The AIS 3D Laser Range Finder

Manual

September 3, 2002

Hartmut Surmann
Andreas Niichter

st
wW

Steinbeis-Transferzentrum
Informationstechnische Systeme
Bonn-Sankt Augustin

Institut fiir Autonome Intelligente Systeme
Schloss Birlinghoven
53754 Sankt Augustin

phone: +49-2241-143460
fax: +49-2241-142384
email: stz481Qstw.de

Contents

1 Hardware Setup

1.1 System Overview L e e e e e
1.2 Linux Laptop e e e e e e e
1.3 Cabling Instruction L. L e

Software Installation

2.1 Installing Real Time Linux
2.1.1 Unpack thekit
2.1.2 Patch the kernelo o
2.1.3 Configure and compile the kernel
214 Setupboot /lilo.
2.1.5 Boot e e
2.1.6 Make the modules
2.1.7 Runtheexamples e

2.2 Installing the PCMCIA module
2.2.1 Compilation and Installation
2.2.2 Testing the PCMCIA interface

2.3 Installing the AIS 3D Laser Range Finder Software

2.4 Testing the AIS 3D Laser Range Finder

Software Documentation

3.1 File Formats e
3.1.1 The Configuration File
3.1.2 The Source Files L e
3.1.3 The Data Output. e

3.2 Software Structure

SR W W

© © N 9 3

11
12
13
14
16
17
23
23
23

Chapter 1
Hardware Setup

The AIS 3D Laser Range Finder is shipped in different parts. The set contains:

e A 2D Laser Range Finder.
A servo motor (Type: Volz Servo).

e A suspension unit.

A PCMCIA serial card (500 kBaud).

e A CDROM containing basic software for acquiring 3D data point sets.
e This Manual.

For running the system one needs the following things:

e A Laptop computer.

e A 24V (1000mA) power adapter for the 2D Laser Range Finder. As an alternative a
battery / accumulator can be used.

e A 6V (1000mA) power adapter for the servo motor. As an alternative a battery / accu-
mulator can be used.

e (Cables for connecting the power supplies with the 2D Laser Range Finder and the servo
motor. r One cable for connecting the servo motor to the computers parallel port and a
cable connecting the serial card to the scanner.

1.1 System Overview

Figure 1.1 explains the setup of the AIS 3D Laser Range Finder. The laptop has to be attached
to the scanner using the PCMCIA serial card and the servo must be connected to the parallel
port. The scanner and the motor need separate power adapters.

6V
24V

Parallel Port

—_—

Figure 1.1: The system setup.

1.2 Linux Laptop

For using the AIS 3D Laser Range Finder you need a laptop computer running the Linux
operating system. We recommend using a reasonable fast laptop, e.g. Pentium-III 800MHz.
Furthermore the laptop must have a parallel port and at least one PCMCIA slot. The servo
motor will be connected to the parallel port, the high speed serial card has a PCMCIA interface.

On the following website you find a list of laptops and whether Linux is working or not on these
machines:
http://www.linux-laptop.net/

The first step for using the AIS 3D Laser Range Finder is to get a laptop computer, which is
capable to run under Linux.

Once you have a laptop you must install the Linux operating system. Linux is free software
(GNU Public License), but for convenience we got a commercial distribution. We choose the
S.U.S.E. distribution for Linux (http://www.suse.com). S.U.S.E. sells complete configured
laptops, too.

The second step is to install the laptop with Linux. You should follow the instructions of your

Linux distribution.

1.3 Cabling Instruction

The servo motor has to be connected to the Laptops parallel port. Please use the following
figure for making a cable:

Parallel Port Servo
Pin Pin
1 (signal) 1 (yellow)
25 (GND) | 3 (brown) and GND power adapter
3 (red) and +6V power adapter

1

©GOO0OO0OO0O0OO0OO0OO0OO0O0O0
OO0OO0OO0O0O0O00O0O0

\25

N——o +6V
——GND

Servo connector

(yellow,red,brown)

Figure 1.2: Cable for connecting the servo motor to the computers parallel port and the power adapter.

The following cable (figure 1.3) is for connecting the 2D Laser Range Finder to the PCMCIA
serial card. Make sure that you have connected Pin 7 and Pin 8 on the scanner side. This
makes the scanner transferring the data with 500kBaud over RS422. Otherwise the scanner has
a RS232 interface, which is too slow.

Serial Port | Scanner
Pin Pin

14 (TxD-) | 1 (RxD-)
2 (TxD+) | 2 (RxD+)
3 (RxD+) | 3 (TxD+
15 (RxD-) | 4 (TxD-)
7 (GND) 5 (GND)

7T—38

SICK Laser Range Finder
1

OOO(POQOOT

9

[y

dldooodoooooo
GO000000000O0

o

25
SIO Card R$422

Figure 1.3: Cable for connecting the SICK 2D Laser Range Finder to the PCMCIA serial card.

