

DETEÇÃO E CLASSIFICAÇÃO DE ESTRADA E OBJETOS EM IMAGENS PANORÂMICAS A BORDO DO ATLASCAR2 USANDO REDES COM DEEP LEARNING

Aveiro, 23 julho 2020

Orientador Prof. Doutor Vítor Manuel Ferreira dos Santos Co-orientador Prof. Doutor Miguel Armando Riem Oliveira Autor Rúben Daniel Ferreira da Costa

- INTRODUÇÃO
- 2. INFRAESTRUTURA EXPERIMENTAL
- 3. SOLUÇÃO PROPOSTA
- 4. TESTES E RESULTADOS
- 5. CONCLUSÕES E TRABALHO FUTURO

- INTRODUÇÃO
- 2. INFRAESTRUTURA EXPERIMENTAL
- 3. SOLUÇÃO PROPOSTA
- 4. TESTES E RESULTADOS
- 5. CONCLUSÕES E TRABALHO FUTURO

Projeto Atlas

ATLASCAR1

ATLASCAR2

Motivação

DETEÇÃO E CLASSIFICAÇÃO DE ESTRADA E OBJETOS EM IMAGENS PANORÂMICAS A BORDO DO ATLASCAR2 USANDO REDES COM DEEP LEARNING

Motivação

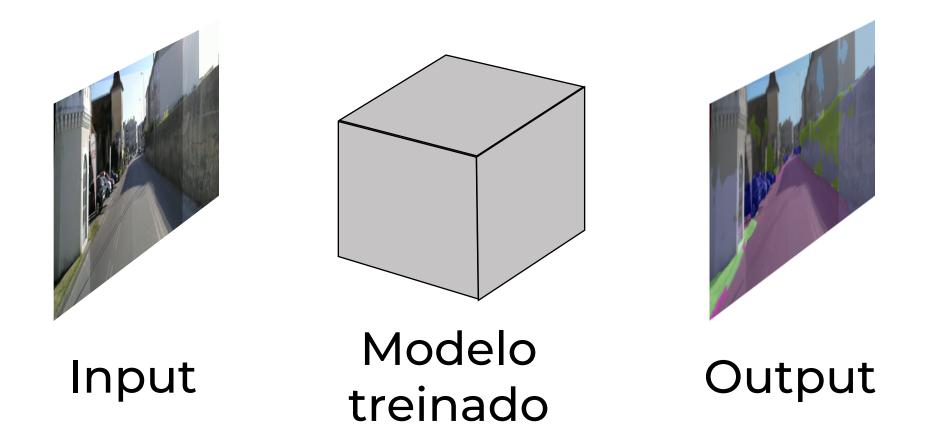
DETEÇÃO E CLASSIFICAÇÃO DE ESTRADA E OBJETOS EM IMAGENS PANORÂMICAS A BORDO DO ATLASCAR2 USANDO REDES COM DEEP LEARNING

Motivação

DETEÇÃO E CLASSIFICAÇÃO DE ESTRADA E OBJETOS EM IMAGENS PANORÂMICAS A BORDO DO ATLASCAR2 USANDO REDES COM DEEP LEARNING

Motivação

DETEÇÃO E CLASSIFICAÇÃO DE ESTRADA E OBJETOS EM IMAGENS PANORÂMICAS A BORDO DO ATLASCAR2 USANDO REDES COM DEEP LEARNING



Introdução Objetivos

Introdução Objetivos

Fazer a aquisição de imagens panorâmicas

1. INTRODUÇÃO Objetivos

Fazer a aquisição de imagens panorâmicas

Selecionar um conjunto de arquiteturas e dataset que permitam a criação de modelos para segmentação em tempo real

Introdução Objetivos

Fazer a aquisição de imagens panorâmicas

Selecionar um conjunto de arquiteturas e dataset que permitam a criação de modelos para segmentação em tempo real

Seleção do hardware e software necessários para o processo de inferência

Introdução Objetivos

Fazer a aquisição de imagens panorâmicas

Selecionar um conjunto de arquiteturas e dataset que permitam a criação de modelos para segmentação em tempo real

