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Abstract: - Knowing the position and orientation of a mobile robot situated in an environment is a
critical element for effectively accomplishing complex tasks requiring autonomous navigation. Techniques
for robot self-localization have been extensively studied in the past, but an effective general solution does
not exist, and it is often necessary to integrate different methods in order to improve the overall result.
In this paper we present a self-localization method that is based on matching a geometric reference map
with a representation of range information acquired by the robot’s sensors. The technique is adequate for
indoor office-like environments, and specifically for those environments that can be represented by a set of
segments. We exploit the robustness properties of the Hough Transform for recognizing lines from a sets
of points in order to define an effective and robust self-localization method for dynamic environments.
We have implemented and successfully tested this method in the RoboCup environment and we believe
that it has been a good benchmark for its use in office-like environments populated with unknown and

moving obstacles (e.g. persons moving around).
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1 Introduction

A general problem in mobile robot navigation is
knowing the robot’s pose (position and orienta-
tion) in the environment. This is a crucial feature
for autonomous robots performing complex tasks
over long periods of time.

Techniques for robot self-localization (see [2] for
a survey) can be distinguished in the use of rel-
ative or absolute positioning methods. Each of
these techniques provides good results as long as
some assumption are verified. For example, dead
reckoning approaches are accurate only over short
runs of the robot, since error in positioning con-
stantly increases over time. Moreover, global po-
sitioning systems and artificial landmark recogni-
tion are effective as long as the environment can
be appropriately structured. Since none of these
techniques provides for a global solution to the
self-localization problem, it is often necessary to
integrate different localization methods in order

to improve the overall result. A typical solution is
to rely on dead reckoning methods (such as odom-
etry) for a short period of time, and then to apply
an absolute positioning method.

One of the most common class of methods for
absolute positioning is model matching, that is
the process of determining the pose of the robot
by a matching between a given model of the envi-
ronment (a map) and the information acquired by
the robot’s sensors. Observe that these methods
require an a priori knowledge of the environment
(a map), but they do not require ad hoc modifi-
cations in the environment.

In this paper we present a self-localization
method that is based on matching a geometric ref-
erence map with a representation of range infor-
mation acquired by the robot’s sensors. The tech-
nique is quite adequate for indoor office-like envi-
ronments, and specifically for those environments
that can be represented by a set of segments. We
exploit the properties of the Hough Transform for



recognizing lines from a sets of points, as well as
for calculating the displacement between the es-
timated and the actual pose of the robot. We
tested the approach in the RoboCup environment
[1] with good results.

2 The Hough Transform

The Hough Transform is a robust and effective
method for finding lines fitting a set of 2D points
[5]. It is based on a transformation from the (z,y)
plan (a Cartesian plan) to the (6,p) plan (the
Hough domain).

The transformation from (z,y) to (0,p) is
achieved by associating every point P(z,y) in the
Cartesian plan with the following curve in the
Hough domain p = z cosf + y sinf. At the same
time, a point in the Hough domain corresponds to
a line in (z,y). Notice that this is a unique and
complete representation for lines in (z,y) as long
as 0 <0 <.

A graphical representation of the Hough Trans-
form can be obtained by generating a discrete grid
of the (6, p) plan (let 46 and dp be the step units),
and by defining HT'(0, p) as the number of points
in (z,y) plan whose curve lies within the interval
(0 +66,p =+ 6p).

Observe that it is possible to consider a Hough
grid as a voting space for points in (z,y). In other
words, every point in (z,y) “votes” for a set of
lines (represented as points in (6, p)), that are all
the lines passing through that point. Notice that,
in the case of a set of aligned points in (z,y), the
point in the Hough domain that “receives” the
highest number of votes is the one corresponding
to the line passing through these points.

The Hough Transform has a number of inter-
esting properties:

1. Given a set of input points, a local maximum
of HT(0,p) corresponds to the best fitting
line of these points. Given a set of input
points originally belonging to several lines,
local maxima of HT'(#,p) correspond to the
best fitting lines for each subset of points rel-
ative to a single line.

2. With respect to other techniques for extract-
ing segments from a set of points, the Hough
Transform is very robust to noise produced
by isolated points (since their votes do not

affect the local maxima) and to occlusions of
the lines (since point distances are not rele-
vant).

3. Measuring displacement of lines in the Carte-
sian plan corresponds to measuring distance
of points in the Hough domain. Indeed, the
distance between parallel lines and the angu-
lar difference between lines is given respec-
tively by a Ap and a A between the corre-
sponding points in the Hough domain.

3 Hough Transform based Self-
Localization

The self-localization method we are going to de-
scribe applies to any robot equipped with sen-
sors that are able to give range information about
the environment. For example, ultrasonic sonars,
laser range finders, stereo vision systems are
different ways to measure distances of objects
around the robot.

