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A b s t r a c t  

This paper address the problem of navigating in 
very large outdoor unstructured environments. It 
presents solutions to the problem of closing large 
loops in simultaneous localization and map build- 
ing applications. A hybrid architecture is presented 
that  make use of the Extended Kalman Filter to per- 
form SLAM in an efficient form and a Monte Carlo 
type filter to resolve the data association problem 
present when closing large loops. The proposed algo- 
rithm incorporates integrity to the standard SLAM 
algorithms by allowing multimode distribution to be 
handled in real time. Experimental results in out- 
door environments are also presented. 

1 I n t r o d u c t i o n  

Reliable autonomous navigation in highly unstruc- 
tured outdoor environments presents formidable 
problems in terms of sensing, perception and navi- 
gation algorithms [1]. The problem of localization 
given a map of the environment or estimating the 
map knowing the vehicle position is known to be a 
solved problem and in fact applied in many research 
and industrial applications [2] [3]. Outdoor environ- 
ments present additional challenges due to the lack 
of reliable sensors and perception algorithm that  can 
work reliable under all weather conditions. 

A much more complicate problem is when both, the 
map and the vehicle position have to be estimated. 
This problem is usually referred as Simultaneous Lo- 
calization and Map Building (SLAM) [4] or Concur- 
rent Map Building and Localization (CML) [5]. This 
problem has been addressed in [6] using a Monte 
Carlo method in indoor problems and in [7] using 
sum of Gaussian in a sub-sea applications. Although 
these methods can handle multimodal distributions 
they are still computationally expensive for real time 
applications. 

The Kalman Filter can be extended to solve the 
SLAM problem [4], once appropriate models for the 

vehicle and sensors are obtained. In [9] the real 
time implementation aspects of SLAM using EKF 
techniques were addressed. A Compressed Extended 
Kalman Filter (CEKF) algorithm was introduced 
that  significantly reduces the computational require- 
ment without introducing any penalties in the accu- 
racy of the results. Sub-optimal simplification were 
also presented in [10] to update the full covariance 
matrix of the states bounding the computational cost 
and memory requirements. 

Simultaneous navigation and map building algo- 
rithms are based on a exploration stage and re-visit 
of known places to register the new learned map to 
the known map. Depending on the quality of the 
kinematics models and external sensors used the ex- 
ploration stage can be extended to larger areas. Nev- 
ertheless no mat ter  how good sensors and models are, 
at one point the accumulated error will make the reg- 
istration task impossible. This problem is shown in 
Figure 1. In this experimental run the vehicle started 
near point labeled 3 and circulated in CW direction. 
The Figure shows the estimated path using a CEKF 
filter aided with absolute GPS information [11]. The 
stars represents natural landmarks incorporated as 
features into the map. The vehicle uses dead reck- 
oning information to predict its position and incor- 
porates features into the map to bound the dead- 
reckoning errors. If the vehicle return to the point 
3 with an error smaller than the separation between 
landmarks then it is possible to use standard algo- 
rithm to perform data association and register the 
new learned local map. In this particular case there 
are very few landmarks in the part of the trajectory 
labeled 1-2-3 making the estimated vehicle error to 
grow to 10 meters when returning close to the initial 
position labeled 3. This error is plotted as an ellipse 
in the Figure 1. Since the separation between the 
landmarks A and B are approximately 8 meters the 
system will not be able to perform the data associa- 
tion and will be in failure. 

This is an inherent limitation of all simultaneous nav- 
igation and mapping methods and is independent of 
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Figure 1" Closing the loop in a large environment 
with few features 

the implementation method or model used. In this 
paper a robust solution to this problem is presented 
using a combination of the CEKF with a Monte 
Carlo Filter. This hybrid architecture is designed to 
exploit the efficiency of the CEKF algorithm to es- 
timate and maintain vehicle and map states and to 
provide appropriate initialization to the Monte Carlo 
filter to accelerate the convergence of the particle 
type filters once a possible data association problem 
is detected. The algorithms are presented for generic 
range/bearing sensors and can be extended to bear- 
ing only and range only sensors. 

