
2D localization of outdoor mobile robots
using 3D laser range data

Takeshi Takahashi

CMU-RI-TR-07-11

May 2007

Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

c© Carnegie Mellon University

Submitted in partial fulfillment of the requirements for the degree of Master of
Science

Abstract
Robot localization in outdoor environments is a challenging problem because of

unstructured terrains. Ladars that are not horizontally attached have benefits for de-
tecting obstacles but are not suitable for some localization algorithms used for indoor
robots, which have horizontally fixed ladars. The data obtained from tilted ladars are
3D while these from non-tilted ladars are 2D. We present a 2D localization approach
for these non-horizontally attached ladars. This algorithm combines 2D particle filter
localization with a 3D perception system. We localize the vehicle by comparing a local
map with a previously known map. These maps are created by converting 3D data into
2D data. Experimental results show that our approach is able to utilize the benefits of
3D data and 2D maps to efficiently overcome the problems of outdoor environments.

Adviser: Sanjiv Singh

I

Contents
1 Introduction 1

2 Related work 1

3 Data acquisition 3

4 Map matching 4
4.1 Known map . 4
4.2 Local map . 5
4.3 Elevation map . 5

4.3.1 The Highest point . 5
4.3.2 Mean of data points . 5
4.3.3 Number of points . 6
4.3.4 Robust elevation map . 6

4.4 Feature map . 7
4.5 Landmarks . 9

5 Localization 11
5.1 Particle filters . 11

5.1.1 Recovery from failures . 12
5.1.2 Uncertainty . 12

5.2 Perception and comparing maps . 14
5.2.1 Map matching . 14
5.2.2 Scan matching . 15

6 Experimental results 17
6.1 Experiment . 17
6.2 Results . 17

7 Conclusions and future works 31
7.1 Conclusions . 31
7.2 Future works . 31

III

1 Introduction

Localization is very important for autonomous vehicle to track a path, detect and avoid
obstacles properly. Indoor robot localization has been done successfully,however out-
door robot localization is still a challenging problem. In outdoor environments, there
are factors that make localization difficult. Terrains are usually not flat. GPS signals
degrade in the presence of vegetation, buildings, and terrain features. Environments
are being changed because of the presence of people, cars, and other moving objects.
Terrains, especially trees, are different in seasons. Construction of roads and build-
ings also change the environment. Therefore we need a robust localization method that
overcomes these problems.
Robots performs many tasks in real time, such as obstacle detection, obstacle avoid-
ance, path planning , path tracking, and localization for real-time operations, and there-
fore we need an algorithm that does not require high computational costs. Using cam-
eras results in high computational costs and they are not suitable for night operations,
while using ladars results in lower computational cost and they are applicable to night
operations.
It is hard to use indoor robot localization algorithm because of the property differences
between indoor and outdoor environments. Indoor robots usually have horizontally
fixed ladars that can obtain data at a certain height and are enough to localize the
vehicle because of no elevation and the presence of walls. However, if robots have hor-
izontally fixed ladars, it is difficult to detect obstacles lower or higher than the ladar.
Tilted ladars are able to detect obstacles efficiently, but the vehicle drives at a high
speed, and scenes taken from ladars at the same area could be different because the
data density is very low. Although we are able to use GPS in outdoors, we cannot
always rely on GPS information because of satellite occlusion. Lost GPS information
sometimes causes significant errors.
In real-world applications, the use of a known map for localization is a legitimate as-
sumption. For example, security robots are different from reconnaissance robots, which
sometimes needs to be operated in an unknown area. Security robots can be operated
in factories, port and harbors, and military bases. This means that they are used in
known areas and therefore,we do not have to solve SLAM (Simultaneous Localization
and Mapping) problems for this kind of security robots.
In this paper, we compare localization methods and map representations, and present a
suitable localization method for our outdoor security robot. This paper consists of the
following sections: data acquisition (Section 3), map creation (Section 4), and local-
ization algorithm (Section 5). Section 6 describes the results of our experiments in the
outdoor environment.