Finally you need a power cable for connecting the 2D Laser Range Finder to a 24V power source.
Please look at figure 1.4.

Power Source | Scanner
Pin
GND 1
+24V

SICK Laser Range Finder
1

©OOpOOo
O 0|0 O

+24V
GND

Figure 1.4: Cable for connecting the SICK 2D Laser Range Finder to the power adapter.

Chapter 2

Software Installation

2.1 Installing Real Time Linux

For using the AIS 3D Laser Range Finder you have to install Real Time Linux. The Real Time
Linux (rtlinux-3.0.tar.gz is included in the CDROM in the rtl directory. This package
contains the required modules and a kernel patch. If you don’t want to patch a kernel you might
install a prepatched kernel, which is also on the CDROM (rtlinux kernel 2 4.tar.gz).

The following Installation procedure should install this Linux to the laptop. This is basically the
installation procedure which comes with the Real Time Linux package. This procedure requires
to patch a linux kernel.

This guide is free; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version. (c) Phil Wilshire
2000. Modified by Victor Yodaiken for RTLinux2.2. Modified and corrected by Phil
Wilshire. Modified for the AIS 3D Laser Range Finder by Andreas Niichter 2002.

2.1.1 Unpack the kit

1. Get a clean kernel from: ftp.us.kernel.org. Use the 2.4.0 Version of the Linux kernel.

2. Get the patch file for that kernel. This patch (kernel_patch-2.4) is included in
rtlinux-3.0.tar.gz.

3. Move your current copy of /usr/src/linux (if it is not a link) to:
/usr/src/oldlinux
Check with:

1ls -1 /usr/src

Links look like this:

1ls -1 /usr/src/linux

lrwxrwxrwx 1 root root 17 Aug 17 1998 /usr/src/linux -> va-linux-2.0.34-1
(In this case, just delete the link and do the untar.)

If you have to move a tree do:

cd /usr/src

mv linux oldlinux

. Create a working directory. I use: /usr/src

cd /usr/src

(You may need to do this as root.)

This will allow you as a user to access this.

(NOTE: Do most of your work as a regular user... it’s safer.)

. Untar the RTLinux tarball into: /opt/rtl

For example, if the tarball is in: /cdrom/rtl/rtlinux-3.0.tgz
cd /usr/src/

tar xvzf /cdrom/rtl/rtlinux-2.4.tgz

This will create: /usr/src/rtlinux-2.4

Loosen up the restrictions on this dir:

chmod -R a+rw rtlinux-3.0

. Look in the INSTALL file and follow the instructions. For example:
1. put a fresh copy of Linux 2.4.0 in this directory under the name "linux".

2. ¢d linux
patch -pl < ../kernel_patch

This means take the linux-2.4.0.tar.gz tarball and put it where the install guide
suggests, i.e., if the tarball is in:
/cdrom/rtl/linux/linux-2.4.0.tar.gz

cd /usr/src/rtlinux-3.0
tar xvzf /cdrom/rtl/linux/linux-2.4.0.tar.gz

2.1.2 Patch the kernel

1. Now you can patch.

cd /usr/src/rtlinux-3.0/linux
patch -pl < ../kernel patch

2. Check for Rejects.
There should be no none nada rejects.
Here is an example of a reject...

Patching file arch/i386/kernel/irq.c using Plan A...

Hunk #1 failed at 39.

Hunk #2 succeeded at 236.

Hunk #3 succeeded at 280.

Hunk #21 succeeded at 1324.

1 out of 21 hunks failed--saving rejects to arch/i386/kernel/irq.c.rej

You find any rejects like this:

cd /usr/src/rtlinux-3.0/linux
find ./ -name *.rej
./arch/i386/kernel/irq.c.rej

You can only patch once (well sort of), so start again if you trip up.
Cleanup:
cd /usr/src/rtlinux-3.0/

rm -rf linux
tar xvzf /cdrom/rtl/linux/linux-2.4.0.tar.gz

2.1.3 Configure and compile the kernel

1. Look at what’s running.

Now we need to configure and compile the patched kernel. First, we need to look
at what’s running:

[wilshire@demosbc2 linux]$ /sbin/lsmod
Module Size Used by
3ch9x 18952 1

Then we need to configure our new kernel. We see the modules used and make sure that
we configure the new kernel for the same ones.

. Configure the kernel.

cd /usr/src/rtlinux-3.0/linux
make menuconfig

Check options as required:

Code maturity level options ---> yes

Processor type and features ---> (PPro/6x86MX) Processor family
[*] Symmetric multi-processing support

Loadable module support --->
[*] Enable loadable module support
[1 Set version information on all symbols for modules
[1 Kernel module loader
General setup ——-> accept defaults
Plug and Play support —-—-> accept defaults
Plug and Play support ---> accept defaults
Networking options ---> accept defaults
SCSI support -——> accept defaults
Network device support ——->
Ethernet (10 or 100Mbit) --->

[*] 3COM cards
<M> 3c590/3c900 series (592/595/597) \'"Vortex/Boomerang\" support

10

(in this case)

Kernel hacking --->
[*] Magic SysRq key

Right. Having done all this...
Save the configuration.
Build the kernel.

