used in the RX terminal mode to
receive incoming characters.

All baud rates were tested and there were no problems.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 121 Chapter 11: Test Results

11.2.2. Text 5: Fully Test RS232 Communications (Baud Rate set by DIP Switches)

Program mark5.c was compiled and loaded into PIC using Microchip MPLAB. This program is extremely
simple; basically it reads the DIP switches and sets the baud rate, then it waits for an incoming character and
transmits it. This is a very simple method of fully testing the RS232 communication (PIC software, PIC,
MAX232, cable, and wiring). The DOS based test program (test.exe, version 1.05) was used to carryout two
separate tests. The first used the TX terminal to transmit a message, then the RX terminal is used to receive
the message, if the RX & TX messages are identical the test is successful. The second used the loop back
test function of the test program; this stresses the communications as a large amount of data is transmitted
and compared with the received block of data.

The TX/RX terminal tests were successful for all baud rates, but the loop back tests failed at high baud rates.
There are two possible reasons for this; the first is that because a large block of data is being transmitted
through unshielded cable, clearly there is a good chance of an error occurring at high baud rates. The
second possibility is that the PIC UART input buffer overflowed.

11.2.3. Test 6: Test ADC, Scope Program and Real-time Communication Protocol

Program mark6.c was compiled and loaded into PIC using Microchip MPLAB, basically it reads the DIP
switches and sets the baud rate, then it reads the ADC CH1 (AN0), and transmits the result through RS232
using the real-time frame format, every 1ms (sample rate of 1000Hz). The scope.exe (version 1.027a)
program was used to display the real-time frames graphically, and a calibrated digital signal generator was
use to generate a 0 to 5V (e.g. 5V peak to peak with a DC offset of 2.5V) sinewave at a variable frequency
(e.g. 2Hz, 5Hz, 10Hz, etc…).

Note: Sample rate = 1000Hz, 10 horizontal samples per division. Hence scope time-base is 0.01 seconds
per division that’s 100Hz, note: time-base is fixed on this version of the scope program and was set to
115Kbaud.

2.5Hz sinewave (0-5V) connected to CH1/AN0, see figure 11.2.3a (high resolution 800 x 160, that’s 80 x 16
divisions), 40 division per cycle, hence the calculated frequency of the waveform is 1/(40 * 0.01) = 2.5Hz.

Figure 11.2.3a. Screen dump of scope program (sample rate = 1,000Hz, input wave = 2.5Hz sinewave 0-5V)

5Hz sine-wave (0-5V) connected to CH1/AN0, see figure 11.2.3b (resolution 200 x 160, that’s 20 x 16
divisions), 19 division per cycle, hence the calculated frequency of the waveform is 1/(19 * 0.01) = 5.26Hz.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 122 Chapter 11: Test Results

Figure 11.2.3b. Screen dump of scope program (sample rate = 1,000Hz, input wave = 5Hz sinewave 0-5V)

10Hz sinewave (0-5V) connected to CH1/AN0, see figure 11.2.3c (resolution 200 x 160, that’s 20 x 16
divisions), 10 division per cycle, hence the calculated frequency of the waveform is 1/(10 * 0.01) = 10Hz.

Figure 11.2.3c. Screen dump of scope program (sample rate = 1,000Hz, input wave = 10Hz sinewave 0-5V)

20Hz sinewave (0-5V) connected to CH1/AN0, see figure 11.2.3d (resolution 200 x 160, that’s 20 x 16
divisions), 5 division per cycle, hence the calculated frequency of the waveform is 1/(5 * 0.01) = 20Hz.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 123 Chapter 11: Test Results

Figure 11.2.3d. Screen dump of scope program (sample rate = 1,000Hz, input wave = 20Hz sinewave 0-5V)

50Hz sinewave (0-5V) connected to CH1/AN0, see figure 11.2.3e (resolution 200 x 160, that’s 20 x 16
divisions), 2 division per cycle, hence the calculated frequency of the waveform is 1/(2 * 0.01) = 50Hz.

Figure 11.2.3e. Screen dump of scope program (sample rate = 1,000Hz, input wave = 50Hz sinewave 0-5V)

100Hz sinewave (0-5V) connected to CH1/AN0, see figure 11.2.3f (resolution 100 x 80, that’s 10 x 8
divisions), 1 division per cycle, hence the calculated frequency of the waveform is 1/(1 * 0.01) = 100Hz.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 124 Chapter 11: Test Results

Figure 11.2.3f. Screen dump of scope program (sample rate = 1,000Hz, input wave = 100Hz sinewave 0-5V)

200Hz sinewave (0-5V) connected to CH1/AN0, see figure 11.2.3g (resolution 100 x 80, that’s 10 x 8
divisions), 0.5 divisions per cycle, hence the calculated frequency of this waveform is 1/(0.5 * 0.01) = 200Hz.
But waveform is under sampled and heavily distorted, recall that the pulse interpolator display type
(scope.exe uses this) requires at least 10 sample / cycle before a recognisable sine-wave can be plotted.

Figure 11.2.3g. Screen dump of scope program (sample rate = 1,000Hz, input wave = 200Hz sinewave 0-5V)

500Hz sine-wave (0-5V) connected to CH1/AN0, see figure 11.2.3h (resolution 100 x 80, that’s 10 x 8
divisions), something real strange has happened here, clearly the result of under sampling.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 125 Chapter 11: Test Results

Figure 11.2.3h. Screen dump of scope program (sample rate = 1,000Hz, input wave = 500Hz sinewave 0-5V)

11.2.3.1. Sample Rate Changed to 2000Hz (mark6b.c)

Scope time-base is 0.005 seconds per division that’s 200Hz.

10Hz sinewave (0-5V) connected to CH1/AN0, see figure 11.2.3.1a (resolution 200 x 160, that’s 20 x 16
divisions), 19.5 division per cycle, hence the calculated frequency of the waveform is 1/(19.5 * 0.005) =
10.25Hz.

Figure 11.2.3.1a. Screen dump of scope program (sample rate = 2,000Hz, input wave = 10Hz sinewave 0-5V)

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 126 Chapter 11: Test Results

20Hz sinewave (0-5V) connected to CH1/AN0, see figure 11.2.3.1b (resolution 200 x 160, that’s 20 x 16
divisions), 9.7 division per cycle, hence the calculated frequency of the waveform is 1/(9.7 * 0.005) = 20.6Hz.

Figure 11.2.3.1b. Screen dump of scope program (sample rate = 2,000Hz, input wave = 20Hz sinewave 0-5V)

50Hz sinewave (0-5V) connected to CH1/AN0, see figure 11.2.3.1c (resolution 200 x 160, that’s 20 x 16
divisions), 3.9 division per cycle, hence the calculated frequency of the waveform is 1/(3.9 * 0.005) = 51.3Hz.

Figure 11.2.3.1c. Screen dump of scope program (sample rate = 2,000Hz, input wave = 50Hz sinewave 0-5V)

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 127 Chapter 11: Test Results

100Hz sinewave (0-5V) connected to CH1/AN0, see figure 11.2.3.1d (resolution 200 x 160, that’s 20 x 16
divisions), 1.95 division per cycle, hence the calculated frequency of the waveform is 1/(1.95 * 0.005) =
102.5Hz.

Figure 11.2.3.1d. Screen dump of scope program (sample rate = 2,000Hz, input wave = 100Hz sinewave 0-5V)

200Hz sinewave (0-5V) connected to CH1/AN0, see figure 11.2.3.1e (resolution 100 x 80, that’s 10 x 8
divisions), 0.975 division per cycle, hence the calculated frequency of the waveform is 1/(0.975 * 0.005) =
205Hz.

Figure 11.2.3.1f. Screen dump of scope program (sample rate = 2,000Hz, input wave = 200Hz sinewave 0-5V)

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 128 Chapter 11: Test Results

500Hz sinewave (0-5V) connected to CH1/AN0, see figure 11.2.3.1g (resolution 100 x 80, that’s 10 x 8
divisions), clearly under sampled.

Figure 11.2.3.1g. Screen dump of scope program (sample rate = 2,000Hz, input wave = 500Hz sinewave 0-5V)

1,000Hz sinewave (0-5V) connected to CH1/AN0, see figure 11.2.3.1h (resolution 100 x 80, that’s 10 x 8
divisions), something real strange has happened here, clearly the result of under sampling.