2 Related work

In this section,we review related works in localization algorithms. Particle filters have
been one of the most reliable localization algorithms particularly for indoor environ-
ments [3] [4]. One problem with particle filters is the computational cost involved.
The more the number of particles and state spaces we use, the more the computational

1

(a) (b)

Figure 1: Our security robots(a)Grizzly and (b)Yogi

cost. Accurate results need large number of particles and state spaces. This is a trade-
off between accuracy and computational cost. In order to reduce computational costs,
particle filters for real time operations have been studied under changing number of
particles and size of incoming data set [5] [6].
Another problem with the particle filter is that the robot cannot recover its pose when
no particle is around the true pose in the sace of an accident. Sensor resettings are able
to solve this problem [7]. Expansion resettings are also able to overcome this problem
and a combination of these two resetting methods can be applied to robust localization
algorithms [8].
Studies mentioned above are for indoor robots with horizontally fixed 2D laser sensors.
There are the problems with the use of these sensors in outdoor environments [1]. It
is difficult for the 2D navigation system to overcome unflat environments [14] and to
detect and avoid obstacles; however, while tilted ladars are suitable for these purposes
[12].
Histogram Matching can be applied to 3D SLAM [9]. This algorithm can success-
fully map very large areas and solve the kidnapped robot problem. It does not use less
reliable matches. This idea can be applied to matching in the localization algorithm.
However, this algorithm cannot be used for global localization. The situation is differ-
ent from ours because this vehicle has horizontally fixed ladars.
Although 3D outdoor localization algorithm using ladars has been studied, the compu-
tational cost involved is extremely high due to the high degree of freedom of the states
[10] [11]. Other approaches for outdoor navigation are described in [1]. This system
use 3D data for a 2D SLAM algorithm and map representation for semi structured out-
door environments. It has the advantage of 3D perception and less computational 2D
navigation. In this paper, we describe how to convert 3D data into 2D representation
and how to exploit these advantages.

2

3 Data acquisition
The ladars we use are 2D laser range finders. One ladar is fixed to the vehicle and is
slightly tilted to cover a range of 10 m in front of the vehicle. As the vehicle moves, we
can obtain horizontal data. We found that one sensor is not enough to detect obstacles
and to avoid these obstacles when the vehicle moves at a high speed [12]. Therefore,
we added another sensor that is sweeps back and forth to obtain vertical data. We can
obtain 3D data by combining these two sensors.
The ladars need to be well calibrated, because the data difference between fixed and
sweeping laser sensors generates false obstacles, which causes serious error in obstacle
avoidance.

We have a gyro that give the yaw angle of the vehicle and an encoder that provides
the distance of travel. We transform data obtained from ladars into the vehicle frame,
and then transform them into a global coordinate using odometry information or GPS
information.

Figure 2: Sweeping and fixed ladars

(a) (b)

Figure 3: (a)(b) 3D point clouds from sweeping (blue) and fixed ladars (red)

3

4 Map matching
When the robot is operated in an unknown area, we need to create a map of the area.
SLAM solves this problem if we can not use GPS. In our situation, we don not consider
the computational time for creating a map and use GPS to create a map when GPS sig-
nal perception is good. The important point is that we need to create similar maps in
order to compare a known map with a local map created during a task. A large differ-
ence between the known and the local map will cause serious problems in localization.
Dynamic obstacles is one of the main factors that causes the difference in the maps.
When the vehicle moves at a high speed, it cannot obtain the density data of environ-
ments. Our vehicle is supposed to move at a speed of 5 m/s. Therefore, we need to
overcome the dynamic obstacles and the fewness of data points. Because our operation
is done on-line, we need to quickly create a local map. There are many methods of
creating a map. To create a 3D map or store 3D data points, we need large sources and
computational time. Therefore, we use a 2D map that can utilize the features of the
3D data. We create an elevation map in which we discretize the world and each grid
has a value representing its highest point, traversable costs or landmarks etc. Finding
vegetation takes time to compute, but if we focus on only few features, we can compute
in real time. Taking the highest point in a cell might be noisy. In our case, we select
a point below which p percent of data points in the cell are included. Drawbacks of
the elevation map are that we cannot represent some typical terrains, such as overhang
obstacles, trees, tunnels, and roads under bridges. We need to consider these obstacles
if the area where the robot is being operated has many of these features. In our case,
we conducted experiments in the campus where there are no such objects. We believe
that all environments do not have these many features. Partial problem caused by these
features in our algorithm is insignificant fecause of its robustness. We fix the vehicle’s
height to ground level because our gyro cannot measure the pitch of the vehicle and the
vehicle is always on the ground.
We suggest three simple map representations: an elevation map known as 2 and a half
dimensional map, a feature map, and landmark maps. We compare these representa-
tions in the experimental section and describe the results.