3. Compile the kernel.
[wilshire@demosbc2 linux]$ make dep; make clean; make bzImage
Go for a cup of tea , read your mail, write a manual... 10 minutes or so. You will end up
with a new Kernel, a new Symbol.map, etc.

BEFORE you do anything else: Set your system up to use this new kernel.

Go to root:
su

4. Make/Install the modules.
make modules; make modules_install
Watch the result here:

[root@pasrack3 linux]# make modules_install
Installing modules under /lib/modules/2.4.0-rtl3.0/net
Installing modules under /lib/modules/2.4.0-rtl3.0/misc

The /1ib/modules/2.40-rt13.0 shows you that just about every thing is well.

2.1.4 Set up boot / lilo

1. Copy the boot image to the right place.
cp arch/i386/boot/bzImage /boot/bzImageRTL30

2. Copy the Symbol.map to the right place.
cp Symbol.map /boot/Symbol.mapRTL30

3. Make the new symbol.map active.
rm /boot/Symbol.map
1n -s /boot/Symbol.mapRTL22 /boot/Symbol.map

11

4. Edit /etc/1ilo.conf. It should look like (We assume that your hard drive is connected
to the first ide channel, thus it is the device /dev/hda. SCSI drives are usually /dev/sda
or /dev/sdb:

boot=/dev/hda
map=/boot/map
install=/boot/boot.b
prompt

timeout=50

image=/boot/bzImageRTL22
label=1inuxRTL30
root=/dev/hdal
append=\"mem=126M\"
read-only

image=/boot/bzImage
label=linux
root=/dev/hdal
append=\"mem=126M\"
read-only

(But keep another copy around, just in case.)
Run Lilo.

[root@demosbc?2 linux]# /sbin/lilo
Added 1inuxRTL22 x*
Added linux

2.1.5 Boot

1. Now is the time to reboot.

Having rebooted we need to move the linux source link to our new source tree.

2. We also should create an rtl tree.

rm /usr/src/linux

1n -s /usr/src/rtlinux-3.0/linux /usr/src/linux

12

rm /usr/src/rtl
1n -s /usr/src/rtlinux-3.0 /usr/src/rtl

2.1.6 Make the modules
1. Check and adjust the date.

[root@demosbc2 rtl]# date

Wed Nov 10 23:14:18 PST 1999
[root@demosbc2 rtl]# date 11111452
Thu Nov 11 14:52:00 PST 1999

2. Now we can make the rtl modules.
cd /usr/src/rtlinux-3.0/rtl
make
Now you need to become root and do make install:

[root@demosbc2 rtl]# make install
Testing for the mbuff device... mknod /dev/mbuff c 10 254
Testing for FIFOs... already existent.

Installing modules in /lib/modules/2.4.0-rt13.0/misc
/sbin/depmod -a

Installing man pages to /usr/local/man

Installing header /usr/include/rtlinux

install -c¢ -m 644 rtl.mk /usr/include/rtlinux;

3. Set up your path. Try: 1smod
If you get:

[root@demosbc2 fpl# lsmod
bash: lsmod: command not found

Do this:
export PATH=/sbin:/$PATH
Then try again.

[root@demosbc2 fpl# lsmod
Module Size Used by
3cb9x 19176 1

That’s it for the main install.

13

2.1.7 Run the examples
Now you can run the examples.

cd examples

cd fp

make

mv rt_process.o fp_tasks.o

export PATH=/sbin:$PATH <- only if /sbin is not in your path
chmod a+x ../../insrtl <- you need to do this only once
chmod a+x ../../rmrtl <- and you need to do this only once

cd ../../; ./insrtl
cd examples/fp
make test

[root@demosbc2 fpl# make test

insmod fp_tasks.o

./fptest <- use “C to quit this
make: *¥* [test] Interrupt

[root@demosbc2 fpl# lsmod

Module Size Used by

fp_tasks 892 0 (unused)

rtl_fifo 5944 O (unused)

rtl_posixio 6952 0 [rtl_fifo]

rtl_sched 35364 0 [fp_tasks rtl_posixio]
rtl_time 8424 0 [fp_tasks rtl_sched]
3c59x 19176 1

[root@demosbc2 fpl# rmmod fp_tasks

[root@demosbc2 examples]# cd ../frank
[root@demosbc2 frank]# make
[root@demosbc2 frank]# make test

FIFO 2: Zappa

FIFO 1: Frank

14

FIFO 2: Zappa
FIFO 2: Zappa
FIFO 2: Zappa
FIFO 1: Frank

frank_app: now sending commands to stop RT-tasks
This all works.