The paper is organized as follows. Section 2 presents 
the Bayes framework and in particular the Parti- 
cle Filter implementation. Section 3 presents the 
main result of this paper that is the hybrid archi- 
tecture proposed with the CEKF and the Particle 
Filter. Section 4 presents experimental results in out- 
door unstructured environments. Finally Section 5 
presents conclusions. 

2 B a y e s i a n  E s t i m a t i o n  in n a v i g a t i o n  
p r o b l e m s  

The SLAM problem under a probabilistic estimation 
approach requires that the marginal probability den- 
sity p(XL~, m Z a, U a, x0) must be known for all k, 
where XL~ is the vehicle state, x0 its initial condition, 
m are the states representing a feature in the map 
and Z a and U a are the observations and input sig- 
nals respectively at time k. To obtain the recursively 
form of this density [7] [8], it is assumed that the 
density p(XL~_I,mlZ a- l ,  U a - l , x 0 )  is known. Then 
applying the Bayesian rule and the Total Probability 
theorem we have 

p(xL ,mlZ k, Uk,  Xo) -- t p(zklxL ,m) 
f p(XLk lXLk_I,  tk)p(XLk_I,m Z k-l, U k-l,xO)dxLk 1_ 

(1) 

where ~ is a normalization constant, p(zalxL~,m) 
represents the observation model and 
p(XL~IXL~_I,Ua) models the vehicle dynamic. 
When the map m is known 

p(XL~Im, Z k, Uk, Xo) -- ~p(zklm, XL~) 
f p(XL~ IXL~_I, ~tk)p(XLk_l Im, Z k-1 , U/g-1 , xo)dXLk_l 

(2) 
represents the Localization Problem. 

2.1 Localization with the Particle Filter 

Particle Filters approximate the joint posterior prob- 
ability density with a set of random samples called 
particles. As the number of samples becomes large, 
they provide an exact, equivalent representation of 
the required distribution, that is the filter output 
will be close to the Bayesian filter. In this work we 
use the SIR (Sampling Importance Resampling) filter 
[12], to localize a vehicle in a predefined map using 
range and bearing information. Assuming that R 
samples {x~_ 1}/R=1 of the previous posterior distri- 
bution are available, the process model is then used 
to propagate these samples to obtain {x~}~l .  The 
new samples represents the a priori probability den- 
sity p(xklm, Z k-l, Uk, x0). 

The update stage is performed in two steps. The 
first step consist of the evaluation likelihood for each 
predicted particle as, 

P(zalm'xa) (3) 
W i  z R 

E p(zk Im, x3k) 
j - -1  

where zk is the observation at time k. The pair 
{x~}~l  , {w~}~l defines a discrete distribution that 
tends to the real continuous posterior distribution as 
R tends to infinity. 

The second stage performs a resamp!ing selecting 
only the particles with probability pr {x~ - 2~ } - w~ 
for each j.  Algorithms that perform this stage with 
computational complexity o( R 2 and o( R can be 
found in [12] and [13] respectively. 

Finally the probability of measuring zk given the es- 
tate xk is required, that is p(zklm, 2~). 

Calculation ofp(zklm,  xL~). In the case of range 
and bearing observation (zr, z~), it can be assumed 
that the measurements are contaminated by additive 
noise (%, 7~) with a general probability distribution. 
The conditional probability distribution of the obser- 
vation (z~, z~) respect to the vehicle states, consider- 
ing the uncertainty in the landmark position and the 
observation noise can be obtained from the following 



integral, 

p(za m, xL~) -- f p(mx,my,%,7~) # Id--~l 
i2 

f~ = { (mx,my,7~ ,7~  ) E ~4} 
(4) 

The integral is a surface integral and 
p(mx,my,7~,TZ) is the joint probability den- 
sity distribution of the random variables due to the 
four noise sources. The factor p .  ~ is the surface 
differential used to perform the integration over the 
surface region defined by the equality constrains 
given in equation 5. 