4.1 Known map
When we create a known map, we can use any of the methods and devices like beacons
and GPS. If we have several robots and only one of them has GPS, we can use the robot
to create a known map. Other robots do not need to have GPS, which can reduce the
cost involved. In our case, we create a map using GPS and manually remove noises
and obtain a decent map.
Due to the property of our gyro, we can measure only the yaw angle of the vehicle.
Thus, we cannot consider the pitch and roll. We do not consider the cases where there
are overlapped roads and many hills.
The direction of movement of the vehicle when we collect data is important. In par-
ticular, because our vehicle moves at a high speed. The data obtained from different
directions would be different. Therefore, we need to collect data in at least two oppo-
site directions. Then, we combine these data to create a known map. Our odometry

4

doesn’t provide pitch angles, therefre when we created a prior map, we don’t use pitch
angles although GPS provides pitch angles of the vehicle. If we use pitch angles to
create a known map, slopes in the map would be different from theses in a local map,
and that leads to bad matchings. Not using pitch angles causes problems in loclaization
when the vehicle starts to go up or down the slope and finishes to go up or down the
hill. These problems occurs for only few seconds, thus it doesn’t affect localization so
much as shown in the result section.

4.2 Local map
The local map is a map created using just ladars and odometry, and not GPS. A gyro
and an encoder provide accurate data when the vehicle moves a small distance. Thus,
the local map is supposed to be almost the same as the sub map, which is extracted
from a known map. We can obtain 3D data points from ladars, but due to the high
computational cost invovled, we convert them into 2D data.

4.3 Elevation map
The simplest method of creating a 2D map from 3D data is to compute the elevation
of each cell. First, we decide the proper bin size β, which is usually 50 cm or 25 cm.
The finer map requires more computational cost. We need to collect data at least in
two opposite directions so that we can localize the vehicle in any direction. There are
a variety of methods of creating an elevation map. First, we assign a cell {i, j} to
each 3D data point pn =

{
pnx

, pny
, pnz

}
collected from ladars. We assign the cell as

follows;
i =

⌈
pnx

β

⌉
j =

⌈
pny

β

⌉
pn =⇒ pk,{i,j}
where the function dxe gives the smallest integer ≥ x.
A cell {i, j} has K points. After we assign the cells to points, we can compute the
elevation of a cell.

4.3.1 The Highest point

mij = maxk

{
pkz,{i,j}

}
This elevation map is very noisy because the highest point does not represent the height
of the object. When the robot obtains the highest point near the object, the height would
be low, while it would be high when the robot is far away from the object.

4.3.2 Mean of data points

mij = meank

{
pkz,{i,j}

}
This cannot represent a map properly because the density of data points is high at a low
level and low at a high level due to the tilted ladars.

5

Figure 4: Elevation map using highest points or mean of points

4.3.3 Number of points

We count the number of data points in each voxel i, j, l. Then, we use the voxel with
the maximum number of points as the elevation of the cell. In our case, this method
cannot be applied because we obtain more data points on lower parts of objects than
upper parts because of the fact that the ladars are tilted.
l =

⌈
pkz

β

⌉
pn =⇒ {i, j, l}
A voxel {i, j, l} has points Pk,q

mij = argmax {countpointl {i, j, l}}

4.3.4 Robust elevation map

We want to select a point below which α percent of points in the cell are included. If
we use this method, the resulting map has less noise than the map created using the
highest points. This method is very simple to use and more robust than the others;
therefore we adopt this map as the elevation map.
Pk = descend sortk

{
pkz,{i,j}

}
mij = pdα∗Ke
where {i, j} has K points.