[root@demosbc2 frank]# cd ../hello
[root@demosbc2 hello]# make
[root@demosbc2 hello]# make test

This is the simplest RTL program.

First we remove any existing rtl-modules. You may see error warnings from make - ignore them.

Type <return> to continue.

rmmod sound

rmmod: module sound not loaded

make: [test] Error 1 (ignored)

rmmod rt_process

rmmod: module rt_process not loaded
make: [test] Error 1 (ignored)

rmmod frank_module

rmmod: module frank_module not loaded
make: [test] Error 1 (ignored)

(cd ../../; ./rmrtl)

Now insert the fifo and scheduler.
Type <return> to continue.

(cd ../../; ./insrtl)

Now start the real-time tasks module.

Type <return> to continue.

15

Now, let’s stop the application.
Type <return> to finish.

[root@demosbc2 hellol#
Look on the console to see any messages:

cd ../measurements
make
make test

min: 9152, max: 17632
Do this to interrupt:

~C
make: *** [test] Interrupt

[root@pasrack3 measurements]#
To look at some stuff, try this:

./monitor > m.out&
sleep(25)

./histplot m.out m.res
cat m.res | more

2.2 Installing the PCMCIA module

After you have installed a Real Time Linux kernel and verified that the real time option works
you have to set up the serial device. Thus the next step of software installation is to install the
PCMCIA modules. The latest version of Linux PCMCIA drives is included on the CDROM
(pcmcia-cs-3.1.34.tar.gz) in the rtl directory. The following part of this document is a
shortened version of the second section of the PCMCIA HOWTO from David Hinds.

16

2.2.1 Compilation and Installation
Prerequisites and kernel setup

Before starting, you should think about whether you really need to compile the PCMCIA package
yourself. All common Linux distributions come with pre-compiled driver packages. Generally,
you only need to install the drivers from scratch if you need a new feature of the current drivers,
or if you've updated and/or reconfigured your kernel in a way that is incompatible with the
drivers included with your Linux distribution. While compiling the package is not technically
difficult, it does require some general Linux familiarity.

The following things should be installed on your system before you begin:

e A 2.0, 2.2, or 2.4 series kernel source tree. The Real Time Linux source tree works well.
e An appropriate set of module utilities.
e (Optional) the “XForms” X11 user interface toolkit.

You need to have a complete linux source tree for your kernel, not just an up-to-date kernel
image. The driver modules contain some references to kernel source files. While you may want
to build a new kernel to remove unnecessary drivers, installing PCMCIA does not require you
to do so.

In the Linux kernel source tree, the Documentation/Changes file describes the versions of all
sorts of other system components that are required for that kernel release. You may want to
check through this and verify that your system is up to date, especially if you have updated your
kernel. If you are using a development kernel, be sure that you are using the right combination
of shared libraries and module tools.

When configuring your kernel, if you plan on using a PCMCIA ethernet card, you should turn on
networking support but turn off the normal Linux network card drivers, including the ”pocket
and portable adapters”. The PCMCIA network card drivers are all implemented as loadable
modules. Any drivers compiled into your kernel will only waste space.

If you want to use SLIP, PPP, or PLIP, you do need to either configure your kernel with these
enabled, or use the loadable module versions of these drivers. There is an unfortunate deficiency
in the kernel config process in 1.2.X kernels, in that it is not possible to set configuration options
(like SLIP compression) for a loadable module, so it is probably better to just link SLIP into
the kernel if you need it.

This package includes an X-based card status utility called cardinfo. This utility is based on a
freely distributed user interface toolkit called the XForms Library. This library is available as a
separate package with most Linux distributions. If you would like to build cardinfo, you should
install XForms and all the normal X header files and libraries before configuring the PCMCIA
package. This tool is completely optional.

17

Installation

Here is a synopsis of the installation process:

e Unpack pcmcia-cs-3.1.7.tar.gz in /usr/src.
e Run make config in the new pcmcia-cs-3.1.7 directory.
e Run make all, then make install.

e Customize the startup script and the option files in /etc/pcmcia for your site, if needed.

If you plan to install any contributed client drivers not included in the core PCMCIA distribution,
unpack each of them in the top-level directory of the PCMCIA source tree. Then follow the
normal build instructions. The extra drivers will be compiled and installed automatically.

Running make config prompts for a few configuration options, and checks out your system to
verify that it satisfies all prerequisites for installing PCMCIA support. In most cases, you’ll be
able to just accept all the default configuration options. Be sure to carefully check the output
of this command in case there are problems. The following options are available:

Linux kernel source directory? This is the location of the source tree for the kernel you want
to use with PCMCIA. Often this is /usr/src/linux, but the default location depends
on what Linux distribution you’re using (or on where you’ve chosen to place your kernel
source tree). You should set this directory pointer to the Real Time Linux kernel source.