Figure 11.2.3.1h. Screen dump of scope program (sample rate = 2,000Hz, input wave = 1,00Hz sinewave 0-5V)

20Hz trianglewave (0-5V) connected to CH1/AN0, see figure 11.2.3.1i (resolution 200 x 160, that’s 20 x 16
divisions), 9.9 division per cycle, hence the calculated frequency of the waveform is 1/(9.9 * 0.005) = 20.2Hz.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 129 Chapter 11: Test Results

Figure 11.2.3.1i. Screen dump of scope program (sample rate = 2,000Hz, input wave = 20Hz trianglewave 0-5V)

20Hz squarewave (0-5V) connected to CH1/AN0, see figure 11.2.3.1j (resolution 200 x 160, that’s 20 x 16
divisions), 9.9 division per cycle, hence the calculated frequency of the waveform is 1/(9.9 * 0.005) = 20.2Hz.

Figure 11.2.3.1j. Screen dump of scope program (sample rate = 2,000Hz, input wave = 20Hz squarewave 0-5V)

11.2.3.2. Sample rate changed to 5000Hz (mark6c.c)

Hence scope time-base is 0.002 seconds per division that’s 500Hz.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 130 Chapter 11: Test Results

50Hz sinewave (0-5V) connected to CH1/AN0, see figure 11.2.3.2a (resolution 200 x 160, that’s 20 x 16
divisions), 8 division per cycle, hence the calculated frequency of the waveform is 1/(8 * 0.002) = 62.5Hz.
Clearly something bad has happed here; there are gaps in the data. The reason for this is that the UART
transmit buffer fills up and the program must wait until the transmit buffer is free to accepted another
character; hence there is an additional time delay.

Figure 11.2.3.2a. Screen dump of scope program (sample rate = 5,000Hz, input wave = 50Hz squarewave 0-5V)

This program reads the ADC and transmits two characters with a 200µS delay before the process repeats
over and over again. But if the transmits buffer is full, note that for 115kbps it takes 8.7µs (1/115,000) to
transmit each character that’s 86.9µS per byte. Using the PICs built in timers should fix this problem.

But the main reason for the distorted waveform was because the PC serial buffer was overflowing. The
incoming characters were coming in faster than the scope program was processing them hence the buffer
was overflowing, causing gaps to appear in the data. The solution is to increase the scope programs
communication protocol real-time timer (e.g. from 100ms to 25ms), and increase the buffer size (from 1k to
10k).

11.2.4. Test 7: Test Timer Interrupts.

Program mark7.c was compiled and loaded into the PIC using Microchip MPLAB. This program is simple,
basically it setups all of the PIC onboard timers to interrupt the main program at preset timer intervals, then
“Main…” is transmitted once every second forever. Timer 0 interrupt is used to transmit “Interrupt_T0” twice a
second, timer 1 interrupt is used to transmit “Interrupt_T1” 4-times a second and timer 2 interrupt is used to
transmit “Interrupt_T2” 10-times a second. The DOS based test program (test.exe, version 1.05) was used in
the RX terminal mode to receive incoming characters. This test fully tests the timer interrupts, which will be
used for time base, communications etc…

Screen dump of text.exe after a couple of seconds: -
Waiting for message (press a key to stop)
Main...Interrupt_T2...Interrupt_T2...Interrupt_T1...Interrupt_T2...Interrupt_T2.
..Interrupt_T2...Interrupt_T0...Interrupt_T1...Interrupt_T2...Interrupt_T2...Int
errupt_T2...Interrupt_T1...Interrupt_T2...Interrupt_T2...Interrupt_T0...Interrup
t_T1...Interrupt_T2...Main...Interrupt_T2...Interrupt_T2...Interrupt_T1...Interr
upt_T2...Interrupt_T2...Interrupt_T2...Interrupt_T0...Interrupt_T1...Interrupt_T

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 131 Chapter 11: Test Results

2...Interrupt_T2...Interrupt_T2...Interrupt_T1...Interrupt_T2...Interrupt_T2...I
nterrupt_T0...Interrupt_T1...Interrupt_T2...Main...Interrupt_T2...Interrupt_T2..
.Interrupt_T1...Interrupt_T2...Interrupt_T2...Interrupt_T2...Interrupt_T0...Inte
rrupt_T1...Interrupt_T2...Interrupt_T2...Interrupt_T1...Interrupt_T2...Interrupt
_T2...Interrupt_T2...Interrupt_T0...Interrupt_T1...Interrupt_T2...Main...Interru
pt_T2...Interrupt_T2...Interrupt_T1...Interrupt_T2...Interrupt_T2...Interrupt_T2
...Interrupt_T0...Interrupt_T1...Interrupt_T2...Interrupt_T2...Interrupt_T1...In
terrupt_T2...Interrupt_T2...Interrupt_T2...Interrupt_T0...Interrupt_T1...Interru
pt_T2...Interrupt_T2...Main...Interrupt_T2...Interrupt_T1...Interrupt_T2...Inter
rupt_T2...Interrupt_T0...Interrupt_T1...Interrupt_T2...Interrupt_T2...Interrupt_
T2...Interrupt_T1...Interrupt_T2...Interrupt_T2...Interrupt_T2...Interrupt_T0...
Interrupt_T1...Interrupt_T2...Interrupt_T2...Main...Interrupt_T1...Interrupt_T2.
..Interrupt_T2...Interrupt_T2...Interrupt_T0...Interrupt_T1...Interrupt_T2...Int
errupt_T2...Interrupt_T2...Interrupt_T1...Interrupt_T2...Interrupt_T2...Interrup
t_T2...Interrupt_T0...Interrupt_T1...Interrupt_T2...Interrupt_T2...Interrupt_T1.
..Main...Interrupt_T2...Interrupt_T2...Interrupt_T2...Interrupt_T0...Interrupt_T
1...Interrupt_T2...Interrupt_T2...Interrupt_T2...Interrupt_T1...Interrupt_T2...I
nterrupt_T2...Interrupt_T0...Interrupt_T1...Interrupt_T2...Interrupt_T2...Interr
upt_T2...

Clearly the timer interrupts are working, note that there were 11 “Interrupt_T2” between “Main…”, hence
timing is slightly out (should be 10). Timer 1 and Timer 0 timing were correct, allow it is important to realise
that the main program uses a loop delay, this delay does not take into account the delay taken to process
the interrupt hence this may explain way timer 2 appear to be slightly out.

11.2.5. Conclusion

Clearly the four tests that were carried out were successful. Allow problems occurred when sampling at
5,000Hz (distorted waveform), clearly there are two main reason for this the first is that the UART transmit
buffer fills up and the program must wait until the transmit buffer is free to accepted another character; hence
there is an additional time delay. The second is that incoming characters were coming in faster than the
scope program was processing them hence the buffer was overflowing, causing gaps to appear in the data.
The solution of both is simple; to solve the first problem one of the PICs real-time timers can be used for the
time-base, hence any delay caused by the UART will not affect the time-base (timer will continue to count).
The second problem can easily be solved by making the scope program read the serial port faster, and
increasing its buffer.

11.3. Test Session 3: FG Wilson Lab (22/03/2002)

11.3.1. Test 8: Dual Channel Test

Program mark8.c was compiled and loaded into the PIC. Basically this program chops between channel 1
and channel 2 (e.g. sample CH1, trans, sample CH2, trans, delay, repeat). The test was a complete success
the scope.exe program was able to display both channels correctly. Allow big triggering problem, e.g. if
channel 1 was selected for trigger it was almost impossible to get a stable channel 2 trace, and if channel 2
was selected for trigger it was difficult to get a stable channel 1 trace. This is a software problem and should
be fixable.