6

Figure 5: Creation of an elevation map using a voxel with the maximum number of
points

Figure 6: Creation of an elevation map with a point below which p percent of points
are included

4.4 Feature map

People and cars are the main moving obstacles. Most of the people and cars are less
than 2 m in length. Therefore, we consider a space that is greater than 2 m. Then we
create an elevation map. We want to use these data as features. Thus, we select a space
such as, 2 - 3 m, 2 - 4 m or 3 - 4m. Empirically, the space from 2 to 3 m above the
ground would be suitable for features as shown in Fig.??. If we use the upper space

7

Figure 7: Elevation Map

such as 5 - 6 m, we obtain fewer points than with 2 - 3 m. After we extract the points
in the space above 2 m and below 3 m, we can use a constant for representing the cell.
The resulting map will be a occupancy map that has only two values, a constant or
zero. Using a constant is a reasonable approach because considering the mean or the
highest point might be noisy.

Figure 8: Extracting the space from 2 m to 3 m

8

Figure 9: Feature Map

4.5 Landmarks
We can extract landmarks and remove overhang points by a simple method [1]. Usually
landmarks could be tree trunks, telephone poles, and walls of buildings. These land-
marks usually stand straight. We have the sweeping laser sensor that collects vertical
data. This vertical data is suitable for extracting these landmarks. We slightly change
the method in [1] to be apply it to our data. We use a constant for Hmax. A 3D point
pi,j is an overhang point if there is at least one point pi,k in the same vertical scan. pi,k

is below pi,j and is at a larger distance to the sensor.

pik,r > pij,r + Rt (1)
0 ≤ k < j (2)

where points pi,j and pi,k are in the i th scan, and Rt is the minimum overhang distance.
A 3D point pi,j is a landmark point if there is at least one point pi,k in the same

vertical scan. pi,k is below pi,j and pi,j is not an overhang point.

Ht < pij,z − pik,z < Hmax, (3)∣∣∣∣pij,r − pik,r

pij,z − pik,z

∣∣∣∣ < tan(αt) (4)

0 ≤ k < j (5)
(6)

where Ht is the minimum height of a landmark, Hmax is the maximum difference
between pi,j and pi,k, and αt is the maximum angle misalignment,

9

Figure 10: Definition of landmark and overhang points

Figure 11: Tree trunks and building walls were extracted and overhang points were
removed. Green points are removed overhang points, blue points are landmark points,
and red points are other points.

10

Figure 12: Landmark Map

5 Localization

5.1 Particle filters

There are three types of localization problems; tracking (local localization), global
localization, and kidnapping. In the tracking problem, we estimate relative poses.
Kalman filter is the most widely used localization algorithm. It approximates beliefs
using mean and covariance. Extended Kalman filter solves non-linearities. An advan-
tage of Kalman is its efficiency. Due to the assumption of unimodal posteriors, Kalman
filters can only solve the tracking problem. If our estimate is completely wrong due
to large noise of sensors or dead reckoning, it is difficult for the algorithm to track it
again. In the global localization problem, we estimate a pose in the global coordinate.
During an operation, if the robot is kidnapped and the pose is replaced, it is callded
as the kidnapping problem. Kidnapping problem occurs when perception systems sud-
denly does not work and robot moves for certain time and then the sensors start to work
again. In our case, we do not exactly know the initial pose of the vehicle. We want to
localize the vehicle in the global coordinate. By comparing the known map with the
local map created during the operation, we can obtain the global position in the known
map. Particle filter is the best choice for localization in our case. Particle filters are
Bayes filters that use random samples for posterior estimation. The filter can perform
global localization even when we lose the vehicle pose again. The drawback of particle
filters is the computational cost involved. By reducing the dimensionality of the pose
and the number of particles, we can perform real time localization. In facts, this is a
tradeoff between accuracy and computational cost. If we use more particles, it is highly
possible that we can obtain a more accurate result. The advantage of the use of particle
filters is the representation of arbitrary probability densities; thus, they can solve the
global localization problem. The efficiency of particle filterer depends on the number

11

of particles. To reduce computational cost, real-time particle filters have been studied
[5]. In our case, we focus on a small area and lower dimensionality of state space;
therefore, particle filters can be applied in real-time operations. The pseudo code of a
particle filter is shown in Fig. 1. First, we need to create a local map using the data
obtained from ladars and odometry. Then, we generate particles from previous parti-
cles using their weights. Next, we propagate particles based on the uncertainty model
and odometry and compute new weights by comparing the local map with a sub map
created at the location of each particle in the global map. To determine the weight of
each particle, we compute correlations between these maps. We can also use imaginary
rays to compute the weight.