Build ”trusting” versions of card utilities? Some of the support utilities (cardctl and
cardinfo) can be compiled either in ”safe” or ”trusting” forms. The ”safe” forms prevent
non-root users from modifying card configurations. The ”trusting” forms permit ordinary
users to issue commands to suspend and resume cards, reset cards, and change the current
configuration scheme. The default is to build the safe forms.

Include 32-bit (Cardbus) card support This option must be selected if you wish to use 32-bit
CardBus cards. It is not required for CardBus bridge support, if you only plan to use
16-bit PC Cards.

Include PnP BIOS resource checking? This builds additional code into the PCMCIA core
module to communicate with a system’s PnP BIOS to obtain resource information for built-
in "motherboard” devices (serial and parallel ports, sound, etc), to help avoid resource
conflicts. If enabled, some extra resource files will be created under /proc/bus/pccard,
and the Ispnp and setpnp tools can be used to view and manipulate PnP BIOS devices.
However, this setting causes problems on some laptops and is not turned on by default.

Module install directory? The directory that new kernel modules will be installed into. Nor-
mally this should be the subdirectory of /1ib/modules that matches your kernel version.

18

How to set kernel sprecific options? There are a few kernel configuration options that affect
the PCMCIA tools. The configuration script can deduce these from the running kernel
(the default and most common case). Alternatively, if you are compiling for installation
on another machine, it can read the configuration from a kernel source tree, or each option
can be set interactively.

The Configure script can also be executed non-interactively, for automatic builds or to quickly
reconfigure after a kernel update. Some additional less-frequently-used options can be only be
set from the command line. Running Configure --help lists all available options.

Running make all followed by make install will build and then install the kernel modules and
utility programs. Kernel modules are installed under /1ib/modules/<version>/pcmcia. The
cardmgr and cardctl programs are installed in /sbin. If cardinfo is built, it is installed in
/usr/bin/X11.

Configuration files will be installed in the /etc/pcmcia directory. If you are installing over an
older version, your old config scripts will be backed up before being replaced. The saved scripts
will be given an *.0 extension.

If you don’t know what kind of host controller your system uses, you can use the probe utility in
the cardmgr/ subdirectory to determine this. There are two major types: the Databook TCIC-2
type and the Intel i82365SL-compatible type.

Startup options

The PCMCIA startup script recognizes several groups of startup options, set via environment
variables. Multiple options should be separated by spaces and enclosed in quotes. Placement
of startup options depends on the Linux distribution used. They may be placed directly in the
startup script, or they may be kept in a separate option file. See the ”Notes about specific Linux
distributions” for specifics. The following variables can be set:

PCMCIA This variable specifies whether PCMCIA support should be started up, or not. If it
is set to anything other than yes, then the startup script will be disabled.

PCIC This identifies the PC Card Interface Controller driver module. There are two options:
tcic or 182365. Virtually all current controllers are in the 182365 group. This is the only
mandatory option setting.

PCIC_OPTS This specifies options for the PCIC module. Some host controllers have optional
features that may or may not be implemented in a particular system. In some cases, it
is impossible for the socket driver to detect if these features are implemented. See the
corresponding man page for a complete description of the available options.

CORE_OPTS This specifies options for the pcmcia_core module, which implements the core
PC Card driver services. See man pcmcia _core for more information.

19

CARDMGR_OPTS This specifies options to be passed to the cardmgr daemon. See man
cardmgr for more information.

SCHEME If set, then the PC Card configuration scheme will be initialized to this at driver
startup time. See the ”Overview of the PCMCIA configuration scripts” of the PCMCIA-
HOWTO for a discussion of schemes.

System resource settings

Card Services should automatically avoid allocating IO ports and interrupts already in use by
other standard devices. It will also attempt to detect conflicts with unknown devices, but this is
not completely reliable. In some cases, you may need to explicitly exclude resources for a device
in /etc/pcmcia/config.opts.

Here are some resource settings for specific laptop types. View this list with suspicion: it may
give useful hints for solving problems, but it is inevitably out of date and certainly contains
mistakes.

e On the AMS SoundPro, exclude irq 10.

e On some AMS TravelPro 5300 models, use memory 0xc8000-0xcfTff.
e On the Chicony NB5, use memory 0xda000-0xdffff.

e On the Compaq Presario 1020, exclude port 0x2f8-0x2ff, irq 3, irq 5.
e On the Dell Inspiron 7000, exclude irq 3, irq 5.

e On the Dell Inspiron 8000, exclude port 0x800-0x8ff.

e On the Fujitsu C series, exclude port 0x200-0x27f.

e On the HP Omnibook 4000C, exclude port 0x300-0x30f.

e On the HP Omnibook 4100, exclude port 0x220-0x22f.

e On the IBM ThinkPad 380, and maybe the 385 and 600 series, exclude port 0x230-0x233,
and irq 5.

e On IBM ThinkPad 600 and 770 models with internal modems, exclude port 0x2f8-0x2ff.

e On the IBM ThinkPad 600E and 770Z, change the high memory window to 0x60000000-
0x60fTTHT.

e On the Micron Millenia Transport, exclude irq 5, irq 9.

e On the NEC Versa M, exclude irq 9, port 0x2e0-2ff.

e On the NEC Versa P /75, exclude irq 5, irq 9.

e On the NEC Versa S, exclude irq 9, irq 12.

e On the NEC Versa 6000 series, exclude port 0x2{8-0x33f, irq 9, irq 10.
e On the NEC Versa SX, exclude port 0x300-0x31f.