Screen dump of the scope program (version 1.036, 19/03/2002) during this dual channel test, is shown in
figure 11.3.1a.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 132 Chapter 11: Test Results

Figure 11.3.1a. Screen dump of scope program (Dual Channel Test)

11.3.2. Test 9: Interrupt Driven Time-Base, Real-Time Sampling (Four Channels)

Program mark9.c was compiled and loaded into the PIC. This program uses timer 2 (PIC built-in timer) as
the time-base, the timer causes an interrupt every 20µS. The variable ‘TimeBaseMUX’ is the time – base
multiplier (e.g. 100 Hz = 10ms, hence TimeBaseMUX = 500). Note no sampling is done during the interrupt
routine as all interrupts are disabled while an interrupt is being processed, hence the interrupt routine needs
to take less than 20µS to execute or timing would inaccurate (e.g. say the interrupt routine execute time was
longer than 20µS, during this time timer 2 cannot cause any more interrupts, hence accurate timing is lost).
The main program loops continuously checking the ‘bSample’ flag, if the flag is true the fuctuion
Sample_RealTime() is called, else it continues to loop. The ‘bSample’ flag is set in the Time-base interrupt
routine, keeping the interrupt short.

Interrupt driven time-base has one big advantage over using preset delays: delay routines do not take into
consideration processing delays (e.g. waiting for UART buffer to empty), while the PICs real-time timer will
continue to count no matter what the PIC is doing, and will cause an interrupt every 20µS (assuming
interrupt routine is finished before it is time to called it again).

This program samples all four channels (chop mode). E.g. channel 1 is sampled, then channel 2, then
channel 3, then channel 4. It is expected that Alt mode will be added some time in the future, e.g. sample
channel 1 a thousand times, then sample channel 2 a thousand times, etc...

The following experiments were carried out with the TimeBaseMux equal to 50, that’s a time-base of 1000Hz
(1/(50*20µS)) and baud rate was set at 115kbps. Scope.exe (version 1.036 - 19/03/2002) was used and a
calibrated function generator (Fluke PM5139) used to generate input signals.

Note: Sample rate = 1000Hz, 10 horizontal, samples per division. Hence scope time-base is 0.01 seconds
per division. Time-base is fixed on this version of the scope program.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 133 Chapter 11: Test Results

25Hz sinewave (0-5V) connected to CH1/AN0 and all other channels connected to 5V, see figure 11.3.2a. 4
divisions per cycle, hence the calculated channel 1 frequency is 1/(4*0.01) = 25Hz. Channels 2, 3 & 4 are at
5V DC.

Figure 11.3.2a. Screen dump of scope program (sample rate = 1 kHz, CH1 = 25Hz sinewave, CH2 = 5V, CH3 = 5V, CH4 = 5V)

25Hz sinewave (0-5V) connected to CH2/AN1 and all other channels connected to 5V, see figure 11.3.2b. 4
divisions per cycle, hence the calculated channel 2 frequency is 1/(4*0.01) = 25Hz. Channels 1, 3 & 4 are at
5V DC.

Figure 11.3.2b. Screen dump of scope program (sample rate = 1 kHz, CH2 = 25Hz sinewave, CH1 = 5V, CH3 = 5V, CH4 = 5V)

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 134 Chapter 11: Test Results

25Hz sinewave (0-5V) connected to CH3/AN2 and all other channels connected to 5V, see figure 11.3.2c. 4
divisions per cycle, hence the calculated channel 3 frequency is 1/(4*0.01) = 25Hz. Channels 1, 2 & 4 are at
5V DC.

Figure 11.3.2c. Screen dump of scope program (sample rate = 1 kHz, CH3 = 25Hz sinewave, CH1 = 5V, CH2 = 5V, CH4 = 5V)

25Hz sinewave (0-5V) connected to CH4/AN3 and all other channels connected to 5V, see figure 11.3.2d. 4
divisions per cycle, hence the calculated channel 4 frequency is 1/(4*0.01) = 25Hz. Channels 1, 2 & 3 are at
5V DC.

Figure 11.3.2d. Screen dump of scope program (sample rate = 1 kHz, CH4 = 25Hz sinewave, CH1 = 5V, CH2 = 5V, CH3 = 5V)

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 135 Chapter 11: Test Results

11.3.2.1. Dual Channel Operation Using Two Signal Generators

Fluke PM5139 function generator (calibrated) connected to channel 1 (red), Thandar TG 101 function
generator (not calibrated) connected to channel 2 (green). Sample rate is 1000Hz (scope time-base is 0.01).

Channel 1 connected to 10Hz sine-wave (5Vpp), channel 2 connected to 30Hz sine-wave (4Vpp), see figure
11.3.2.1a. Channel 1: 10 divisions per cycle, hence the calculated frequency is 1/(10*0.01) = 10Hz. Channel
2: 4.2 divisions per cycle, hence the calculated frequency is 1/(4.2*0.01) = 23.8 Hz (note channel 2 signal
generator is not calibrated, this is the true frequency).

Figure 11.3.2.1a. Screen dump of scope program (sample rate = 1 kHz, CH1 = 10Hz sinewave, CH2 = 30Hz sinewave)

Figure 11.3.2.1b. Screen dump of scope program (sample rate = 1 kHz, CH1 = 25Hz sinewave, CH2 = 30Hz sinewave)

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 136 Chapter 11: Test Results

Channel 1 connected to 25Hz sine-wave (5Vpp), channel 2 connected to 30Hz sine-wave (4Vpp), see figure
11.3.2.1b. Channel 1: 4 divisions per cycle, hence the calculated frequency is 1/(4*0.01) = 25Hz. Channel 2
unaffected.

Channel 1 connected to 50Hz sine-wave (5Vpp), channel 2 connected to 30Hz sine-wave (4Vpp), see figure
11.3.2.1c. Channel 1: 2 divisions per cycle, hence the calculated frequency is 1/(2*0.01) = 50Hz. Channel 2
unaffected.

Figure 11.3.2.1c. Screen dump of scope program (sample rate = 1 kHz, CH1 = 50Hz sinewave, CH2 = 30Hz sinewave)

Figure 11.3.2.1d. Screen dump of scope program (sample rate = 1 kHz, CH1 = 100Hz sinewave, CH2 = 30Hz sinewave)

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 137 Chapter 11: Test Results

Channel 1 connected to 100Hz sine-wave (5Vpp), channel 2 connected to 30Hz sine-wave (4Vpp), see
figure 11.3.2.1d. Channel 1: 1 divisions per cycle, hence the calculated frequency is 1/(1*0.01) = 100Hz.
Channel 2 unaffected.

Channel 1 connected to 500Hz sine-wave (5Vpp), channel 2 connected to 30Hz sine-wave (4Vpp), see
figure 11.3.2.1e. Channel 1: Under sampled, aliasing has occurred. Channel 2 unaffected.

Figure 11.3.2.1e. Screen dump of scope program (sample rate = 1 kHz, CH1 = 500Hz sinewave, CH2 = 30Hz sinewave)

Figure 11.3.2.1f. Screen dump of scope program (sample rate = 1 kHz, CH1 = 500Hz sinewave, CH2 = 30Hz sinewave)

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 138 Chapter 11: Test Results

Channel 1 connected to 10Hz sine-wave (5Vpp), channel 2 connected to 10Hz sine-wave (4Vpp), see figure
11.3.2.1f. Channel 1: 10 divisions per cycle, hence the calculated frequency is 1/(10*0.01) = 10Hz. Channel
2: 4.2 divisions per cycle, hence the calculated frequency is 1/(10*0.01) = 10 Hz

Channel 1 connected to 10Hz sine-wave (5Vpp), channel 2 connected to 50Hz sine-wave (4Vpp), see figure
11.3.2.1g. Channel 1: unaffected. Channel 2: 2 divisions per cycle, hence the calculated frequency is
1/(2*0.01) = 50 Hz.

Figure 11.3.2.1g. Screen dump of scope program (sample rate = 1 kHz, CH1 = 10Hz sinewave, CH2 = 50Hz sinewave)

Figure 11.3.2.1h. Screen dump of scope program (sample rate = 1 kHz, CH1 = 10Hz sinewave, CH2 = 100Hz sinewave)

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 139 Chapter 11: Test Results

Channel 1 connected to 10Hz sine-wave (5Vpp), channel 2 connected to 100Hz sine-wave (4Vpp), see
figure 11.3.2.1h. Channel 1: unaffected. Channel 2: 2 divisions per cycle, hence the calculated frequency is
1/(1*0.01) = 100 Hz.

Channel 1 connected to 10Hz sine-wave (5Vpp), channel 2 connected to 550Hz sine-wave (4Vpp), see
figure 11.3.2.1i. Channel 1: unaffected. Channel 2: Under sampled, aliasing has occurred.