Seleção do hardware e software necessários para o processo de inferência

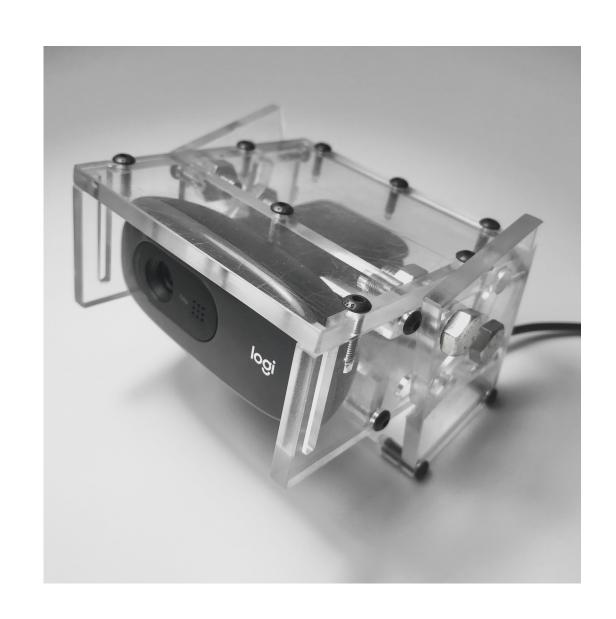
Fazer testes em situações reais a bordo do ATLASCAR2

- 1. INTRODUÇÃO
- 2. INFRAESTRUTURA EXPERIMENTAL
- 3. SOLUÇÃO PROPOSTA
- 4. TESTES E RESULTADOS
- 5. CONCLUSÕES E TRABALHO FUTURO

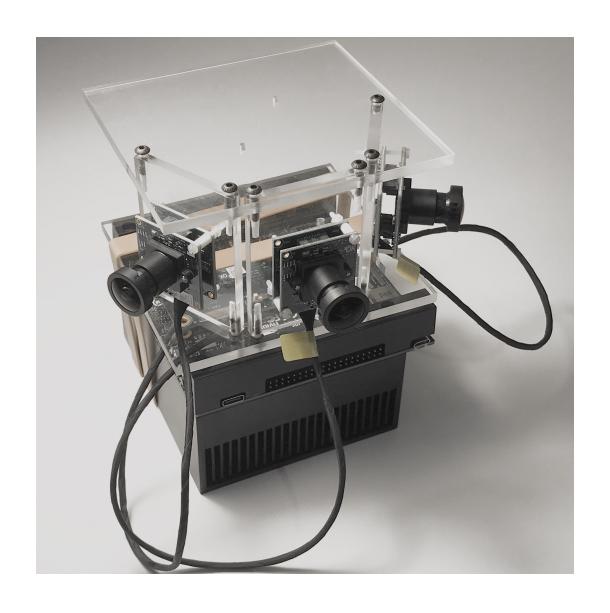
2. INFRAESTRUTURA EXPERIMENTAL

Hardware

LAR Workstation



Logitech C270



Jetson AGX Xavier

2. INFRAESTRUTURA EXPERIMENTAL

Software

- 1. INTRODUÇÃO
- 2. INFRAESTRUTURA EXPERIMENTAL
- 3. SOLUÇÃO PROPOSTA
- 4. TESTES E RESULTADOS
- 5. CONCLUSÕES E TRABALHO FUTURO

Criação de imagem panorâmica segmentada:

