
 
 

 

  

Abstract— In this paper, we describe a new approach for the 
extrinsic calibration of a camera with a 3D laser range finder, 
that can be done on the fly. This approach does not require any 
calibration object. Only few point correspondences (at least 4) 
are used, which are manually selected by the user from a scene 
viewed by the two sensors. The proposed method relies on a 
novel technique to visualize the range information obtained 
from a 3D laser scanner. This technique converts the visually 
ambiguous 3D range information into a 2D map where natural 
features of a scene are highlighted. These features represent 
depth discontinuities and direction changes in the range image. 
We show that by enhancing the features the user can easily find 
the corresponding points of the camera image points. There-
fore, visually identifying laser-camera correspondences be-
comes as easy as image pairing. Once point correspondences 
are given, extrinsic calibration is done using the well-known 
PnP algorithm followed by a non-linear refinement process. 
We show the performance of our approach through experimen-
tal results. In these experiments, we will use an omnidirectional 
camera. The implication of this method is important because it 
brings 3D computer vision systems out of the laboratory and 
into practical use. 

I. INTRODUCTION 
ne of the basic issues of mobile robotics is the auto-
matic mapping of the environments. Digital 3D models 

of the environment are needed in autonomous navigation, 
rescue and inspection robotics, facility management, and 
architecture. Autonomous mobile robots equipped with 3D 
laser range finders are well suited for this task. Recently, 
several techniques for acquiring three-dimensional data with 
2D range scanners installed on a mobile robot have been 
developed. A popular approach is to use multiple scanners 
that point towards different directions [2]. An alternative is 
to use pan/tilt devices that sweep the range scanner in an 
oscillating way [3, 4]. More recently, techniques for rotating 
2D range scanners have been developed [5]. However, to 
create realistic virtual models, visually-perceived informa-
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tion from the environment has to be acquired and it has to be 
precisely mapped onto the range information. To accomplish 
this task, camera and 3D laser range finder must be extrinsi-
cally calibrated, that is, the rigid transformation between the 
two reference systems must be estimated.  

Most previous works on extrinsic laser-camera calibration 
concern calibration of perspective cameras to 2D laser scan-
ners [6, 7, 8, 9]. Furthermore, some of this works uses visi-
ble lasers [6]. In contrast to previous works, in this paper, 
we consider the extrinsic calibration of a general camera 
with a three-dimensional laser range finder where the laser 
points are invisible to the camera. Because of the recent de-
velopment of 3D laser scanners, only little work about ex-
trinsic calibration of camera and 3D scanners exists. Fur-
thermore, the process of external calibration is often poorly 
documented. This process usually requires some modifica-
tion of the scene by introducing landmarks that are visible 
by both the camera and the laser. For instance, some ap-
proaches use high reflectance surfaces while other ap-
proaches use 3D spheres as markers. In the latter, using a 
fitting procedure along with prior knowledge of the radius of 
the sphere, the 3-D coordinates of the sphere center can be 
estimated quite accurately on condition that there are suffi-
cient laser returns off its surface. The spheres can also be 
easily detected in an image. Then, extrinsic calibration can 
be done using these 3D-2D correspondence pairs of the 
sphere centers. However, the spheres need to be quite big to 
be accurately detected by the laser. Thus, this method is not 
portable.  

Well-documented work about extrinsic calibration of 
camera and 3D scanners can be found in [10] and [11]. 
However, in [10], the authors deal with the case of visible 
laser traces. Conversely, for the case of the invisible laser in 
[11], the authors propose a method for fast extrinsic calibra-
tion of a camera and a 3D scanner which makes use of a 
checkerboard calibration target, like the one commonly used 
for the internal calibration of a camera. Furthermore, they 
provide a useful laser-camera calibration toolbox for Matlab 
that implements the proposed calibration procedure [12]. 
Their method requires the user to collect a few laser-camera 
acquisitions where the calibration grid is shown at different 
positions and orientations. Then, the user is asked to manu-
ally select the region of points in the camera and laser im-
ages, which contain the grid. Finally, a plane is fitted to the 
selected points of each view pair and calibration is done by 
minimizing the difference in orientation and distance of the 
planes observed by the two sensors. This technique however 
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needs several camera-laser acquisitions of the grid for a suf-
ficiently accurate external calibration of the system. 