Figure 11.3.2.1i. Screen dump of scope program (sample rate = 1 kHz, CH1 = 10Hz sinewave, CH2 = 550Hz sinewave)

Figure 11.3.2.1j. Screen dump of scope program (sample rate = 1 kHz, CH1 = square wave, CH2 = trianglewave)

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 140 Chapter 11: Test Results

Note all of the experiments (in this section) were carried using independent triggering mode, because it was
difficult to get two stable traces when triggering off one channel (e.g. if triggering on CH1, CH2 is unstable,
and if triggering on CH2, CH1 was unstable). This problem should be software fixable.

11.3.2.2. Quad Channel Operation

Figure 11.3.2.2a. Screen dump of scope program (CH1 = CH2 = squarewave, CH3 = CH4 = trianglewave)

Figure 11.3.2.2b. Screen dump of scope program (CH1 = CH2 = CH3 = CH4 = sinewave, triggering on CH1)

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 141 Chapter 11: Test Results

All waveforms in figure 11.3.2.2b were stable, note that there should be a 20µS delay (see mark9.c) between
each waveform (e.g. chop mode). For example channel 1 should lead channel 2 by 20µS, channel 2 should
lead channel 3 by 20µS etc… Each square represents 0.01 seconds (10mS); hence this small offset is not
noticeable at this resolution.

11.3.2.3. 5000Hz Sample Rate – Single Channel

mark9.c modified, basically the sample rate has been changed to 5000Hz (TimeBaseMUX = 10), and
sampling of channels 2 to 4 has been removed.

Note: Sample rate = 5000Hz, 10 horizontal, samples per division. Hence scope time-base is 2 milliseconds
per division. Time-base is fixed on this version of the scope program.

50Hz sinewave (0-5V) connected to CH1 (AN0), see figure 11.3.2.3a. 10 divisions per cycle, hence the
calculated frequency is 1/(10*0.002) = 50Hz.

Figure 11.3.2.3a. Screen dump of scope program (sample rate = 5000Hz, input wave = 50Hz sinewave 0-5V)

100Hz sinewave (0-5V) connected to CH1 (AN0), see figure 11.3.2.3b. 5 divisions per cycle, hence the
calculated frequency is 1/(5*0.002) = 100Hz.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 142 Chapter 11: Test Results

Figure 11.3.2.3b. Screen dump of scope program (sample rate = 5000Hz, input wave = 100Hz sinewave 0-5V)

200Hz sinewave (0-5V) connected to CH1 (AN0), see figure 11.3.2.3c. 2.5 divisions per cycle, hence the
calculated frequency is 1/(2.5*0.002) = 200Hz.

Figure 11.3.2.3c. Screen dump of scope program (sample rate = 5000Hz, input wave = 200Hz sinewave 0-5V)

300Hz sinewave (0-5V) connected to CH1 (AN0), see figure 11.3.2.3d. 1.7 divisions per cycle, hence the
calculated frequency is 1/(1.7*0.002) = 294.1Hz.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 143 Chapter 11: Test Results

Figure 11.3.2.3d. Screen dump of scope program (sample rate = 5000Hz, input wave = 300Hz sinewave 0-5V)

400Hz sinewave (0-5V) connected to CH1 (AN0), see figure 11.3.2.3e. 1.3 divisions per cycle, hence the
calculated frequency is 1/(1.3 *0.002) = 384.6Hz.

Figure 11.3.2.3e. Screen dump of scope program (sample rate = 5000Hz, input wave = 400Hz sinewave 0-5V)

500Hz sinewave (0-5V) connected to CH1 (AN0), see figure 11.3.2.3f. 1 divisions per cycle, hence the
calculated frequency is 1/(1 *0.002) = 500Hz.

Figure 11.3.2.3f. Screen dump of scope program (sample rate = 5000Hz, input wave = 500Hz sinewave 0-5V)

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 144 Chapter 11: Test Results

750Hz sinewave (0-5V) connected to CH1 (AN0), see figure 11.3.2.3g. 0.7 divisions per cycle, hence the
calculated frequency is 1/(0.7 *0.002) = 714.2Hz.

Figure 11.3.2.3g. Screen dump of scope program (sample rate = 5000Hz, input wave = 750Hz sinewave 0-5V)

1000Hz sinewave (0-5V) connected to CH1 (AN0), see figure 11.3.2.3h. 0.5 divisions per cycle, hence the
calculated frequency is 1/(0.5 *0.002) = 1000Hz, but distorted due to under sampling.

Figure 11.3.2.3h. Screen dump of scope program (sample rate = 5000Hz, input wave = 1,000Hz sinewave 0-5V)

2500Hz sinewave (0-5V) connected to CH1 (AN0), see figure 11.3.2.3i. Under sampled.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 145 Chapter 11: Test Results

Figure 11.3.2.3i. Screen dump of scope program (sample rate = 5000Hz, input wave = 2,500Hz sinewave 0-5V)

11.3.3. Test 10: Test External RAM chip

The circuit diagram shown in figure 11.3.3a was constructed on prototype board, with RS232 communication
connected to laptop (COM1, 1000Mhz AMD processor, 256Mhz SDRAM, 8MB 3D accelerator card, running
windows XP).

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 146 Chapter 11: Test Results

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

RA0/AN0

RA1/AN1

RA2/AN2/VREF-

RA3/AN3/VREF+

RA4/TOCKI

Vdd

Vss

OSC1/CLKIN

OSC2/CLKOUT

RC0/T1OSO/T1CKI

RC1/T1OSI/CCP2

RC2/CCP1

RC3/SCK/SCL

RD0/PSP0

RD1/PSP1

PIC16F877-20/P

RB7/PGD

RB6/PGC

RB5

RB4

RB3/PGM

RB2

RB1

RB0/INT

Vdd

Vss

RD7/PSP7

RD6/PSP6

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5/SD0

RC4/SDI/SDA

RD3/PSP3

RD2/PSP2

MCLR/VPPTHV

RA5/AN4/SS

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7 1

2

3

4

5

6

7

8

9

D
B

9

4/10/20MHz

C6
33pF

C7
33pF

CH1

CH2

CH3

CH4

DIP SW R1
1k

R2
1k

R3
1k

VC
C

VCC

VC
C

16

2

6

14

7

13

89

12

10

11

5

4

3

1

15

VCC
C1+

C1-

V+

C2+

C2-

V-

+5V to +10V
Voltage
Doubler

+10V to -10V
Voltage
Inverter

GND

C4
1uF

C3
1uF

C1
1uF

C2
1uF

C5
1uF

MAX232CPE

VCC

VC
C

1

2

3

4

5

6

7

8

9

10

11

12

13

14

28

27

26

25

24

23

22

21

20

19

18

17

16

15

NC

A12

A7

A6

A5

A4

A3

A2

A1

A0

I/O1

I/O2

I/O3

GND

VCC

WE

CS2

A8

A9

A11

OE

A10

CS1

I/O8

I/O7

I/O6

I/O5

I/O4

M6264P-15

D
2

D
1

D
0

D
3

D
4

D
5

D
6

D
7

A7

A6

A5

A4

A3

A2

A1

A0

VC
C

VC
C

D7

D6

D5

D4

D3

D2

D1

D0

D
[7

..0
]

A[7..0]

A0

A1 A2

A3

A4

A5

A6

A7

A8

A9

A10

A11 A12

A12

A8

A9

A10

A11

R/W

Figure 11.3.3a. Test Circuit Diagram 3

Program mark10.c was compiled and loaded into the PIC. This program carries out three tests: -

1. Fill all memory locations with 0xFFh and check.
2. Fill all memory locations with 0x00h and check.
3. Fill all memory locations with the LSB of the address and check.

RS232 communication is used to relay the results to the PC; the DOS based program test.exe used in RX
terminal mode was used to receive and display the results.

Screen dump of the result is shown below: -
RX Terminal

Waiting for message (press a key to stop)
TEST RAM CHIP...