5.1.1 Recovery from failures

When the vehicle seems to get lost, we sometimes need to recover from the failures.
To determine whether the vehicle got lost, we consider the likelihood. If the likelihood
is really small, this means that even if particles converge, the vehicle might get lost
because the known and the local maps are very different. It is possible that the estimate
is correct even if the likelihood is very small. Failure occurs when there is no particle
around the real vehicle pose. Therefore, we need to expand or replace the particles. We
reset some particles among N particles. The reason why we do not reset all particle is
to consider the case where the estimate is correct but the likelihood is low. We decide
how big area we need to expand based on the standard deviation of particle clouds.

5.1.2 Uncertainty

The encoder and the gyro have noises as shown in Fig. 13. We need an uncertainty
model for propagating the particles. A good uncertainty model improves the perfor-
mance of our particle filters. We collected data for constructing an uncertainty model
using the vehicle with GPS and odometry. Then we computed errors between GPS
data. We computed errors at different speeds. Then, we computed the mean of ab-
solute error and the mean of error of different speeds. Mean of error is a bias of this
model. Small noises for propagating particles pose a problem that the particles can-
not catch up when odometry gets large noises. Therefore, we select the largest noise
among noises at different speeds for uncertainty model.

Errors⌈
dsO

intervals

⌉ = (dsG − dsO) (7)

σv =
std(Errorsv)

v
(8)

σ(ds) = max(σv) (9)

Errors⌈
dθO

intervalθ

⌉ = (dθG − dθO) (10)

σω =
std(Errorsω)

ω
(11)

σ(dθ) = max(σω) (12)

12

Table 1: Localization algorithm

AlgorithmParticlefilter
Inputs
ML: Local map
MG: Global map
yt: Current observation
xt: Current state
ut: Control measurement
N : Number of particles
Xt: particles

[mL,ML] := GetLocalMap(ML, xt, yt, ut) //Obtain a local map
for n = 1, · · · , N do

xG
t

[n] := MotionModel(ut, x
G
t

[n]) //Propagate a particle
[mG,MG] := GetLocalMap(MG, xG

t
[n]) //Obtain a local map

w
[n]
t := CompareMaps(mG,mL) //Compute weight

end do

Xt :=< empty >
x∗t = 0;
for n = 1, · · · , N do

w
[n]
t = w

[n]
t∑
w

[n]
t

Xt = Xt ∪
{

xG
t

[n]
, w

[n]
t

}
// Insert a particle into particle set

x∗t = x∗t + w
[n]
t xG

t
[n] //Compute weighted mean of particles

end do

if max(w[n]
t

∑
w

[n]
t) > κ //If the maximum likelihood is greater than threshold

Xt := GenerateParticles(Xt) //Sample N particles based on weights
end

if LostLocation() == 1 //This function checks whether a robot lost its pose.
Xt := ResetParticles(Xt) //Reset Particles

end

Return Xt, x∗t //Return new particles and estimate pose

13

,where N is the number of data, dsG is the distance of travel in a second measured
with GPS, dsO is the distance of travel in a second measured with odometry, dθG is
the relative orientation in a second measured with GPS, dθO is the relative in a second
orientation measured with odometry, function std() computes standard deviation, v is
the velocity of the vehicle, and ω is the angular velocity. In this case, we compute
one-second data, and the distance of travel and the relative orientation correspond to
the velocity and the angular velocity respectively.

Figure 13: Difference between GPS data and Odometry data. We compute a model
using the intervals 0.5 radian and 2 m.