zr - v / (mx - XL) 2 + (my -- yL) 2 + % 
71- zz -- arctan( my-yL ) _ ~ + ~ + 7Z 

m ~  - - X L  

(5) 

The probability density distribution 4 can be eval- 
uated using the probability density distribution re- 
stricted to the observations, 

p~,~, (~o, ~9o) - o~o~9 (6) 

where F~,~, (Zro, ZZo) is the probability distribution. 
After some manipulations this distribution can be 
expressed as 

F~,~, (Z~o, Zgo) = 
~ ~ r o  ~ r o  

f f f f p(mx, m ~ , ~ , ~ 9 ) ,  d ~ .  d~9" dmx.  dm~ 
- - C X : : )  - - C X : : )  - - C X : : )  - - C X : : )  

z~0 - ~0 - V/(-~x - x~) ~ + ( - ~  - y~)~, 
71- 7Z0 - zz0 - arctan('~Y-YL ) + ~ 3, 

?Tree - -  X L 

(7) 
The integral argument is the probability density dis- 
tribution of the four random variables, 

p(mx, my, 7r, 7/~) -- Pm~ ,my , ~ , ~  (mx, my, 7r, 7/~) 
(S) 

Finally, the probability density distribution is the 
derivative of the probability distribution, 

p~,~,(Z~o Zgo)- Orz~,z,(~o,~,o) _ 
' c O z . O z f ~  - -  

f f p(mx, my, 7to (mx, my),  7/~o (mx, my))dmxdmy 
- -  CX::) - -  CX::) 

(9) 

This integral is numerically evaluated reducing the 
integration region to the mx, my space close to the 
landmarks. This simplification is valid provided that  
the pdf pm~,my (mx, my) is approximated by a sum 
of gaussians pdf's (SOG). In this work a region of 

size 2or deviation centered at the expected position 
of the landmark is used. The density probability dis- 
tribution pm~,my (mx, my) then becomes negligible 
outside these regions. 

3 C o m p r e s s e d  fi l ter and t he  a ided  of  the  
b o o t s t r a p  fi lter 

The Compressed Extended Kalman Filter (CEKF) 
[9], is an implementation of the Extended Kalman 
Filter that  presents significant computational advan- 
tages to various type of systems and in particular to 
SLAM problems. In [10] a suboptimal solution to re- 
duce the computational and memory requirements to 
o( N is also presented. Still there are very important 
problems to address when applying these algorithms 
in large environments as stated in the introduction 
of this paper. This approach generates state esti- 
mations with mono-modal probability distributions, 
that  is not capable of handling multimodal probabil- 
ity distributions. These situations are typical when 
closing large loops, that  is revisiting known places af- 
ter a significant exploration period. It is at this stage 
where the standard data association methods usually 
fail. A particle filter can address this problem since 
it naturally deals with multi-hypothesis problems. 

The proposed architecture uses CEKF under normal 
conditions to perform SLAM. At a certain time the 
system may not be able to perform the association 
task due to large errors in vehicle pose estimation. 
This is an indication that  the filter can not continue 
working with a mono-modal probability density dis- 
tribution. At this point, we have the CEKF esti- 
mated mean and deviation of the states represent- 
ing the vehicle pose and landmark positions. With 
the actual map a de-correlated map is built using 
a coordinate transform and the decorrelation proce- 
dures presented in [10]. A particle filter uses this 
information to resolve the position of the rover as 
a localization problem. When the multi-hypothesis 
are resolved the CEKF is restarted with the back 
propagated states values. Then the CEKF remains 
in operation until a new potential data association 
problem is detected. 

3.1 Practical implementat ion  

This subsection presents several important  imple- 
mentation issues that  need to be taken into account 
to maximize the performance of the proposed archi- 
tecture. 