Test 1 - Fill RAM with 0xFF ---> Passes = 7806, Fails = 386

Test 2 - Fill RAM with 0x00 ---> Passes = 8114, Fails = 78

Test 3 - Fill RAM with LSB of Address ---> Passes = 31, Fails = 8161

End of RAMTEST, Hopefully work can now start on storage mode

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 147 Chapter 11: Test Results

Clearly this test was a failure, it was discovered that there was a bug in the PIC program code (version 1.1).
Recall that the DIP switches are connected to port E and in order to configure this port for TTL inputs,
parallel slave mode is turn ON. It is clear from the PIC data sheet that this parallel slave mode also effects
port D, which is connected to the address bus. Switching off parallel slave mode solved the problem, but
created a new one, DIP switches cannot be read. The solution to this new problem was simple, before
reading the DIP switches turn ON parallel slave mode, and after reading the DIP switches turn OFF parallel
slave mode.

Screen dump of the result for the corrected mark10.c program is shown below: -
RX Terminal

Waiting for message (press a key to stop)
TEST RAM CHIP...

Test 1 - Fill RAM with 0xFF ---> Passes = 8192, Fails = 0

Test 2 - Fill RAM with 0x00 ---> Passes = 8192, Fails = 0

Test 3 - Fill RAM with LSB of Address ---> Passes = 8192, Fails = 0

End of RAMTEST, Hopefully work can now start on storage mode.

Clearly the RAM test was a success, and work can now start on the storage mode embedded program.

11.3.4. Test 11: 5V Regulator

The system powering circuit (figure 5.5a) was constructed on prototype board. The input voltage was varied
from 8 to 20 VDC, while the output voltage was measured using a digital CRT storage oscilloscope. Output
voltage was 5 VDC, throughout the test.

11.3.5. Test 12: Test 12: Analogue Circuitry

The analogue circuitry (figure 5.4a) circuit was constructed on proto-type board and tested. Signal generator
was used to generate the input, and a digital CRT storage oscilloscope was used to check the output before
connecting to the PIC ADC. The test was not perfect, as the scale was incorrect. For example a -2.5 to 2.5
volt sine-wave was connected to the -2.5 to 2.5 input, the output was 1 to 5 volts and not 0 to 5 volts as
expected. Allow this could be software corrected; it makes since to play around with the resistor values to try
and improve this. (Perhaps variable resistors may have to be used for calibration purposes).

Note a switch mode DC to DC converter was used to converter 5 Vdc to -15 and 15V. Hence the entire
circuit was power from one supply. Note the diodes successfully stopped the output voltage getting too low
or too high.

11.3.6. Conclusion

Evidently the scope program can view up to four channels at a sample rate of 1kHz and one channel at a
sample rat of 5kHz in real-time. Clearly there is a triggering problem as it was difficult to obtain a stable trace
when triggering off another channel, for example when triggering off channel 1, all other channels were
constantly scrolling across the screen. When the same signal is inputted into all four channels, it is now
possible to get a stable trigger (e.g. waveforms related), but waveforms of different frequencies was a
problem.

Clearly storage mode operation is now possible, as the RAM chip was successfully tested. The first step
might be to use the real-time frame structure, storing up to 4000 reading into RAM and then cycling through
them transmitting them to the PC in one large block. This is a quick and easy test, next step is actually
writing the storage mode software and then the control protocol.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 148 Chapter 12: Conclusions

12.0. CONCLUSIONS

Clearly commercial oscilloscopes are over priced; the main goal of this project was that the cost of the PC
based oscilloscope should be as low as practically possible, the total cost was expected to be less than £50
and this figure was used as guild when selecting hardware components. Clearly this goal has been achieved
as the total cost of PCB components was calculated to be £22.97 (retail price), obviously this does not
include the cost of the PCB board (about £7), case (about £5) and manufacturing costs (about £15), but the
total product costs should be under £50.

Note the software application should be freeware, including full source code; hence customers can modify
code making improvements and adding additional features, these customers could be encouraged to send
their customised copy of the program to the author so that some of these changes could be included in new
releases of the program.

Clearly this project is cheaper than any other similar product on the market as the nearest was a 20 kHz
single channel PC based storage oscilloscope (-5 to 5V) at £95. It is also clear that this project has many
technical advantages over existing products, for example it is a quad channel oscilloscope and commercial
quad channel oscilloscopes are extremely expensive (including commercial PC based scopes). It is foreseen
that the oscilloscope could be available in kit form, were customers would buy the PCB components, PCB
board, case, leads and build the scope themselves; this is a real option as the hardware circuitry is extremely
simple and this would reduce product costs making the product more economical.

Core objective “design and construct the hardware required for data acquisition”, clearly this objective has
been successfully achieved. The PIC16F877 is use, this microcontroller is extremely powerful running at a
20MHz, it has a built in 10-bit ADC which can be connected to anyone of 8 input pins, and a hardware UART
suitable for RS232 communications.

Evidently the analogue circuit was proven to work, as it was simulated in electronic workbench and then in
the laboratory using real components. Obviously the analogue circuit needs to be redesigned so that the PIC
microcontroller can control the input voltage range, as stated in this report, there are a couple of different
ways of achieving this. The first, analogue switches could be used to switch in different resistor values to the
op-amps, hence changing the gain (e.g. MAX4066 or MM74HC4066). The second, and more likely option is
the use of digital potentiometers (resistance controlled by microcontroller), to change the gain of the op-
amps.

The circuit has built-in protection (diodes), to make sure the ADC does not get damaged by high or negative
voltages, but there is no protection at the inputs to the op-amps. Clearly this is a problem, what happens if
the wrong range is selected and 200V is fed into the -2.5V to 2.5V range, this will destroy the op-amps; allow
the diodes at the PIC ADC pin should protect the PIC, hence it is inexpensive to fix. It is also important to
note that resistors normally have a maximum voltage rating of about 200V, hence for safety reasons it is
better for the 100kΩ resistor for the -250V to 250V input range to be made up of several resistors in series
(i.e. 3 x 33kΩ, 1 x 1kΩ).

The RS232 transport medium was chosen, the main reasons why it was chosen is because it is easy to
program, reliable and every PC has at least one RS232 port. The main disadvantage of RS232 is that it is
slow (115Kbps max and will limited the maximum real-time sample rate) when compared to other mediums
(e.g. USB 12Mbps). The USB port is ideal for this type of application, but because a USB port can have
many devices daisy chained, the communication protocol must be complaint with the USB standard. This
USB communication protocol standard is quite large and complex, and it was decided that it would take too
much time to implement. Note the scope program is designed to flexible, hence sometime in the future the
transport medium could be changed allowing for faster real-time sample rates.

Included in this report were design details of the real-time communication protocol, this included the frame
structure and some maximum sample rate calculations at different baud rates. There are two real-time
sampling modes, the first is chop mode where channel 1 is sampled then channel 2 then channel 3 then
channel 4. Clearly this causes a number of problems, the first is that RS232 throughput must be shared
between all channels hence this reduces the maximum sampling rate, the second is that because it takes
time for the ADCs sampling capacitor to charge (20µs), there is a time delay between sampling each channel
(e.g. channel 1 will lead channel 2 by 20µs). Obviously this waveform offset can be software corrected, for

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 149 Chapter 12: Conclusions

example a future version of the scope program could have a ‘calibration’ dialog which allows the user to
software offset channel timings to compensate for this 20µs delay between waveforms.

The second real-time mode is ‘alternate’ basically this samples channel 1 1000 times, then channel 2 1000
times, then channel 3 1000 times, then channel 4 1000 times. Clearly this has the advantage of maximising
the real-time sample rate (channels don’t share RS232 throughput) no matter how many channels are
enabled, but continuous monitoring of a waveform is impossible as there are gap in the data and channel
phases are lost (e.g. CH1 leads CH2 by 90o). Allow since the PIC knows how must time has elapsed (PIC
timer) since sampling the pervious channel, this information could be transmitted to the PC, where the scope
program could software correct the phase of each waveform. Obviously this mode is only useful for
periodical waveforms (e.g. sinewaves) and not for example an ECG signal.

Evidently the maximum real-time sample rate is 5.75 kHz, which is the maximum throughput of the real-time
frame structure through RS232 at the maximum baud rate (115kbaud). Clearly there is no reason why more
than one serial link could not be used to increase this real-time sample rate, for example two bytes are sent
per ADC reading, hence COM1 could be used to transmit the first byte and COM2 could be used to transmit
the second byte (11.5 kHz sample rate). Obviously the chosen PIC has only one hardware UART, hence a
software UART is required for the second com port (easy to achieve using CCS compiler) but this will push
the PIC to the limits but should be ok at 20MHz. No extra hardware (i.e. no extra cost), except for another
serial cable is required as the MAX232 is a dual line driver chip hence there is a spare set of drivers that can
be used for this additional com port. Undoubtedly if the PIC struggles to cope with the additional software
UART, a separate hardware UART could be used.