The work described in this paper also focuses on the ex-
trinsic calibration of a camera and a 3D laser range finder 
but the primary difference is that we do not use any calibra-
tion pattern. We use only the point correspondences that the 
user hand selects from a single laser-camera acquisition of a 
natural scene. As we use no calibration target, we name our 
technique self-calibration.  

This work was motivated while working in the First Euro-
pean Land-Robot Trial [13]. In that contest, we presented an 
autonomous Smart car equipped with several 3D laser range 
finders and cameras (both omnidirectional and perspective 
cameras). The goal was to produce 3D maps of the envi-
ronment along with textures [1]. Especially when working in 
outdoor environments, doing several laser-camera acquisi-
tions of a calibration pattern can be a laborious task. For 
each acquisition, the pattern has to be moved to another po-
sition and this process usually takes time. Furthermore, 
weather conditions (e.g. wind, fog, low visibility) can some-
times perturb or even alter the calibration settings. Hence, 
the calibration must be done quickly. Because of this, we 
developed the procedure presented in this paper. The advan-
tages are that now we need only a single laser-camera acqui-
sition and that the calibration input are point correspon-
dences manually selected from the laser-camera acquisition 
of a natural scene. Once point correspondences are given, 
the extrinsic calibration problem becomes a camera pose-
estimation problem which is well known in computer vision 
and can be solved using standard methods. The difficulty 
resides in visually identifying the point correspondences 
because range images in general lack in point features. To 
bypass this problem, we process the range data so that we 
can highlight discontinuities and orientation changes along 
specific directions. This processing transforms the range 
image into a new image that we call Bearing Angle image 
(BA). Using BA images, we will show that visually identify-
ing point correspondences between the laser and the camera 
outputs becomes as easy as image pairing. To show the gen-
erality of the methodology, in our experiments we will use 
an omnidirectional camera. The BA images and the applica-
tion of the method to an omnidirectional camera are the two 
main contributions of this paper. 

This document is organized as follows. Section II de-
scribes the projection model of the camera and 3D laser 
scanner. Section III defines the concept of BA images and 
explains how to compute them. Section IV describes the 
calibration procedure. Finally, section V presents some cali-
bration results. 

II. LASER-CAMERA PROJECTION MODEL 

A. Camera Model 
In this work, we deal with central cameras either perspec-

tive or omnidirectional. Central cameras satisfy the single 

effective viewpoint property, that is, they have a single cen-
tre of projection (see Fig. 1). For the case of catadioptric 
omnidirectional cameras, such property can be achieved 
using hyperbolic, parabolic, or elliptical mirrors [16]. In the 
last years, central omnidirectional cameras using fisheye 
lenses have also been built [17].  

We assume that the camera has already been calibrated. 
Some Matlab toolbox to quickly calibrate these sensors can 
be found in [19, 20, 21]. 
 

 

(a) (b) 

 
(c) 

Fig. 1. Pin-hole model used for perspective cameras (a). Image formation 
model for central catadioptric cameras (b). Unified spherical projection 
model for central omnidirectional cameras (c): every pixel in the sensed 
image measures the irradiance of the light passing through the effective 
viewpoint in one particular direction. The vectors are normalized to 1. 
 