20

e On the ProStar 9200, Altima Virage, and Acquiline Hurricane DX4-100, exclude irq 5,
port 0x330-0x35f. Maybe use memory 0xd8000-0xdffff.

e On the Siemens Nixdorf SIMATIC PG 720C, use memory 0xc0000-Oxctiff, port 0x300-
0x3bf.

e On the TI TravelMate 5000, use memory 0xd4000-0xdffff.

e On the Toshiba Satellite 4030CDS, exclude irq 9.

e On the Toshiba T4900 CT, exclude irq 5, port 0x2e0-0x2e8, port 0x330-0x338.
e On the Toshiba Tecra 8000, exclude irq 3, irq 5, irq 9.

e On the Twinhead 5100, HP 4000, Sharp PC-8700 and PC-8900, exclude irq 9 (sound), irq
12.

e On an MPC 800 Series, exclude irq 5, port 0x300-0x30f for the CD- ROM.

Notes about specific Linux distributions

Debian Debian uses a System V boot script arrangement. The PCMCIA startup script is
installed as /etc/init.d/pcmcia. New packages use /etc/default/pcmcia for startup options;
older versions used /etc/pcmcia. conf for this purpose. Debian’s syslog configuration will place
kernel messages in /var/log/messages and cardmgr messages in /var/log/daemon.log.

Debian distributes the PCMCIA system in two packages: the pcmcia- cs package contains
cardmgr and other tools, man pages, and configuration scripts; and the pcmcia-modules package
contains the kernel driver modules.

Starting with 3.1.25, a clean PCMCIA install will identify Debian systems and create a
special network.opts file that, in the absence of other network configuration settings, uses
Debian’s ifup and ifdown commands to configure a network card based on settings in
/etc/network/interfaces.

Red Hat, Caldera, Mandrake These distributions use a System V boot script organization.
The PCMCIA startup script is installed as /etc/rc.d/init.d/pcmcia, and boot options are
kept in /etc/sysconfig/pcmcia. Beware that installing the Red Hat package may install a
default boot option file that has PCMCIA disabled. To enable PCMCIA, the PCMCIA variable
should be set to yes. Red Hat’s default syslogd configuration will record all interesting messages
in /var/log/messages.

Red Hat’s PCMCIA package contains a replacement for the network setup script,
/etc/pcmcia/network, which meshes with the Red Hat 1linuxconf configuration system. This
is convenient for the case where just one network adapter is used, with one set of network param-
eters, but does not have the full flexibility of the regular PCMCIA network script. Compiling
and installing a clean PCMCIA source distribution will overwrite the network script, breaking
the link to the Red Hat tools. If you prefer using the Red Hat tools, either use only Red Hat
RPM’s, or replace /etc/pcmcia/network.opts with the following:

21

if [-f /etc/sysconfig/network-scripts/ifcfg-$2] ; then
start_fn () {
. /etc/sysconfig/network-scripts/ifcfg-$1

if ["$ONBOOT" = "yes"] ; then /sbin/ifup $1 ; fi
}
stop_fn () {

/sbin/ifdown $1
}

fi

Starting with the 3.1.22 release, the PCMCIA installation script will automatically append a
variant of this to the default network.opts file, so this problem should no longer be an issue.

If you do use linuxconf (or netconf) to configure your network interface, leave the kernel
module, I/0 port, and irq parameters blank. Setting these parameters may interfere with
proper operation of the PCMCIA subsystem.

At boot time, when the Red Hat network subsystem starts up, it may say Delaying ethO
initialization and [FAILED]. This is actually not a failure: it means that this network
interface will not be initialized until after the PCMCIA network device is configured.

Red Hat bundles their slightly modified PCMCIA source distribution with their kernel sources,
rather than as a separate source package. When preparing to build a new set of PCMCIA drivers,
you will generally want to install Red Hat’s kernel-source RPM (kernel- source-*.i386.rpm),
and not the kernel SRPM (kernel-*.src.rpm). The SRPM is tailored for building their kernel
RPM files, which is not exactly what you want. With Red Hat 7.0, the kernel-source RPM also
includes a mis-configured PCMCIA source tree; if you want to use it, delete their PCMCIA
config.out file and re-do make config.