Since the RS232 communications is the bottleneck when operating in the real-time mode, it is important that
the real-time frame structure is as efficient as possible. Unmistakably that’s the reason why the real-time
structure does not have a check sum or CRC. Clearly, this causes a problem, however the frame structure is
designed in such as a way that some errors can be detected, but the cable between the MAX232 buffer and
the PC will be high quality shielded cable (short length) and errors should not occur that frequently anyway. If
one or two readings are lost/corrupted, it is clear the appearance of the waveform will not be affect too much,
as there are at least 10 readings per cycle and because it is real-time the screen is continuously refreshed,
hence the error will probably not stay on the screen for very long until it is replaced by new readings.

Clearly a Windows based C++ application capable of displaying low-frequency waveforms from four
channels simultaneously in real-time has been successfully designed, implemented and proven. The scope
program graphically displays waveforms without flicker, it has a good user interface that is easy to use, and
directly communicates with the PIC. There were many problems during development, some of which have
been described in detail in this report (e.g. Windows 95/98/ME compliably problem). These problems are all
part of the learning curve, for example one of the early problems was drawing the traces without flicker, and
this problem was solved by drawing the trace to a memory DC (bitmap) and then quickly coping this to the
screen. Before hand it was not known how to achieve this, hence new knowledge has been acquired. Clearly
the graphical display works well and is extremely flexible (e.g. auto resizable, user adjustable grid resolution
and colour).

The graphical display is designed to display the waveforms as it would appear on a traditional oscilloscope.
The standard resolution (allow this can be modified up to 99 by 99) is 10 by 8 squares (that’s 100 by 80
dots), and has a user configurable trigger (software trigger). This triggering operation took some time to
implement, there were many problems at first, but eventually most of the problems were ironed out, a view
still remain e.g. unstable CH2 trace when triggering off CH1 if waveforms are unrelated. The user can select
from a range of different triggering methods (e.g. low to high, high to low, level or edged etc…) and which
channel they which to trigger on (e.g. 1,2,3, 4), including impendent triggering where each channel is trigger
independently of each other, this feature is not possible on traditional analogue oscilloscopes, it is not sure
how useful this feature is, buts its another one of those features (‘Bells and Whistles’) that gives this project
an edge over existing similar products. Notice the split screen feature; were the graphical display is on the
left hand side and the controls are on the right, just as they would appear on a traditional oscilloscope.

It is clear that the scope program can display multiple scope windows, each one with its own selected
channels enabled, impendent triggering, time-bases, scales and grid resolution. It was not sure how useful
this feature might be and during development it was considered that this feature may have been dropped on
the finished application. Fortunately this was not the case and indisputably it may have some use for
specialist applications and it’s another one of those features (‘Bells and Whistles’) that sets this project apart

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 150 Chapter 12: Conclusions

from other similar products. It is clear that there is no limit on how many scope windows can be opened
simultaneously, perhaps until the computer runs out of memory, which on a modern PC could be 1000s of
windows.

Evidently direct access to the hardware is not allowed under Windows NT/2000/XP. Hence the reason why
interaction with the serial port was achieved using a file handle and various WIN32 communication API’s.
Note this method is also Windows 95/98/ME compatible.

The scope program has been successfully tested on Windows 98/NT/2000/XP and theirs no reason why the
program should not work on Windows 95/ME, allow comprehensive testing is required. Simulated random
noise tests running for hour’s non-stop, was used to test the reliability of the scope application, (e.g. can it
recover when the noise is removed or has it crashed) the program continued to operate correctly once the
noise was removed, but when the noise was present (no CRC check in real-time mode) all sorts of strange
waveforms were being drawn on the display.

Clearly there is problem when the user has selected an out of range time-base (i.e. aliasing can occur, even
if sampling at more than twice the waveform frequency), recall that the scope program increases the time-
base by skipping readings and decreases the time-base by duplicating readings. Obviously it is possible for
aliasing to occur (skipping reading) if the selected time-base requires for less than 2 samples per cycle to be
displayed, hence it is important that the user makes sure that the selected time-base is optimal for the
waveform being monitored at the selected sample rate.

Evidently the scope program is far too processor hungry and future modification is required to make it more
efficient, for example the trigger point for all enabled channels are always calculated even if all channels are
triggering of one channel, clearly this is inefficient and bad programming practice and needs to be improved.
It has been proven that the scope program requires a reasonably fast PC to run smoothly, the minimum spec
being 200MHz (for a reasonable refresh rate) and probably 500MHz for quad channel operation at a high
refresh rate (50ms) and resolution. Clearly modern PCs will have no problems running the scope program as
the minimum spec computer on the market today are all above 1GHz with the top-range above 2GHz, and
computers up to 3 years (300 MHz or above) old should conformable run the scope program.

Obviously the development of the scope program is not complete and there remains many additional
features yet to be added, for example the addition of 4 user configurable virtual channels (e.g. VC1 = CH1 +
CH2, or CH1 – CH2, or CH1 * CH2, etc…), auto frequency calculation, auto time-base, auto voltage scale,
print directly from scope program and storage mode operation. Overall good progress was made, the
program can display up to four real-time waveforms either scrolling across the screen or triggering,
waveforms can be saved and reopen, graphical display can be exported to a bitmap or the Windows
clipboard, voltage scales are adjustable, zero point and waveform offset easy adjustable using unique user
interface (small triangles) and channels are easy disable/enabled.

The philosophy used during the development of the PIC embedded software was to keep it simple,
straightforward, comprehensible, and to a minimum. Many small programs were designed for testing the
hardware and ideas; clearly the end result is that the PIC code was gradually built up step-by-step, instead of
writing the entire program at once. Evidently this ensures that operational results are obtained, as testing
producers were carried at each stage, while if the program had been written all at once, there would have
been little chance of it working and could have proved difficult to debug. The high-level programming
language C was chosen and not the low-level assembly code normally associated with PIC programming,
clearly there are many advantages of this including: ease of programming, ease of modification, reusability of
code, and use of standard functions. Clearly PIC embedded software (mark9.c) was successfully designed,
implemented and tested to read the ADC at a certain sample rate (interrupt time-base) and transfer the data
to the PC using the real-time communication protocol.

It is clear that a Windows dialog based simulator program was successfully developed, this program is easy
to use: the user selects the type of waveform, amplitude and frequency for each channel. The simulated
waveforms are then transmitted to the scope program using the real-time frame structure (storage not
implemented). Clearly accurate timing is difficult to achieve, and no attempt has been made to achieve this
as it would have wasted a large amount of time, plus the timing of the simulator would have been completely
different to the timing of the PIC hence the code would not be reusable (actuate timing on PIC only), Clearly
even though the simulator does not have actuate timing it still is a powerful tool, it will allow the
communication protocol, graphical display and triggering method of the scope program to be easily tested

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 151 Chapter 12: Conclusions

before the hardware is constructed and PIC embedded software is written. This program works well and was
successfully used to test the scope program, allow storage mode operation and the control protocol are yet
to be implemented; hence more development is still required.

Evidently the entire system has been demonstrated to work together as a basic real-time low-frequency
oscilloscope (up to 5 kHz) as the test results show in chapter 11. Clearly the maximum possible real-time
sample rate is 5.75 kHz (with one RS232 link) a low pass filter is required (anti-aliasing) to filter all
frequencies above half the sample rate, in this case the filter should filter out frequencies above 2.875kHz,
hence because the system has a low frequency cut off of 0Hz (e.g. DC waveforms can be monitored) the
system has an analogue bandwidth of 2.875 kHz.

Clearly there is no reason why multiple scopes cannot be used, for example two scope programs can be
executed in windows one could be configured to use COM1, the other COM2. Hardware can be connected
to COM1, and other set of hardware connected to COM2. Hence up to 8 channels can be monitored
simultaneously on one computer screen. Obviously the only limit is the number of serial ports the PC has
and how many scope programs it is capable of running simultaneously (i.e. processor power). Also it is
important to note that the chosen PIC has 8 input pins to the ADC, hence with minor modifications to the
scope program (cut & paste drawing of waveforms, etc…), hardware (remove dip switches from port E), and
embedded software (sample channel 1 to 8) eight channels could be monitored simultaneously (that’s 16
channels if two scopes are used), but at a reduced sample rate when all eight channels are enabled (unless
using storage or real-time alternate mode).