Assuming the camera is already calibrated, given a pixel 
point (u,v) on the camera image plane, we can recover the 
orientation of the vector X emanating from the effective 
viewpoint to the corresponding 3D point (1). Conversely, 
given a 3D point λX, we can reproject it onto the camera 
image plane (u,v) (2): 
 

[ ] ( )vuFzyxX T ,,, == λλ ,                  (1) 

[ ] )(, 1 XFvu T −= ,                      (2) 
 
where λ is the depth factor and ||X||=1. Function F depends 
on the camera used. Some proposed formulations for F can 
be found in [17, 18, 22, 23]. We assume that the origin of 
the camera coordinate system coincides with the single ef-
fective viewpoint. This corresponds to the optical center for 
perspective cameras and the internal focus of the mirror, in 
the catadioptric case. The x-y plane is orthogonal to the mir-
ror axis for the catadioptric case or to the camera optical axis 
for the perspective case (see more in [8], [18], [23]). With-
out loss of generality, in this paper, we consider omnidirec-
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tional cameras, but the same considerations also apply to 
perspective cameras. According to what we have mentioned 
so far, in the remainder of the document we assume that for 
every sensed pixel we know the orientation of the corre-
spondent vector X on the unit sphere centered in the mirror 
frame (Fig. 1.c) 
 

B. Laser Model 
3D laser range finders are usually built by nodding or ro-

tating a 2D scanner in a stepwise or continuous manner 
around its lateral or radial axis. Combining the rotation of 
the mirror inside the 2D scanner with the external rotation of 
the scanner itself, spherical coordinates of the measured 
points are obtained. However, since in reality it is impossi-
ble to adjust the two centers of rotation exactly on the same 
point, the measured parameters are not spherical coordinates 
and offset values exist. These offset values have to be esti-
mated by calibrating the 3D sensor by considering its obser-
vation model. The approach presented in this paper for the 
extrinsic calibration of a 3D laser scanner with a camera is 
general and does not depend on the sensor model. The ap-
proach described in this paper assumes that the laser is al-
ready calibrated. In the following paragraph, the scanner 
model used in our experiments is explained, but a different 
sensor setup can also be used along with its corresponding 
observation model.  

The 3D range sensor used in this work is a custom-built 
3D scanner since such scanners are not yet frequent in the 
market. It is composed of a SICK LMS 200 two-
dimensional laser scanner mounted on a rotating support, 
which is driven by a Nanotec PD4-I57 stepping motor (see 
Fig. 2). Therefore, the support remains fixed while tacking 
each 2D scan and the sensor model can be written as: 
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where ijρ is the thj measured distance with corresponding 

orientation 
jθ in the thi scan plane, which makes the angle 

jϕ with the horizontal plane (Fig. 2.b). The offset of the ex-

ternal rotation axis from the center of the mirror in the laser 
frame has components dx and dz (as observed in Fig. 2.b). 
[x,y,z]T are the coordinates of each measured point relative 
to the global frame (with its origin at the center of the rota-
tion axis, the x-axis pointing forward and the z-axis toward 
the top). The sensor is calibrated as discussed in [26] based 
on a known ground truth.  

  

  
(a) (b) 

Fig 2. (a) Our custom-built 3D scanner is composed of a SICK LMS 200 
laser range finder mounted on a rotating support. (b) Schematic of the sensor 
used for calibration. 

 
 

 
(a) 

  
(b) (c) 

Fig. 3. (a) 3D point cloud of an office.  (b) Depth image of the same scene. 
Jet colormap has been used. The color shade (from blue to red) is propor-
tional to the depth.  (c) Sobel based edge map of the depth image. 
 

III. BEARING ANGLE IMAGES 
In this subsection, we will describe how to highlight 

depth discontinuities and direction changes in the range im-
age so that the user can easily find the corresponding points 
of the camera image points. Such features in the range image 
are called image details. Fig. 3.a shows the 3D scan of an 
office-like environment. In such an environment, we would 
like emphasizing key points like corners arising from the 
plane intersections of walls, tables, chairs, and other similar 
discontinuities. Fig. 3.b shows the range image while in Fig. 
3.c, the result of directly applying a Sobel edge detector on 
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the range image can be observed. As observed, edge detec-
tion does not directly help for our task, since edges are zones 
of the range image where the depth between two adjacent 
points significantly changes. In fact, many details in the 
range image do not create a big jump in the measured dis-
tance. Such edges are called “roof edges” and correspond to 
sharp direction changes (e.g. tetrahedron shaped corners). 
Therefore, a measure of direction should be used to high-
light all the desired details in the scene. 