5.2 Perception and comparing maps
When we compute the likelihood mentioned above, we need to select an appropriate
perception system. There are some perception systems such as map matching, likeli-
hood field, feature based-method and scan matching etc. We use map matching and
scan matching to compute weights.

5.2.1 Map matching

We can compute correlations of these two maps [13]. The sensor measurement model
compares the local map mlocal with the global map m, such that the more similar m

14

and mlocal, the larger p(mlocal|xt,m). Since the local map is represented based on
the robot pose xt, this comparison requires that the sub map extracted from the global
map is transformed into the estimated robot coordinate. The transformed sub map at
the estimated pose x̂ in the global map is compared with the local map using the map
correlation function as follows:

ρm,mlocal,xt
(x̂) =

∑
x,y(mx,y(x̂)− m̄) · (mx,y,local(xt)− m̄)√∑

x,y(mx,y(x̂)− m̄)2
∑

x,y(mx,y,local(xt)− m̄)2
(13)

where mx,y,local(xt) is the cell (x, y) in the local map at xt, and mx,y is the cell
(x, y) in the sub maps at x̂. m̄ is the average map value, which is expressed as

m̄ =
1

2N

∑
x,y

(mx,y + mx,y,local) (14)

,where N denotes the number of overlapped cells between the local and sub map in
the global map. The correlation ρm,mlocal,xt

takes the value from -1 to +1. This value
is interpreted as follows:

p(mlocal|xt,m) = max(ρm,mlocal,xt , 0) (15)

5.2.2 Scan matching

After we extract the features, we can compute imaginary 2D rays as shown in Fig.??.
These imaginary rays facilitate the use of indoor-like localization method since stan-
dard indoor robots have 2D horizontally fixed ladars. Using imaginary 2D rays, we
obtain a distance and a orientation to each feature. We compute a likelihood by com-
paring the distances and the orientations. The difference is that this localization method
can utilize 3D data but uses fewer data.

p(zk
t |xt,m) =

1√
2πσ2

e−
1
2

(zk
i −z̄k

i)2

σ2 (16)

p(zt|xt,m) =
K∏

k=1

p(zk
t |xt,m) (17)

where k is the k th measurement in a scan.

15

Figure 14: Imaginary 2D rays

16

6 Experimental results

6.1 Experiment

Our vehicle has two SICK laser sensors. Fixed laser sensor has 180◦ field of view
with 1◦ resolution and collects data at 75 Hz. Sweeping laser sensor has 90◦ field of
view with 0.5◦ resolution and collects data at 75 Hz. The vehicle has a encoder and a
gyro. They provide information about relative yaw angle and travel of distance at 100
Hz. We collected data on Carnegie Mellon University campus on a weekend morning.
There were few people and cars. We used GPS and laser data for creating a map, and
then used odometry data and laser data for localization. We drove four laps around the
campus at a speed of about 5 m/s in the counter clockwise direction and another four
laps in the clockwise direction. First lap in both directions were used for creating a
known map. Other laps were for testing our localization algorithms. We performed the
localization off-line using the collected data. We didn’t use GPS data for localization.
We have done five combinations of algorithms as follows.
(1) Elevation map - map matching
(2) Feature map - map matching
(3) Feature map - scan matching
(4) Landmarks - map matching
(5) Landmarks - scan matching
The results depend on parameters of mapping and localizatoin, and therefore we used
well-tuned parameters selected empirically. We supposed that the initial position is
unknown but know that vehicle is in a certain small area such as about 50 m by 50 m.
The distance of travel is about 4 km. We use 300 particles for each algorithm.

6.2 Results

Each algorithms showed that it can localize the vehicle even though the initial location
is unknown. If we use map matching, it takes more time than with scan matching. In
particulary, the computational cost of map matching depends on the resolution of the
map. Using Landmarks also needs more time than using elevation or feature map. As
shown in Fig. 21, 22, 23,24, and 25, weighted mean of particles shows the best result
in terms of position but not orientation. Trajectory generated from particle with the
largest weight or particle with the best history is very noisy compared to that generated
from weighted mean. Therefore, we use weighted mean to estimate the pose of the
vehicle.
Table 2 show the mean and the standard deviation of the estimated poses. Table 3 show
the mean and the standard deviation of the estimated poses not using bad matching
data. Using feature map and scan matching resulted in the best performance although
all algorithms gave similar errors. These results also show that elevation map should
be used for map matching, and feature map and landmarks should be used for scan
matching. Map matching performed better results in the orientation of the vechile while
scan matching performed better results in the position of the vhicle. Fig. 16, 17, 18,
19 and 20 show trajectory of each result. Problems occures when the vehicle moves
in open areas. This is because particles have orientation errors and if we propagate