Adding storage functionally to the scope was the last thing to be done, clearly this feature is not complete but
good progress has been made as block diagrams of the communication protocol and frame structure were
included in this report. It is important to relies that storage mode, should theoretically allow for faster sample
rates which are not limited by the speed of the transport medium; e.g. the PIC reads 1000 readings from
channel 1 at 20KHz then stops sampling and transfers the data to the PC using the storage mode frame
structure (including CRC) via RS232, once ACK (Acknowledgement) is received from the PC the PIC starts
sampling again. If NAK (Negative Acknowledgement) is received or a timeout occurs the PIC retransmits the
frame. Clearly most of the ground work for implementing storage mode operation has been done, for
example functions for writing to the RAM chip were successfully written and tested, and implementation can
easily be achieved if more time was available.

Evidently the maximum sample rate when operating in storage mode is the speed of the ADC, this was
calculated to be 43.63 kHz. Hence since frequencies above half the sample rate must be filtered (anti-
aliasing) the actual maximum analogue bandwidth of the system is 21.815Hz (note flow = 0Hz). Undoubtedly
an external ADC with direct memory access makes it possible to monitor very high frequencies (e.g. AD9070
– 10bit, 100MSPS ADC), but these chips are expensive, hence the low cost of the design is lost. It is clear
the following limits the maximum storage sampling rate: the maximum sampling speed of the ADC, time
taken to send to RAM, and the amount of memory.

Overall progress has been good, although it has taken much longer than expected to complete certain
aspects of the project (e.g. triggering of waveforms). The project was a success, real-time waveforms have
been successfully displayed on a PC in real-time and it has been demonstrated how storage mode operation
could be added to project to increase maximum sampling rate, even if the transport medium is slower than
the sample rate.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 152 Chapter 13: Recommendations For Further Work

13.0. RECOMMENDATIONS FOR FURTHER WORK

Clearly there is a lot of additional development work that can be done to improve the design of this low cost
PC-based quad channel real-time / storage oscilloscope. This chapter will briefly highlight areas of the
design that merits improvement and additional features to make the scope more powerful, reliable, flexible,
and commercially marketability.

13.1. Control Protocol

Obviously the first thing that needs to be finished, is the control protocol allowing for the scope program to
directly control the sample rate, enable / disable channels, real-time / storage mode, chop or alternate, etc…
Sufficient details have been included in this report on how this might be achieved.

13.2. Storage Mode

Sample a finite number of samples storing them into RAM. Once the memory is full (or the preset number of
samples has been reached) the PIC will stop sampling and transfer the data to the PC, when ACK
(acknowledgement) is received from the PC the PIC will start sampling again. There is enough information
contained in this report to implement this feature, clearly the scope program and PIC software needs
modification.

13.3. Multiple Serial Ports

The PIC only has one hardware UART; hence one solution is to use the hardware UART plus a software
UART (CCS C complier makes this easy). Two bytes are sent for per ADC reading, hence put the first byte
on COM1 and the second on COM2, this will double the maximum real-time sampling rate (11.5 kHz max).
Note the MAX232CPE chip is a dual RS232 line driver chip hence no extra hardware is required, allow the
additional software UART will push the PIC to the limit (should be OK at 20MHz). If it turns out it is not
practical to use a software UART, an additional hardware UART chip could be used, these chips are readily
available and are reasonably priced.

13.4. USB Transport Medium

The USB port is ideal for this type of application (12 Mbps); this takes away the RS232 bottleneck providing
faster real-time sample rates. Note the USB throughput if far faster than the PICs ADC (43.63 ksps) hence
this is the new bottleneck of the system. There is no need for storage mode, as the USB throughput is
capable of transmitting a sample rate up to 600 kHz (12,000,000/20) in real-time, using external ADC.

Note the USB port can have many devices daisy chained; the communication protocol must be complaint
with the USB standard. This USB communication protocol standard is quite large and complex, hence a
dedicated PIC maybe required to deal with USB communication, while another does the sampling. Note that
USB communication protocol is packet based (lets other devices share the same link) hence the actual
throughput will be less than stated above. Note the scope program is designed to flexible, and should be
easy to integrated with the USB standard, actually Microsoft probably has a standard C++ plug-in object
available for visual C++ designed for letting C++ programmers (e.g. the scope program) use the USB port
without total knowledge of the USB communication protocol (e.g. automatically converts into correct
packets). Unfortunately interfacing the PIC will be a completely different story.

13.5. Bootstrap

The chosen PIC can protect blocks of program memory, hence a bootstrap program can be written to check
the serial interface before calling the main program. If a certain block of characters are received during
bootstrap, it moves into program mode, using a bidirectional communications protocol (RTS, ACK, NAG,

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 153 Chapter 13: Recommendations For Further Work

etc…) a new program can be download from the PC directly into program memory, when download is
complete the new program is called. This offers greater product flexible as software updates (bug fixes, new
features) can be downloaded free of charge and download directly into the product using the same serial
interface and software used to display the waveforms (i.e. the scope program).

Microchip application note [J6] will fully describe how to implement this, including full source code.

13.6. Virtual Channels

It is recommended that the scope program should have up to four user configurable virtual channels, that’s a
total of 8 channels. Each virtual channel can be configured as follows: CH1 + CH2 or CH1 x CH2 or CH1 –
CH2 or CH1 / CH2 etc… This makes the scope program more versatile increasing its usefulness, for
example monitoring of RS485 / RS422 serial communication is now possible. RS485 / RS422 works on the
principal of differential voltages between two cables twisted together (good noise immunity), hence two
oscilloscope channels (four for RS422) could be used and the scope program will automatically add the
traces together creating a new trace say CH5 (virtual channel 1).

This is extremely easy to achieve, it is only matter of creating four more traces the same as was done for
channels 1 to 4 (e.g. cut & paste makes life easy). Instead of filling the arrays for these traces using the
communication protocol, the program continuously scans though each real channel array multiply, adding,
dividing or subtracting channels together (e.g. whatever the user has specified for each virtual trace) filling
the virtual trace arrays.

13.7. Data Logging

The scope program already has dummy dialog controls for this feature, basically real-time data is streamed
to disk, allowing the user to play back the recorded data in real-time, manually scroll through the data, and
email the data to a colleague anywhere in world. For example this feature would be useful for monitoring of
an ECG signal, where the raw data can be email to a doctor for diagnosis.

This feature is easy to implement basically every character that is received from the serial port is dumped
into a file, and when playing back the data, the program runs through the recorded data at the same rate it
was originally sampled at (perhaps the sample rate combo box could still be operational, allowing for a
slowed or speeded up view of the data).

13.8. TCP / IP Internet Communications

Remote monitoring / control of oscilloscope from anywhere in world, for example the machine actually
connected to the scope hardware (running in slave mode) relays real-time data through the internet using the
TCP / IP internet protocol, the scope program on the other end (master program), receives the data and
draws the waveforms as normal. The scope program operating in slave mode has its controls disabled,
hence only the master scope program controls the PIC, via the internet and via the slave scope program.

Problem the internet (unless using broadband technology, e.g. ASDL, fibre optic) is slow and commonly
suffers from net congestion, hence this feature is only useful for slow sampling rates, unless storage mode is
used. For example an ECG signal only requires a sample rate of 120 Hz, clearly the internet is capable of
transferring this data in real-time without any problems, hence a doctor can remotely diagnosis an ECG
signal in real-time.

13.9. Direct Modem to Modem Communication

The master scope program dials the slave scope program and a direct communication link is established.
Once at direct modem link is established the communication protocol between the remote scope programs
are exactly the same as with a direct like to the PIC, hence the only operation of the slave program during
this time is to relay the data from the PIC to the master scope program and visa versa.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 154 Chapter 13: Recommendations For Further Work

This feature is easy to implement, basically two additional functions is required one to setup the scope
program as a master (dial user configurable number, real-time, storage and control protocols unchanged)
and the other to setup the scope program as slave (wait for connection and once connection is established
rely data from the PIC to the master visa versa).