We thus consider any sensor which returns a
set of points, in the local coordinates of the robot,
corresponding to a surface of an object. Observe
that, in general, these sensors do not allow for
simple implementation of object recognition tech-
niques and thus they often retrieve range data
from objects in the map (e.g. walls in the envi-
ronment) as well as from unpredicted obstacles
(such as persons moving in the world).

Given this set of points acquired by the robot’s
sensors and a model of the environment, we want
to calculate the displacement between the esti-
mated and the actual pose of the robot.

Under the assumption that the environment
can be represented by a set of segments, and in or-
der to exploit the properties of the Hough Trans-
form, we address the localization problem in the
Hough domain. In this way the model of the en-
vironment is represented by a set of points in the
Hough domain and the range data points acquired
through the sensors are transformed in the Hough
plan. The map matching process is performed
over points in the Hough domain and the dis-
placement needed for a correct re-positioning of
the robot is easily calculated in the Hough plan.

Summarizing, the Hough Transform based lo-
calization method consists in the following steps:
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Figure 1: Map matching in the Hough domain

1. extracting range information from the envi-
ronment in the form of a set of point in the

(z,y) plan,

2. applying the Hough Transform to the set
of points generating a discrete Hough grid
HT(6, p),

3. determining the local maxima by a threshold,

4. finding correspondences between local max-
ima and reference points,

5. measuring the displacement between local
maxima and the corresponding reference
points in the Hough domain.

Observe that the second step requires a dis-
cretization of the Hough plan. This parameter
must be accurately tuned since when the dis-
cretization is too fine, several local maxima can be
found in the same “region” of the Hough plan and
this involves ambiguities in the matching process.
On the other hand, the grid intervals represents a
bound in the precision of positioning (larger inter-
vals involve lower precision). Therefore, a trade-
off between precision and matching ambiguities
must be considered when setting the discretiza-
tion of the Hough plan.

Moreover, it is important to notice that the
choice of the threshold for identifying the local
maxima (third step) is not a critical factor, since
HT(0, p) presents very high peaks in presence of
aligned points and thus a percentage over the
overall number of input points is appropriate for
identifying the best fitting lines of a set of points.

Instead the fourth step is more critical, since in
some cases it can be difficult to decide which is the
correct correspondence between points. We adopt

two different strategies: (i) assuming that odom-
etry provides for an almost correct position over
a short time, the matching is performed between
a local maximum and the nearest reference point;
(ii) in case of ambiguities, we apply a more gen-
eral procedure that acquires a greater amount of
data about the environment (by integrating differ-
ent sensory data) and performs an overall match
between the set of local maxima and the set of
reference points.

Consider the example shown in Fig. 1, where
the robot faces a corner. The solid segments a,
b represent the map model and the set of points
a’, b’ represent data coming from sensor devices.
The four segments are also displayed in the Hough
domain: a, b (indicated by a circle) are the ref-
erence points, while a’, b’ (indicated by a cross)
represent the local maxima of the Hough Trans-
form applied to the set of input points. In the
Hough domain it is easy to calculate the displace-
ment between the estimated and the actual pose
of the robot (Az, Ay, Af).

In the example, Af is the difference afy — ay or
by—by. In ideal conditions these differences should
be the same; if not, an average between these val-
ues allows for a good approximation. After the
correction A@ is applied to the robot’s represen-
tation of the map, it is possible to calculate the

other two factors Az = aj, —a, and Ay = b, —b,.

In the next section we discuss an application of
this localization technique in the RoboCup envi-
ronment.
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Figure 2: The RoboCup world model

4 Self-Localization in the
RoboCup environment

The RoboCup competition consists of soccer
matches between robotic teams [1]. Each soccer
player is equipped with on-board acting and sens-
ing devices, while global positioning systems are
not allowed.

The RoboCup environment assumes the follow-
ing characteristics that must be considered for the
choice of localization methods: (i) the geometry
of the walls delimiting the field and of the lines
drawn on the field is known, (ii) the environment
is highly dynamic (there are many robots and
the ball moving in the field); (iii) the task must
be performed continuously for a “long” time (the
length of each period is 10 minutes); (iv) the envi-
ronment cannot be modified; (v) crashes among
robots are possible. All these factors determine
a difficult scenario for localization methods. In-
deed, dead reckoning methods are not effective
for localization, since they accumulate errors over
time and they cannot deal with crashes among
players. Absolute positioning methods based on
map matching must consider the high noise in ac-
quiring range information from the environment
due to other robots moving in it.

It is worth noticing that the above characteris-
tics are very similar to those of an office-like en-
vironment delimited by walls and populated with
unknown and moving obstacles (e.g. persons mov-
ing around).