Segmentação de imagens

individuais

Segmentação da imagem

panorâmica

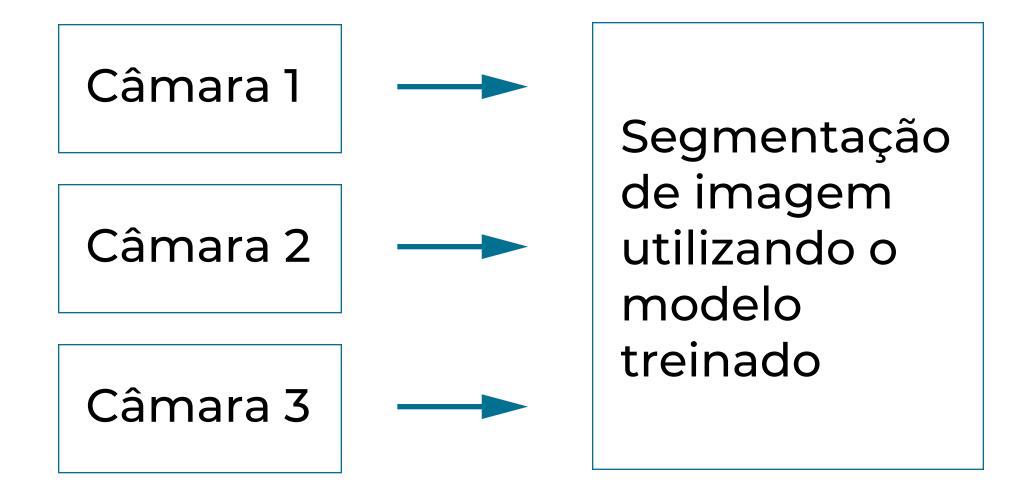
Segmentação de imagens individuais

Câmara 1

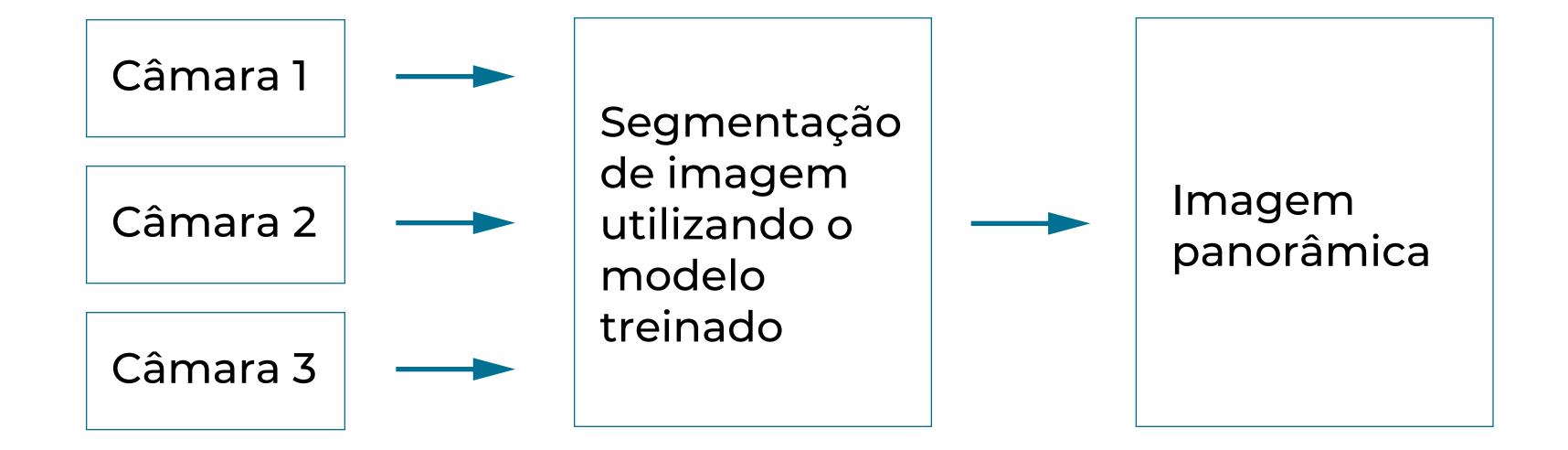
Câmara 2

Câmara 3

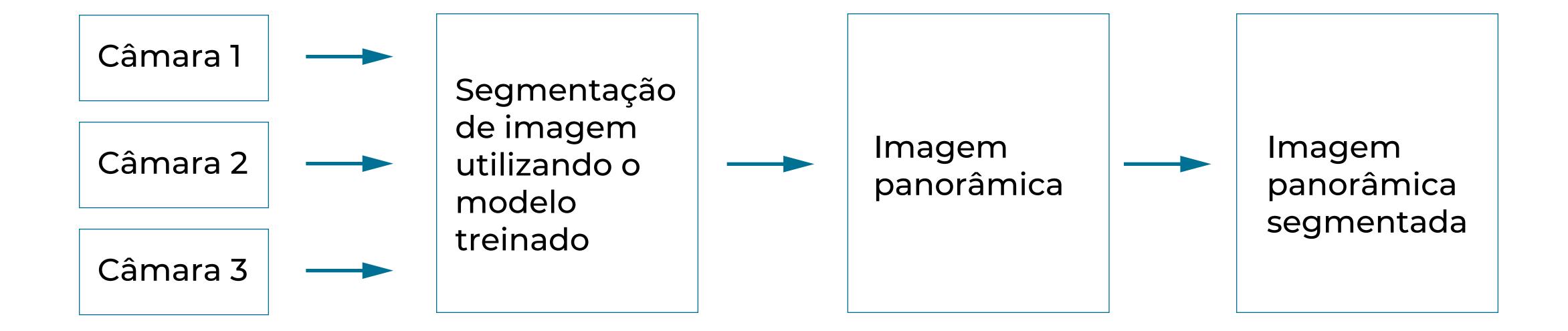
Segmentação de imagens individuais



Segmentação de imagens individuais



Segmentação de imagens individuais



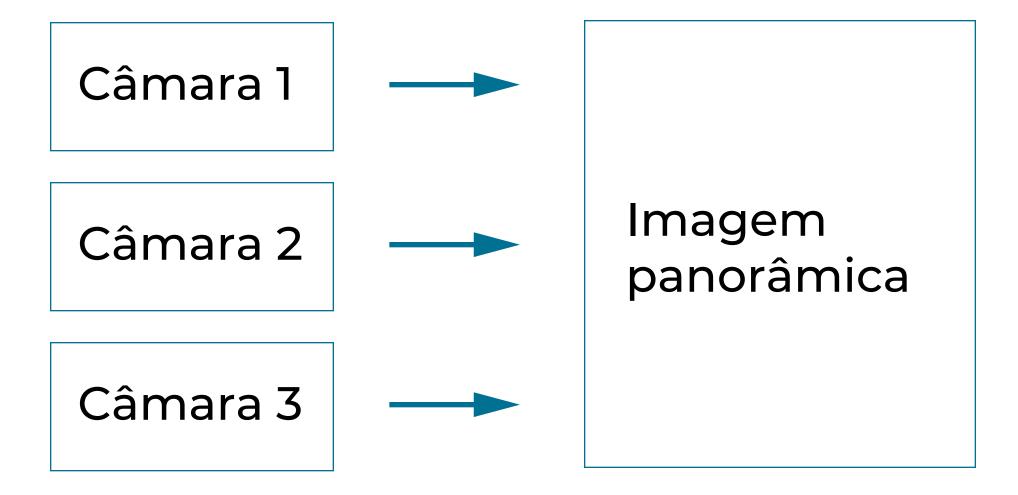
Segmentação da imagem panorâmica

Câmara 1

Câmara 2

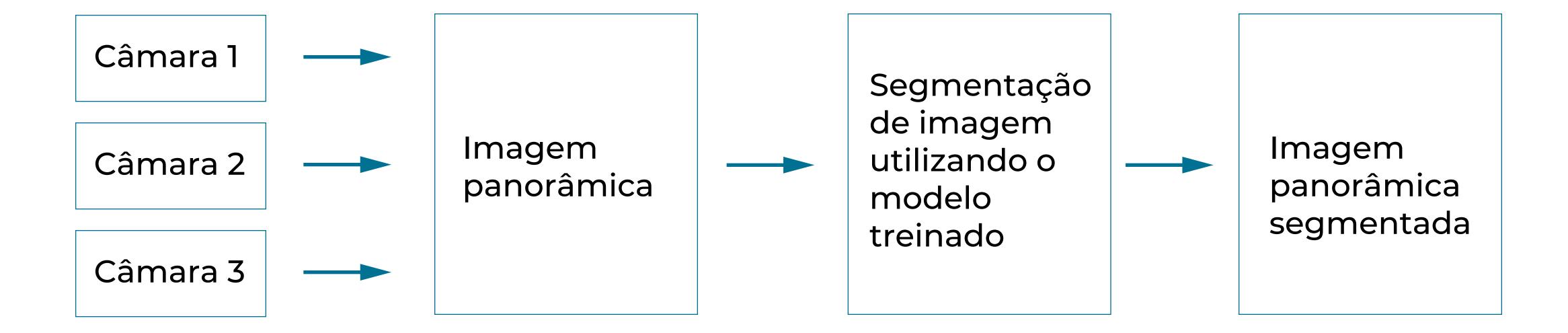