13.10. Printing of Scope Display

The scope program should be able to print the scope display directly to the system printer. Some work has
already been done in this area, for example configuration of the printer is currently possible and code for
printing exists along with a header and footer. The only thing that remains to be completed is the drawing of
the scope display, clearly the simplest way of achieving this is by copying the bitmap directly to the printer
output CDC, but this is not ideal, as this would not contain any information about the selected time-base,
voltage scales (this is essential), and the screen resolution (source of bitmap) could be much lower (this is
likely) than that of the printer hence producing a poor quality printout.

Obviously the grid and traces need to be redrawn on the printer output CDC, this is simple as the code is
exactly the same as that which draws the grid and traces to the screen (hence put cut & paste to good use),
allow the size of the page is different to that of the screen hence don’t forget to detect the resolution of the
printer.

13.11. An Alternative Method for Dealing with Aliasing

Generally a low-pass filter is used to filter out frequencies above half the sample rate. Instead of filtering out
aliased signals, a hardware circuit can be used to detect the actual frequency of the waveform being
monitored. The PIC can then transmit the actual frequency of the waveform to the scope program. The
scope program can then software calculate the frequency of the sampled waveform and if the two
frequencies do not match the scope program knows that the sampled waveform is an alias.

Divide
by

256

5V

0V

f
5V

f/256

0V

CH1 PIC

5V

0V

f

Figure 13.11a. Frequency detection circuit

Figure 13.11a shows how a simple detection circuit could be made. A Schmitt-Triggered inverter is used to
generate squarewaves at the same frequency of the original signal which is then passed through a
frequency divider circuit which decreases the frequency by 256. The output of the detection circuit is
connected directly to a Schmitt-triggered input on the PIC which is configured to interrupt the PIC. Using a
real-time timer the frequency of the signal can be calculated and transmitted to the scope program.

J

Q

Q

K

SET

CLR

VCC

J

Q

Q

K

SET

CLR

VCC

J

Q

Q

K

SET

CLR

VCC

J

Q

Q

K

SET

CLR

VCC

J

Q

Q

K

SET

CLR

VCC

J

Q

Q

K

SET

CLR

VCC

J

Q

Q

K

SET

CLR

VCC

J

Q

Q

K

SET

CLR

VCC

/2 /4 /8 /16 /32 /32 /64 /128

J

Q

Q

K

SET

CLR

VCC

/256
Figure 13.11b. Divide by 256 circuit

The reason why the divider circuit (figure 13.11b) is required is to reduce the processing load on the PIC. For
example if the divide by 256 was not there, the PIC would be interrupted 5000 times a second instead of
19.5 for a 5 KHz signal. If the PIC was interrupted 5000 times a second, normal operation of the PIC would

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 155 Chapter 13: Recommendations For Further Work

be severally affected. If extremely large frequencies are possible (> 1MHz) the frequency divider should be
increased.

13.12. Taking Advantage of Aliasing

Using the frequency detection circuit shown in figure 13.12a it maybe possible to monitor periodical
waveforms that have a frequency much higher than the sample rate. The idea behind this theory is that at
certain frequencies aliased waveforms are the same as the input waveform expect for the frequency (as
seen during testing). Therefore with some software processing it is possible to redraw the waveform at the
correct time-base using the hardware frequency detection circuit as a guild. This technique will not work for
random waveforms for example sound-waves, only periodical waveforms which 9 times out of 10 is what an
engineer uses an oscilloscope to monitor.

This technique could allow for waveforms up to 1 MHz (or above) to be monitored using this PC based
oscilloscope. If more time was available it would be nice to investigate this theory further.

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 156 Chapter 14: Bibliography / References

14.0. BIBLIOGRAPHY / REFERENCES

NOTE: References are in blue text (referred to them explicitly in this report), the rest are bibliography.

Text Books

[B1]

Oscilloscopes – How to use
them, How they Work

By Ian Hickman
Publisher: Newnes
ISBN: 0-7506-2282-2
UUJLIB: 621.3815483HIC
1995

[B2] Hands-On Guide to
Oscilloscopes

By Barry Ross
Publisher: McGraw – Hill
ISBN: 0-07-707818-7
UUJLIB:621.3815483ROS
1994

[B3]

The Quintessential PIC
Microcontroller

By Dr Sid Katzen
Published by Springer
ISBN: 1-85233- 309-X.
2001

[B4] Microelectronic Circuits –
Fourth Edition.

By S. Sedra and Kenneth
C. Smith
Publisher: Oxford
University Press
ISBN: 0-19-511690-9
1998

[B5]

Audio, Video And Data
Telecommunication

By David Petersen
Published by McGraw-Hill
ISBN: 0-07-707427-0
1992

[B6] Data Communications for
Engineers
By Michael Duck, Peter
Bishop and Richard Read.
Publisher: Addison –
Wesley Longman limited.
ISBN: 0-201-42788-5
1997

[B7]

Computer Networks – Third
Edition

By Andrew S. Tanenbaum
Publisher: Prentice Hall
ISBN: 0-13-394248-1
1996

[B8] The Complete C++
Reference

By Herbert Schildt
Published by McGraw-Hill
ISBN: 0-07-882476-1
1998

Journals

[J1] “PC-based virtual test and measurement speed bench testing” by Ivor Matanle (AA Vol. 15 No. 4,

1995 - page 12)

[J2] “Digital signal processing“, by Andy McFarlane (Journal: Sensor Review, Year: 1997, Volume: 17

Number: 1 Page: 13 -- 20, Publisher: Emerald).

[J3] “Computer integrated documentation” by Robert M.Parkin and B.S. Dalay (Industrial Management &

Data Systems, Vol. 94 No. 1, 1994, pp. 3-8).

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 157 Chapter 14: Bibliography / References

[J4] “Anti-aliasing, analogue filters for data acquisition systems”, by Bonnie C. Baker (Microchip

application note AN699, © 1999).

[J5] “Using digital potentiometers to design low pass adjustable filters”, by Bonnie C. Baker (Microchip

application note AN737, © 2001).

[J6] “Implementing a bootloader for the PIC16F87X”, by Mike Garbutt” (Microchip application note

AN732, © 2000).

Web Sites

[W1]

http://www.farnell.com (Farnell Online catalogue).

[W2] http://rswww.com (RS Online Catalogue).

[W3]

http://www.microchip.com - Microchip Website
(PIC datasheets and application notes).

[W4]

http://www.codeproject.com - The Code Project (a
community of Windows developers specialising in
C++, MFC, C# and .NET who have come
together to share source code, articles and
tutorials).

[W5] http://www.lvr.com/usb.htm - USB Central (Information, tools, and links to material about the

Universal Serial Bus).

[W6] http://www.lvr.com/serport.htm - Serial Port Central (A collection of files and links to material relating

to serial links and networks, especially in monitoring and control applications).

[W7] http://www.lvr.com/parport.htm - Parallel Port Central (A collection of files and links to material about

the PC's parallel port, including ECP, EPP, bidirectional, and IEEE-1284 modes).

[W8]

http://msdn.microsoft.com/ - Microsoft Developer
Network

[W9] http://www.engj.ulst.ac.uk/sidk/PIC/index.html - PIC Resource Site (An assorted set of data sheets,

instruction sets and web sites, by Dr S Katzen).

[W10]

http://www.programmersheaven.com/ (Over
18449 resources to explore)

[W11] http://www.codeguru.com/ (C++ source code, etc…)

[W12] http://www.intelinfo.com/newly_researched_free_training/C++.html (Free C++ Programming Training

and Tutorials)

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 158 Chapter 14: Bibliography / References

[W13] www.picotech.com (PC Based Test & Measurement)

Data Sheets

[D1] “PIC16F87X Data Sheet”, 28/40-pin 8-bit CMOS flash microcontrollers (© 1999 microchip

technology)

Friday, 21 June 2002 Final Report Colin K McCord

EEE516J4 – Honours Project Page 159 Appendix: CDROM

A. CD ROM

This CD ROM contains complete source code (include compiled *.exe files) for all PIC embedded software,
the test program, the simulator program and the scope program (all 42 versions present). Also contained on
this CD ROM are datasheets and over 200MB of raw research data.

CD-ROM