Slackware Slackware uses a BSD boot script arrangement. The PCMCIA startup script is
installed as /etc/rc.d/rc.pcmcia, and boot options are specified in rc.pcmcia itself. The
PCMCIA startup script is invoked from /etc/rc.d/rc.S.

SuSE SuSE uses a System V init script arrangement, with init scripts stored under
/etc/init.d. The PCMCIA startup script is installed as /etc/init.d/pcmcia, and startup op-
tions are kept in /etc/rc.config. Before release 7.0, init scripts were kept under /sbin/init.d.
In early SuSE releases (pre-5.3), the PCMCIA startup script was somewhat limited and did not
allow PCMCIA startup variables to be overridden from the lilo boot prompt.

To look up current PCMCIA issues in SuSE’s support database, go to
<http://sdb.suse.de/cgi-bin/sdbsearch en.cgi?stichwort=PCMCIA>.

22

2.2.2 Testing the PCMCIA interface

If the PCMCIA interface is installed correctly then you will hear two ”"Beeps” when inserting
the serial card. In this case the cardmgr detects the new card and the appropriate module is
loaded sucessfully. The command 1smod shows a list of loaded modules. In this list you should
find the modules pcmcia core, 182365, ds and serial cs. The latter module is the device
driver for the serial card.

If nothing happens when you insert the serial card then the cardmgr is not running. In this
case you should try to insert the modules by hand using the command modprobe or insmod
-f. Verify that the modules are loaded. If they can’t be loaded follow the instructions from
the PCMCIA-HOWTO for troubleshooting. After the serial c¢s module is loaded you should
execute /etc/pcmcia/serial start ttyS2 which makes the new serial port the 3rd port on
your computer.

If you hear a high and a low "Beep” the cardmgr is running and detecting the card. But the
correct device driver can’t be loaded. Try to load the device driver by hand using the insmod
-f command and follow the the instructions from the PCMCIA-HOWTO for troubleshooting.

When the serial_cs module is loaded correctly the scanner can be connected the new serial
port.

2.3 Installing the AIS 3D Laser Range Finder Software

Unlike installing Real Time Linux and the PCMCIA package, installing the AIS 3D Laser Range
Finder software is very easy. Fist you have to create a directory for the software and the data
output, e.g. mkdir /home/scanner, and go this new loacation (cd /home/scanner).

Create the directories bin, src, doc, obj and dat and copy the CDROM content of these
directories to the new loacation. Copy the Makefile from the CD to /home/scanner. Finally,
copy your rtl.mk file to the scanner directory. You will find this file in your Real Time Linux
directory, for example try cp /usr/rtlinux/rtl.mk /home/scanner.

After done copying run, make. The whole scanner code should compile without warnings and
errors. Now the software is completely installed and you can begin to work with the AIS 3D
Laser Range Finder.

2.4 Testing the AIS 3D Laser Range Finder

Connect the AIS 3D Laser Range Finder and the servo motor with the Laptop and power up the
scanner and motor. Go to the location of the scanner software, e.g. c¢d /home/scanner/ and
become root (su). Type make init and press return. This command inserts the required Real
Time Linux Modules and you should notice that the servo is turning to its zero position. This

23

shows you Real Time Linux and the servo work. You can type bin/setServo <value>, where
<value> is a number between 0 and 255. You should see the motor turning, but be carefull the
turning is very fast. If the 2D Laser Range Finder is already attached to suspension unit and
the motor too fast turning can damage the motor!

Please edit the configuration file (bin/scanner.cfg) now! See section 3.1.1 for details. In this
file you should change the Laser device entry to the serial port of the installed 500 kBaud
PCMCIA card.

Now you can run the scanner application! Type bin/scanner s for starting the scanning
process. The light on the scanner should first turn to to "red” and then to ”green”. After
scanning you will find the output in the dat directory (256 .dat files, two .dxf files and the file
points.txt).

The last step is building the 3D scanner by mounting the susension unit to the 2D Laser Range
Finder and the servo motor. If you run the scanner application again the files in the dat directory
contain real 3D point information.

24

Chapter 3

Software Documentation

3.1 File Formats

3.1.1 The Configuration File

With the configuration file you can change the parameters the the AIS 3D Laser Range Finder.
The following text is an example file:

3D-Laserscanner CONFIG-FILE
Data directory
/home/bob/dat

Step angle

1

Scanner height
105

Scan resolution
180

Laser device
/dev/ttyS2

Create DXF output
1

from angle

-56.0

to angle

68.0

25

Comment lines start with a # symbol.
The first entry is the data directory where all the output will be stored.

The second entry is the step angle. 1 is the finest resolution. This is the agle resolution of
approximate % degree. If you change this to a higher value like 3 you will get a lower angle
reolution, e.g. one degree, and the scanning process will be faster, since less scan slices have to
be acquired.

The third entry is the height of the scanner in centimeter. This value is needed for calculation
of the 3D data points in the global coordinate system.