As representative of the surface direction, its correspond-
ing normal vector is usually used [14, 15]. Surface normal 
vectors are estimated based on the neighborhood of each 
point. However, for our application, we avoid the use of 
surface normals as representatives of the direction. The rea-
son is that we want to highlight the details of the surface 
along some specific directions (vertical, horizontal, and di-
agonal). We will show that treating each dimension sepa-
rately leads to enhanced estimation of the image details.  

Let the range data coming from the 3D scanner be ar-
ranged in the form of a 2D matrix where his entries are or-
dered according to the direction of the laser beam. This ma-
trix will be referred to as a depth matrix. We compute the 
surface orientation along four separate directions of the 
depth matrix, namely the horizontal, vertical, and diagonal 
one (the latter having +45° and -45° orientation). 
 

 
(a) 

 
(b) (c) 

Fig. 4. (a) A sample bird-eye-view of a laser scan taken in our laboratory. 
(b) The Bearing Angles, computed along the horizontal direction, for the 
region in the green oval. (c) Plot of a horizontal BA signal. 
 

We define Bearing Angle (BA) the angle between the la-
ser beam and the segment joining two consecutive meas-
urement points (see Fig. 4.b). This angle is calculated for 
each point in the depth matrix along the four defined 
directions (that we call also  “traces”). More formally: 

 

ϕρρρρ
ϕρρ

d
dBA

iiii

ii
i

cos
cosarccos

1
2

1
2

1

−−

−

−−

−
=   ,      (4) 

 
where 

iρ is the ith depth value in the selected trace of the 

depth matrix and ϕd  is the corresponding angle increment 
(laser beam angular step in the direction of the trace). Per-
forming this calculation for all points in the depth matrix 
and putting the BA values in their corresponding row and 
column  slots will lead to an image which is referred to as a 
BA image.  

BA images can be calculated from the depth matrix along 
any direction, to highlight the details of the scene in the se-
lected direction. In our application, horizontal, vertical, and 
diagonal traces suffice for a successful enhancement of the 
details of the scene (Fig. 5). However, any other direction 
could be also considered depending on the application. As 
observed in Fig. 5, these angular measures show the geome-
try of the target by highlighting many details that were not 
distinguishable in the range image. Hence, these will be used 
in the next section for extracting corresponding features. 
 

 
 
Fig. 5. BA images for a real scan (top left: vertical, top right: horizontal, 
and bottom: two diagonal directions). Observe that, in BA images, the 
scene details are very highlighted (e.g. even the corners of the picture 
hanged on the left wall are now well distinguishable; in the range image 
3.b, they were not).  In this pictures, jet colormap has been used. The color 
shade (from blue to red) is proportional to the BA value. 
 

IV. EXTRINSIC LASER-CAMERA CALIBRATION 

A. Data Collection 
Our calibration technique needs a single acquisition of 

both the laser scanner and the omnidirectional camera. The 
acquisition target can be any natural scene with a sufficient 
number of distinguishable key points, i.e. roof edges or 
depth discontinuities. Our calibration procedure consists of 
three stages: firstly, we compute the BA images of the ac-
quired range image. Secondly, we manually select several 
point correspondences (at least four) between the BA image 
and intensity image. Finally, extrinsic calibration is done 
using a camera pose estimation algorithm followed by a 
non-linear refinement process.  

Observe that usually not all four BA images are needed. 
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Depending on the scene and the orientation of the laser scan-
ner to the scene, only the horizontal BA image could suffice. 
However, the remainder BA images can be used anyway, to 
check if there are further details that would be worth exploit-
ing.  

At the end of the visual selection, we have n laser points 
3

2 ),...,,( ℜ∈ni ppp  in the laser frame and their correspon-
dent points on the camera image plane 2

2 ),...,,( ℜ∈ni mmm . 
We rewrite these points in the following way: 

  

[ ]nCCCC ,2,1, ,...,, ϑϑϑϑ =        [ ]
[ ]nLLLL

nLLLL

dddd ,2,1,

,2,1,

,...,,
,...,,

=

= ϑϑϑϑ     (5) 

 
where θC and θL are the unit norm orientation vectors of the 
camera and laser points in their respective reference frames, 
dL are the point distances in the laser frame. 