Câmara 3

Segmentação da imagem panorâmica



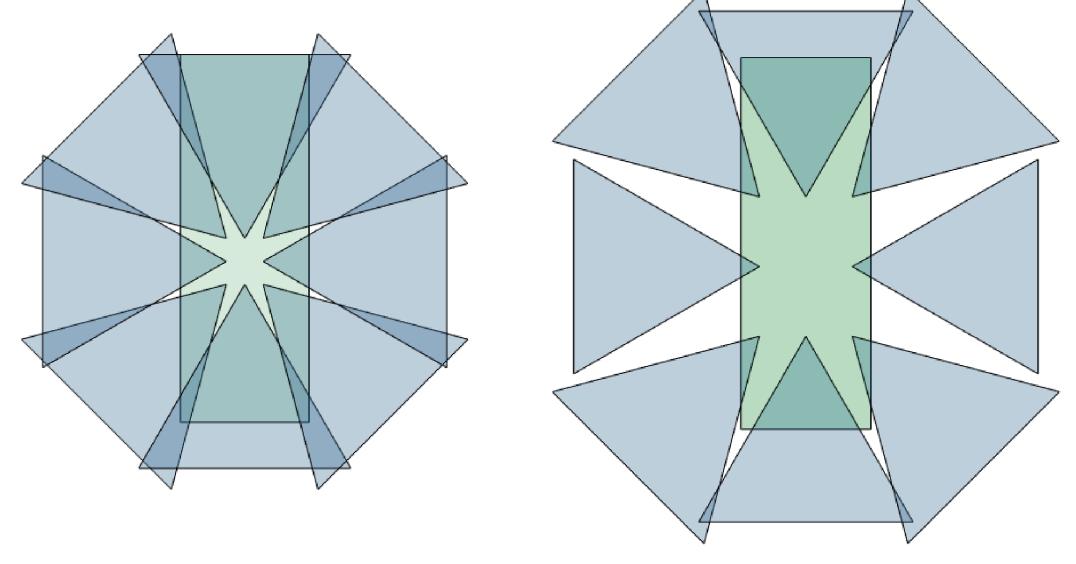
Segmentação da imagem panorâmica

Segmentação da imagem panorâmica



Posicionamento de câmaras

Suporte câmaras

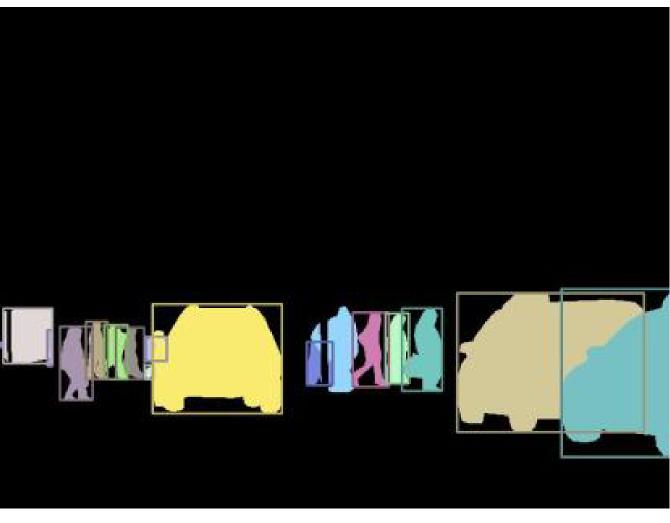


Posicionamento das câmaras

Segmentação de imagem



Semantic segmentation



Instance segmentation

Panoptic segmentation

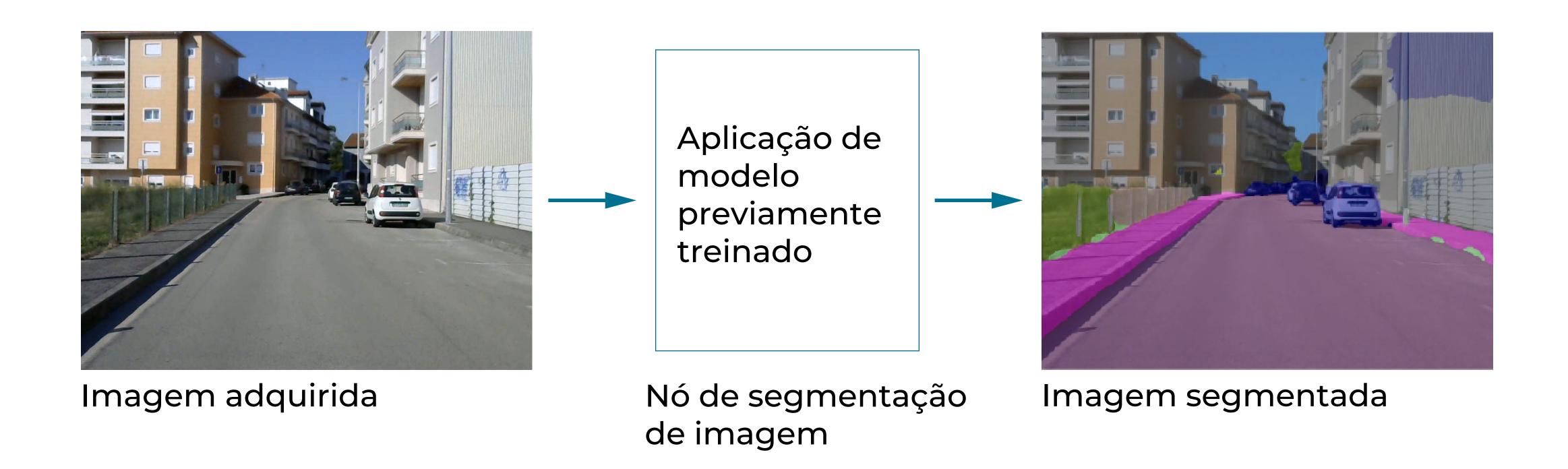
Segmentação de imagem

Semantic segmentation

Instance segmentation