In order to provide our robot soccer players
with an effective and robust localization method
for the RoboCup environment, we apply the
Hough Transform based localization method. Be-
cause of the peculiar definition of objects prop-
erties in the RoboCup environment (the ground
field is green and the walls and the lines are
white), we decided to extract range information
from walls and lines by using a simple color cam-
era, a line extraction procedure, and a triangu-
lation technique for computing the distances of
points in the 2D plan around the robot.

The model of the RoboCup environment is
shown in Fig. 2. We consider seven segments cor-
responding to the four walls a,e,f,g and the three
lines b,c,d. Observe that the walls are real ob-
stacles for the robot, while lines are drawn in the
field and do not correspond to obstacles.

A self-localization task is displayed in Fig. 3.
In the upper part there are the image acquired
by the camera and the extracted points, while in
the lower part there are local views of the robot
before and after the re-positioning process. Ob-
serve that isolated noisy points (that are due to
the high luminosity in the center of the image) do
not affect the displacement measures. We have
also verified that the method is very robust to oc-
clusion of lines, thanks to the properties of the
Hough Transform.

The performance of the system are adequate
for real-time execution with a low-cost color cam-
era and a conventional Pentium based PC, that is
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Figure 3: A Self-Localization Example

on board of the robot. In fact, in our case, most
of computation time (a few tenths of second) is
taken by the image processing procedure for line
extraction. As for accuracy, we obtain good re-
sults with a discretization of the Hough grid (and
hence an average precision) of 3 degrees for # and
of 10 cm for p.

5 Conclusion

Knowing the position of a mobile robot in an en-
vironment is a critical element for effectively ac-
complishing complex tasks requiring autonomous
navigation. The localization problem has been
thus addressed in the past from many different
perspectives. In particular, absolute positioning
methods based on map matching have been ex-
tensively studied (see [4, 10] for occupancy grid
matching strategies, [8] for the angle histogram
method, [3] for a probabilistic approach, [7] for
scan matching techniques, and [6] for experimen-
tal comparisons).

They present different solutions that are gener-
ally robust to sensor noise, ambiguous situations,
partial model description. However, in a mod-
erately crowded and dynamic environment, map

matching based localization methods must also be
robust to noise given by unknown objects sensed
by range sensors. The difficulty in dealing with
this kind of noise, that is typical in real environ-
ments. is that it cannot be appropriately mod-
elled.

We have presented a self-localization technique
for mobile robots in office-like environments, that
is suitable with any kind of sensors able to
provide range information about objects in the
world. We exploit the robustness properties of
the Hough Transform for defining an effective
and robust self-localization method for dynamic
environments. We have successfully tested this
method in the RoboCup environment and we be-
lieve that it has been a good benchmark for its
use in office-like environments delimited by rec-
tilinear walls and populated with unknown and
moving obstacles (e.g. persons moving around).
We are working on testing the method in an ac-
tual office environment by making use of accurate
range data extracted by a stereo vision system [9].



References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

M. Asada. The RoboCup physical agent chal-
lenge: Goals and protocols for Phase-I. In
H. Kitano, editor, Robocup-97: Robot Soccer
World Cup I, 1998.

J. Borenstein, H. R. Everett, and L. Feng.
Navigating Mobile Robots: Systemss and
Techniques. A. K. Peters, Ltd., 1996.

W. Burgard, D. Fox, D. Hennig, and
T. Schnidt. Estimating the absolute position
of a mobile robot using position probabilities
grid. In Proc. of 14th National Conference on
Artificial Intelligence (AAAT’96), 1996.

I. J. Cox. Blanche - an experiment in guid-
ance and navigation of an autonomous mo-
bile robot. IEFEE Transaction on Robotics
and Automation, 7(3), 1991.

R. Duda and P. Hart. Use of the Hough
Transformation to detect lines and curves in

the pictures. Communications of the ACM,
15(1), 1972.

J. S. Gutmann, W. Burgard, D. Fox, and
K. Konolige. An experimental comparison of
localization methods. In International Con-
ference on Intelligent Robots and Systems,
1998.

J. S. Gutmann and C. Schlegel. AMOS:
Comparison of scan matching approaches for
self-localization in indoor environments. In

1st Euromicro Workshop on Advanced Mo-
bile Robots (EUROBOT), 1996.

R. Hinkel and T. Knieriemen. Environment
perception with a laser radar in a fast mov-
ing robot. In Proc. of Symposium on Robot
Control (SYROCO’88), 1988.

L. Tocchi and K. Konolige. A multiresolu-
tion stereo vision system for mobile robots.
In Proceedings of the AIT*IA98 Workshop on
New Trends in Robotics Research, 1998.

B. Schiele and J. Crowley. A comparison
of position estimation techniques using occu-
pancy grids. Robotics and Autonomous Sys-
tems, 12, 1994.