B. Extrinsic Calibration 
Extrinsic calibration of a camera and a 3D laser range 

finder consists in finding the rotation R and translation T 
between the laser frame and the camera frame that mini-
mizes a certain error function. In photogrammetry, the func-
tion to minimize is usually the reprojection error: 

 

( )∑ =

∧

−
n

i iiTR T,pRmm
1

2
, ||,||

2
1min              (6) 

 
where ( )iT,pRm ,

∧
 is the reprojection onto the image plane of 

the laser point pi according to equation (2). However, the 
reprojection error is not theoretically optimal in our applica-
tion because the resolution of the camera is not uniform. A 
better error function uses the Rienmann metric associated to 
a sphere as it takes into account the spatial distribution [8, 
11]. This metric minimizes the difference of the bearing 
angles of the camera points and the bearing angles of the 
laser points after reprojection onto the image, that is: 
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where θCL is the unit norm orientation vector of ( )iT,pRm ,
∧

. 
According to equation (2), each correspondence pair con-

tributes two equations. In total, there are 2xn equations in 6 
unknowns. Hence, at least 3 point associations are needed to 
solve for R and T. However, 3 point associations yield up to 
four solutions and thus a fourth correspondence is needed to 
remove the ambiguity. This problem has already been theo-
retically investigated for a long time and is well known in 
the computer vision community as PnP problem (Perspec-
tive from n Points). Some solutions to this problem can be 
found in [24] and [25]. We implemented the PnP algorithm 
described in [24] to solve the calibration problem. The out-
put of the PnP algorithm are the depth factors of the camera 

points in the camera reference frame, that is 
[ ]nCCCC dddd ,2,1, ,...,,= . Then, to recover the rigid trans-

formation between the two point sets, namely R and T, we 
used the motion estimation algorithm proposed by Zhang 
[27]. 

C. Non-Linear Optimization 
The drawback of using the PnP algorithm is that the solu-

tion is quite sensitive to the position of the input points, 
which were manually selected, and also to noisy range in-
formation. Furthermore, we have to take into account that 
the two sensors can have different resolution and that the 
rigid transformation is recovered by linear least-square esti-
mation. Thus, the solution given in section B is suboptimal. 
To refine the solution, we minimized (7) as a non-linear 
optimization problem by using the Levenberg-Marquardt 
method [28]. This requires an initial guess of R and T, 
which is obtained using the method described in section B. 

V. RESULTS 
The proposed method has been tested on the custom-built 

rotating scanner described in section II.B and on an omnidi-
rectional camera consisting of a KAIDAN 360° One VR 
hyperbolic mirror and a SONY XCD-SX910-CR digital 
camera. The camera resolution was set as 640x480 pixels. 

The rotating scanner provided 360° field of view range 
measurements with a vertical angular resolution of 1 degree 
and a horizontal resolution of 0.5 degree. The calibration of 
the omnidirectional camera was done using a toolbox avail-
able on the Internet [20]. The calibration of the rotating 
scanner was done using a known ground truth as explained 
in [26].  

We evaluated the robustness of the proposed approach 
with respect to the number of manually selected points. We 
varied the number of laser-camera correspondences from 4 
to 10 and for each combination we did ten calibration trials 
using different input points. The results shown in Fig. 6 and 
7 are the average. Observe that after selecting more than 5 
points, the values of the estimated R and T become rather 

stable. This stability occurs when points are chosen uni-
formly from the entire scene viewed by the sensors. Con-
versely, when points are selected within local regions of the 
scene, the estimated extrinsic parameters are biased by the 
position of this region. We also tried to use more than 10 
points but the estimated parameters did not deviate from the 
average values that had been already estimated.  