M a p  for the particle filter. The SLAM algo- 
rithm builds a map while vehicle explore a new area. 
The map states will be, in most cases, highly corre- 
lated in a local area. In order to use the particle filter 
to solve the localization problem a two dimensional 



map probability density distribution needs to be syn- 
thesized from a completely originally strongly corre- 
lated n dimension map. The decorrelation procedure 
is implemented in two steps• The map, originally 
represented in global coordinates in now represented 
in a local frame referenced to two beacons states that  
are highly correlated to all the local landmarks• The 
local landmarks that  are not base are then referenced 
to this new base. This result in a covariance matr ix  
of the form, 

P m l  C12 ' ' '  C l m  

C21 Pm2 "'" 
P m  -- . .. .. (10) 

• • . 

C m l  " ' '  " ' '  Pmm J 

where the cross-correlation components between 
states of different landmarks are usually weak, i.e. 
they meet the condition Ci , j / v /p ,~  • p,~j < < 1. To 
de-correlate the map it is necessary to apply an ad- 
ditional step. A conservative bound matr ix  for (eq. 
10) can be easily obtained increasing the diagonal 
components and deleting the cross-correlation terms• 
This can be implemented as shown in eq 11 where 
diag[.] represents the elements of a diagonal matr ix  
[10]. For presentation purposes, all the states in 
equation 11 are assumed to belong to different land- 
marks• The decorrelation procedure performs the 
decorrelation of block diagonal matrices, being each 
block diagonal matr ix  the covariance of the states 
representing a part icular landmark• 

j=~l 

P m l  + 2 l kl j  • C l j ]  
J 

p m  - diag • (11) 
j ~ r n  

Pmm + E I kmj . Cmj l 
J 

The set {kij}i,j meets the condition k i j  - -  1/kj i  > 

0. This un-correlated map is used to define a two 
dimension map probability density distribution used 
by the particle filter to localize the vehicle. 

I n i t i a l i z a t i o n  of  t h e  f i l ter .  As the number of par- 
ticles affects both, the computat ional  requirements 
and convergence of the algorithm, its necessary to 
select an appropriate set of particles to represent the 
a priori density function at time To. Since the parti- 
cle filters work with samples of a distribution rather  
than its analytic expression it is possible to select 
the samples based on the most probable initial pose 
of the rover. A good initial distribution is a set of 
particles that  is dense in at least a small sub-region 

Pa ic e .~ 

Beacon 

~ ~ g l  . . . . . . . .  d 

# 

I I I I I 

60 65 70 75 80 
Longitude 

F i g u r e  2: Helix conformation with one measure and 
one beacon (zz - 4 7 . 7 5  °, z ~ -  7.85m) 

tha t  contains the true states value• The initial dis- 
tr ibution should be based in at least one observation 
in a sub-region that  contains this true states value• 

Once a range and bearing from a landmark is ob- 
tained a distribution is created having a shape sim- 
ilar to a family of solid helical cylinders. Each he- 
lix centre corresponds to a hypothetical  landmark 
position with its radio defined by the range obser- 
vation (Figure 2). The helical cylinder section can 
be adjusted by evaluating its sensitivity to the noise 

sources 7x~, 7y~, 7~, 7~. 

Although it is recognized that  some returns will not 
be due to landmarks,  all range and bearing observa- 
tions in a single scan are used to build the initial dis- 
tribution. Even though a family of families of helices 
will introduce more particles than a single family of 
helices (one observation), it will be more robust in 
presence of spurious observations. Considering the 
observations of range and bearing as perfect obser- 
vations, this defines a discontinued one dimensional 
curve (family of helices), C, in the three dimensional 
space (x, y, p) 

N 

C -  U C i  
i--1 

Ci - ( x  

x - x - + 

y - y (T )  - y i  + z~ sin(T) 

c [0, 
(12) 

Assuming the presence of noise in the observation 

zr - z;, + 7r, z9 - z~ + 79 (13) 
x i  --  x i + "Txi , Yi --  Y~ + "Tyi 



Figure  3: Experimental run in an outdoor environ- 
ment 

This family of helices becomes a family of cylindrical 
regions surrounding the helices. This helices regions 
can be restricted by considering the expected value 
and deviation of p. They can be used to reduce the 
bounds of T variation. 