17

without resampling, orientation errors affects the performance of localization. Thus,
the estimated position of vehicle was off the path in the open spaces, however, we
recovered from failures using resetting. Figures31, 32, 33, 34, and 35 show cross and
long track error. The cross track error is the distance from the closest path. The long
track error is the distance from the closest position along the path. The long track errors
are larger than the cross track error, which means that the distance error originates
mainly from the long track error. The vehicle can view only about 20 m in front of
the vehicle. Thus, although the vehicle easily knows the distance from the sides of the
roads, it has difficulty in knowing its position along the road if the environment has
similar features.

Plane Distance Error Orientation Error
Mean (m) Std (m) Mean (degree) Std (degree)

Odometry 7.298 4.3472 3.227 4.3873
Elevation map - map matching 2.4604 1.6736 3.4873 9.7366
Feature map - map matching 2.6571 1.4978 3.7361 10.5098
Feature map - scan matching 1.804 1.2191 2.7178 4.2572
Landmarks - map matching 2.8778 1.5104 3.0178 4.8493
Landmarks - scan matching 2.2457 1.8486 3.8109 13.3221

Table 2: Error of distance of travel and orientation

Plane Distance Error Orientation Error
Mean (m) Std (m) Mean (degree) Std (degree)

Odometry 7.298 4.3472 3.227 4.3873
Elevation map - map matching 2.016 1.3153 2.12 7.4853
Feature map - map matching 2.2803 1.2614 2.3258 9.6596
Feature map - scan matching 1.6957 1.0977 2.7178 4.2572
Landmarks - map matching 2.5206 1.3424 1.749 3.1905
Landmarks - scan matching 2.0679 1.5865 4.419 15.23771

Table 3: Error of distance of travel and orientation without bad matchings

18

Figure 15: Odometry and GPS. A - F are area names.

19

Figure 16: Trajectory obtained using Elevation map and map matching. We got large
errors when the veihlce drives in the open space.

Figure 17: Traectory obtained using feature map and map matching. We got large
errors in the open space. After the vehicle made a sharp turn, we also got large errors.

20

Figure 18: Trajectory obtained using feature map and scan matching. We got large
errors in the open space.

Figure 19: Trajectory obtained using landmarks and map matching. We got large errors
in the open space.

21

Figure 20: Trajectory obtained using landmarks and scan matching. We got large errors
in the open space. Several seconds after we reset partilces, we got errors.

Figure 21: Statistics obtained using elevation map and map matching

22

Figure 22: Statistics obtained using feature map and map matching

Figure 23: Statistics obtained using feature map and scan matching

23

Figure 24: Statistics obtained using landmarks and map matching

Figure 25: Statistics obtained using landmarks and scan matching

24

Figure 26: Error of Distance obtained using elevation map and map matching. A - F
represent areas shown in Fig.15.

25

Figure 27: Error of Distance obtained using feature map and map matching. A - F
represent areas shown in Fig.15.

Figure 28: Error of Distance obtained using feature map and scan matching. A - F
represent areas shown in Fig.15.

26

Figure 29: Error of Distance obtained using landmarks and map matching. A - F
represent areas shown in Fig.15.

Figure 30: Error of Distance obtained using landmarks and scan matching. A - F
represent areas shown in Fig.15.

27

Figure 31: Cross and Long track errors obtained using elevation map and map match-
ing. A - F represent areas shown in Fig.15.

28

Figure 32: Cross and Long track errors obtained using feature map and map matching.
A - F represent areas shown in Fig.15.

Figure 33: Cross and Long track errors obtained using feature map and scan matching.
A - F represent areas shown in Fig.15.