The next entry specifyies scan resolution. 180 and 360 are valid numbers here. Every scanned
plane consists of 180 or 360 data points. The actual resolution is a bit lower due to the so called
skip points (refer to the source code for details).

Then you can specify the serial device. This decive entry should point to the PCMCIA serial
card with the connected scanner.

With the next entry you choose whether .dxf files shall be created (case 1) or not (case 0).
Two .dxf can be created in the data directory, containing the all the data (Points.dxf) and a
vertical section (AufrissO.dxf).

The last two entries are angles, the so called "from angle” and "to angle”. They specify the
angle which is scanned and they are given by the setup (It depends on the servo and how you
did mount the scanner.). One has to determine these angle to get correct 3D data.

3.1.2 The Source Files

The source files are stored in the src/ directory. In detail they are:

dxfutils.h The header file of the routines for DXF-output.
dxfutils.c Code for writing .dxf files.
elements.h We use the data structure Point for describing one in the 3D space. The

structure is defined here.
elements.c Contains the code asoziated with the data structure Point.
elements.icc Ditto.
getmycpuinfo.sh Script for retrieving the clock speed of the laptop.
getmyparport.sh Script for retrieving the address of the parallel port.
globals.h Global constants and definitions.

laser.h Header file for the 2D Laser Range Finder interface.

26

laser.c
mycpu.h
parport.h

rt_servo.c

scan.h

scan.c
scan.icc
scanner.c
scanner.icc

servo.h

servo.c
servol.icc

servodata.h

setServo.c

The 2D Laser Range Finder interface.
Output of the script getmycpuinfo.sh.
Output of the script getmyparport.sh

This file is the Real Time Linux servo module. It compiles to
obj/rt_servo.o and can be inserted to a Real Time Linux Kernel us-
ing the command insmod.

The header file for the class Scan. This class contains all scan points and
the output routines.

Implementation of the class Scan.

Ditto.

The main procedure is loacated in this file.
Some tiny functions.

This file contains the high level inferface (class t_servo) for the servo
motor. The modules are responsible for communication with the Real
Time module rt_servo.

Implementation of the class t_Servo.
Ditto.

Constants and definitions for both: The Real Time servo module
(rt_module) and the high level interface (servo.h).

A small program for turning the servo motor.

3.1.3 The Data Output

The File data.txt

This file contains all 3D data points of one 3D scan. It is generated after the scanning. For
example the first 3 lines of this file may look like:

12.6138 102.393 1.75865
12.557 102.211 1.88149
12.4964 102.029 2.00375

This means the first 3 range points have the (z,y,z)-coordinates (12.6,102.4,1.76),
(12.6,102.2,1.9) and (12.5,102.0,2.0). All units are in centimeter.

27

The .dat files

The .dat files contain all the scan slices. Up to 256 slices are taken during the scan. The first
few lines of such a file look like the following text:

153 data with intensity information, current angle: -56
12.6138 3.14498 13 8709
12.557 3.36465 13 8684

In this case every slice contains 153 measured range points with intensity information. The
current angle of the slice is minus 56 degree. The first data point has the 2D (!!!) coordinates of
(12.6,3.1) and the distance of 13 from the scanner. All units are in centimeter. The measured
intensity of the returned light was 8709 units.

The DXF-Files

DXF-Files are also created by the scanner application. This format can be read with several
commercial programs, e.g. Autodesk, 3D Studio Max, and noncomercial ones, e.g. QCad for
Linux. Please look at the following website for a descritption of the file format:
http://www.dcs.ed.ac.uk/home/mxr/gfx/3d/DXF.info

The pic.ppm File

There is a picture created by the scanner software. It is called pic.ppm and stored in the dat
The depth information is coded by the color. The image is distorted because the slices taken by
the 2D laser range finder result in a line within the picture. One can view it using the program
Xv.

3.2 Software Structure

Real Time Linux is an operating system which runs ordinary Linux as a task with lowest priority.
The Real Time servo module (rt_servo) — when inserted in the kernel — runs with highest
priority. This module is completely separeted from the rest of the programs. The communication
is handled through two FIFOs (/dev/rtfl and /dev/rtf2) in the class t_servo).

The main application creates two threads. The first thread is responsible for controlling the 2D
Laser Range Finder using the function get_laser X_Y() of the laser.c module. The servo is
controlled here, too. The second process transforms the acquired data into 3D and creates the
output files. Figure 3.1 gives an overview of the software architecture.

Please look at the source code and write your own application based on this code.

28

normal Linux

scanner.c

Real Time Linux

pthread_create()

rt_servo.c

periodic_servo_task(

Real Time FIFO (/dev/rtf1)

777777 - main_process()

Real Time|FIFO (/dev/rtf2)

—servo control —-2D Scanner Control —Transformation to 3D
—-Servo Control —Output of the 3D data
—-Data dump

Figure 3.1: Software overview.

29