I n t e r f a c e  w i t h  t h e  C E K F .  Two main issues 
need to be addressed to implement the switching 
strategy between the CEKF and the SIR filter. The 
first problem involves the detection of the potential 
data  association failure while running the CEKF. 
This is implemented in this work by monitoring the 
est imated error in vehicle and local map states. The 
second issue is the reliable determination that  the 
particle filter has resolved the multi-hypothesis prob- 
lem and is ready to send the correct position to the 
CEKF back propagating its results. This problem 
is addressed by analyzing the evolution of the esti- 
mated deviations errors. The filter is assumed to 
converge when the est imated s tandard deviation er- 
ror becomes less than two times the the noise in the 
propagation error model for x, y and ~. The conver- 
gence of the filter is guarantee by the fact that  the 
weights (eq. 3) are bounded above at any instant of 
time [14]. These weights are obtained from the in- 
tegral 9. This integral is always different from zero 
since it is calculated over distribution that  is zero 
only in +oc making the weights to be bounded by 1. 

4 E x p e r i m e n t a l  R e s u l t s  

This section presents experimental  results of the pro- 
posed hybrid architecture running in an unstructured 
environment shown in Figure 3. In this case trees are 
used as the most relevant features to build a navi- 
gation map [11]. The CEKF filter is used to nav- 
igate when no potential data  association fault are 
detected. 

When a potential data  association failure is detected 
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Figure  ~" Average magnitude of the position of the 
mobile across a Monte Carlo simulation consisting 
of 50 runs for the case of a range and bearing sensor 

the particle is initialized with the uncertainty and 
position reported by CEKF filter and is run after 
convergence is reached. The results of the experi- 
mental  run are shown in Figures 4 to 6. The up- 
per left corner of Figure 5 shows the initialization of 
the particle filter for the case when range and bear- 
ing are used. This Figure clearly shows the helix 
shape of the initial distributions. The arrows repre- 
sent the position and orientation of the vehicle and 
the stars the beacons present in the map. Figure 4 
shows the average magnitude of the position of the 
mobile across a Monte Carlo simulation consisting of 
50 runs (thin continuous line). The stars are natural  
landmarks incorporated into the map by the CEKF 
(see Guivant et. all [4]). The dotted line is the dif- 
ferential GPS position taken as a reference to verify 
the operation of the filter. The vehicle started from 
the left down corner of the Figure 4. In the initial 
part  of the t ra jectory the mean is not useful due 
to the multi-hypothesis nature of the distribution at 
this time. This can be seen in Figure 5 where the 
est imated path is represented for one run at selected 
times. In this case the clouds of particles shows the 
convergence of the filter. 

Figure 6 shows the deviations of the states x and y of 
the vehicle averaged over the fifty runs of the Monte 
Carlo simulation. It is clear that  the convergence of 
the filter is achieved with the observations present in 
the first laser scan since the error is reduced during 
a single time stamp. The error at time 26 decreased 
from 2.2 to 0.5 meters. This scan included obser- 
vation to several beacons. It is important  to note 
that  although the environment can be crowded with 
landmarks and other spurious objects the algorithm 
remains robust since no data  association is performed 
at this stage. 

5 C o n c l u s i o n s  

This paper presented a hybrid architecture that  
make use of the Compressed Extended Kalman Filter 
(CEKF) algorithm to perform SLAM in an efficient 
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form and a Monte Carlo type filter to resolve the data  
association problem present when closing large loops. 
The experimental  results have shown that  this ap- 
proach can be used to increase the integrity of EKF 
based systems by providing the capability to handle 
multi-mode distributions. 

Three factors affect the computat ional  requirements 
and convergence of the algorithm. The initialization, 
the number of particles and the number of beacons 
that  can be measured in a laser scan. 

It was shown that  a good initialization is essential 
to assure the convergence of the algorithm with a 
given number of particles. In all runs performed 
using range and bearing information the filter man- 
aged to resolve the multi-hypothesis in only one laser 
scan. This results can be extrapolated to the case 
of bearing only information and range only informa- 
tion. Research in underway to address the other two 
issues. 
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