In our experiments, we did not know the ground truth but 

TABLE I 
PARAMETER ESTIMATION 

T (m) σ  R (deg) σ  Pixel 
error 

σ  

0.207 0.005 0.64 0.21 
0.042 0.017 -1.24 0.85 
0.139 0.005 166.95 1.08 

1.6 1.2 
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the estimated R and T were in agreement with the hand-
measured values. Furthermore, the estimated parameters 
were stable against the position of the input points when 
these points were picked uniformly from all around the 
scene. In table I, the mean and the standard deviation of R 
(roll, pitch, and yaw angles) and T (Tx, Ty, Tz) are shown 
for the case of ten correspondence pairs. The results were 
averaged among ten different calibration trials. In table I, we 

also show the reprojection error (in pixel). For data fusion, 
this error is the most important. This error measures the dis-
tance between the laser points reprojected onto the image 
using the estimated R and T, and the image points. In our 
experiments, the average reprojection error was 1.6 pixels 
and the standard deviation was 1.2 pixels. 

 The reprojection of the laser points onto the image also 
offers an indirect way to evaluate the quality of the calibra-
tion. To do this, we chose not to reproject all the laser points 
onto the image. Rather, we wanted to reproject only those 
laser points that represent discontinuities in the range image. 
To select only depth discontinuities automatically, we ap-
plied an edge detector to the BA image. The edge points, as 
representative of depth discontinuities, were then repro-
jected onto the image. The reprojection results are shown in 
Fig. 8. As observed, the laser edge points well reprojected 
on the edges of the intensity image. 

In the end, using the estimated R and T, we colored an en-
tire 3D scan by reprojecting the scan onto the corresponding 

image. The results of this color mapping are shown in Fig. 9. 

VI. CONCLUSION 
In this paper, we presented a new extrinsic calibration ap-

proach to estimate the orientation and position of a central 
camera with respect to a 3D laser range finder, that can be 
done on the fly. The method uses only a few correspondent 
points that are manually selected by the user from a single 
laser-camera acquisition of a natural scene. No calibration 
patterns are required, nor is more than one single laser-
camera acquisition necessary.  

The proposed method relies on a novel technique to visu-
alize the range information obtained from a 3D laser scan-
ner. This technique converts the visually ambiguous 3D 
range information into a 2D map (called BA image) where 
natural features of a scene are highlighted. In this way, find-
ing laser-camera correspondences is facilitated. Once corre-
spondence pairs have been given, calibration is done using 
the PnP algorithm followed by a non-linear refinement proc-
ess.  

Real experiments have been conducted using a central 
catadioptric camera and a rotating SICK scanner, but the 
same approach can be also applied to any other type of cam-
era (either perspective or omnidirectional) and laser range 
finder. The results showed that selecting the input points 
uniformly from the whole scene, robust calibration can be 
done by using only from eight to ten correspondence pairs. 

The BA images and the application of the method to an 
omnidirectional camera were the two main contributions of 
this paper. The implication of the proposed calibration ap-
proach is important because it brings 3D computer vision 
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Fig. 6. Estimation of the translation (meters) versus the number of selected 
points. 
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Fig. 7. Estimation of the rotation (roll, pitch, and yaw angles) versus the 
number of selected points (the x-axis ranges from 4 to 10). 
 

  
(a) (b) 

 
(c) 

Fig. 8. (a) A detail of the BA image. For visualization, we used a gray 
scale where the intensity is proportional to the BA value. (b) Result of a 
Sobel edge detector on the BA image. (c) The edges are reprojected onto 
the image using the computed R and T.  
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systems out of the laboratory and into practical use. In fact, 
the proposed approach requires no special equipment and 
allows the user to calibrate quickly the system in those cases 
where special settings are difficult to be arranged. 
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Fig. 9. (a) A panoramic picture of a scene unwrapped into a cylindrical image. The size of the original omnidirectional image was set as 640x480 pixels. 
After extrinsic calibration, the color information was mapped onto the 3D points extracted from a rotating SICK laser range finder. (b), (c), and (d) show 
the results of this color mapping. The colors are well reprojected onto the 3D cloud. 
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