29

Figure 34: Cross and Long track errors obtained using landmarks and map matching.
A - F represent areas shown in Fig.15.

Figure 35: Cross and Long track errors obtained using landmarks and scan matching.
A - F represent areas shown in Fig.15.

30

7 Conclusions and future works

7.1 Conclusions
We showed three map representations and two comaprison methods for a particle fil-
ter.Then,We compared five localization algorithms that use the benefits of 3D data in
creating a 2D map. We reduced a large amount of 3D data obtained from ladars by con-
verting them into 2D and preserved their features. We do not need to have thousands of
particles, but just hundreds for localization and these facts make the algorithm compute
in real time. Even though there are hills and open space in the campus and odometry
goes off as the vehicle moves, our localization algorithm can still localize the vehicle.
Even if we reduce the information by removing dynamic objects and low height ob-
jects, it can still localize the vehicle and extracting landmarks is also applicable in this
situation. Particulary, using feature map and scan matching results in the best perfor-
mance in this situation. Resetting particles and ignoring low quality matching result
made the algorithm robust.

7.2 Future works
We collected data using the vehicle; however we localized the vehicle off-line. We
are going to implement this algorithm on the vehicle and then use obstacle detection
and avoidance, path planning and tracking, and localization simultaneously. We tested
our algorithms just in the campus. It is important to test these algorithms in different
environments. To improve the performance of localization, we need to consider a com-
bination of localization algorithms such as using particle filters for detecting the initial
pose and using kalman filter for tracking.

31

References
[1] C. Brenneke, O. Wulf, B. Wagner, “Using 3D Laser Range Data for SLAM in

Outdoor Environments”, Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp.188-193, Las Vegas, USA, 2003

[2] O. Wulf, C. Brenneke, B. Wagner, “Colored 2D Maps for Robot Navigation with
3D Sensor Data”, Proceedings of IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, September, 2004

[3] S. Thrun, D. Fox, W. Burgard, F. Dellaert, “Robust Monte Carlo Localization for
Mobile Robots”,Artificial Intelligence Journal, 2001

[4] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte Carlo Localization for
Mobile Robots”, IEEE International Conference on Robotics and Automation
(ICRA99), May, 1999

[5] C. Kwok, D. Fox, M. Meila, “Adaptive real-time particle filters for robot lo-
calization”, Proceedings of the IEEE international Conference on Robotics and
Robotics and Automation,(ICRA) 2003

[6] C. Kwok, D. Fox, “Real-time particle filters”, Proceedings of the IEEE, Vol.92,
No.3, 2004

[7] S. Lenser, M. Veloso, “Sensor Resetting Localization for Poorly Modeled Mo-
bile Robots”, Proceedings of the IEEE International Conference on Robotics and
Automation, 2000

[8] R. Ueda, T. Arai, K. Asanuma, K. Umeda, H. Osumi, “Recovery Methods for Fa-
tal Estimation Errors on Monte Carlo Localization”, Journal of Robotics Society
of Japan Vol.23 No.4, 2005

[9] M. Bosse, J. Roberts, “Histogram Matching and Global Initialization for Laser-
only SLAM in Large Unstructured Environments”, IEEE International Confer-
ence on Robotics and Automation, April, 2007

[10] D. Huber, M. Hebert, “A New Approach to 3-D Terrain Mapping”, Proceedings of
the 1999 IEEE/RSJ international Conference on Intelligent Robots and Systems,
1999

[11] C. Olson, L. Matthies, “Maximum Likelihood Rover Localization by Matching
Range Maps”, Proceedings of the IEEE International Conference on Robotics
and Automation, 1998

[12] S.A. Roth, B. Hamner, S. Singh, M. Hwangbo, “Results in Combined Route
Traversal and Collision Avoidance”, International Conference on Field and Ser-
vice Robotics (FSR ’05), July, 2005

[13] S.Thrun, W.Burgard, D.Fox, “Probabilistic Robotics”, The MIT Press

32

[14] K. Lingemann, H. Surmann, A. Nuchter, J. Hertzberg, “Indoor and outdoor local-
ization for fast mobile robots”, Proceeding of IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS’04), 2004

33