Panoptic segmentation

Segmentação de imagem



Arquiteturas

Parâmetros (milhões)	Classe mloU [%]
0.4	58.3
29.5	56.1
49.0	74.7
0.9	66.1
1.1	68.0
0.9	70.6
1.6	70.7
	 0.4 29.5 49.0 0.9 1.1 0.9

Arquiteturas

Arquiteturas	Parâmetros (milhões)	Classe mloU [%]
ENet	0.4	58.3
SegNet	29.5	56.1
BiSeNet	49.0	74.7
ContextNet	0.9	66.1
Fast S-CNN	1.1	68.0
LedNet	0.9	70.6
ESNet	1.6	70.7

Datasets

Resolução de imagem	N.º de imagens para segmentação	Diferentes cenários
960x720	700	Não
2048x1024	5k	Sim
3384x2710	140k	Sim
1280x720	100k	Sim
1920x1080	25k	Sim
1920x1208	41k	Sim
	de imagem 960x720 2048x1024 3384x2710 1280x720 1920x1080	de imagempara segmentação960x7207002048x10245k3384x2710140k1280x720100k1920x108025k

Datasets

Dataset	Resolução de imagem	N.º de imagens para segmentação	Diferentes cenários
CamVid	960x720	700	Não
CityScapes	2048x1024	5k	Sim
ApolloScape	3384x2710	140k	Sim
BDD100K	1280x720	100k	Sim
Mapillary Vistas	1920x1080	25k	Sim
A2D2	1920x1208	41k	Sim

Imagem panorâmica

Imagens individuais

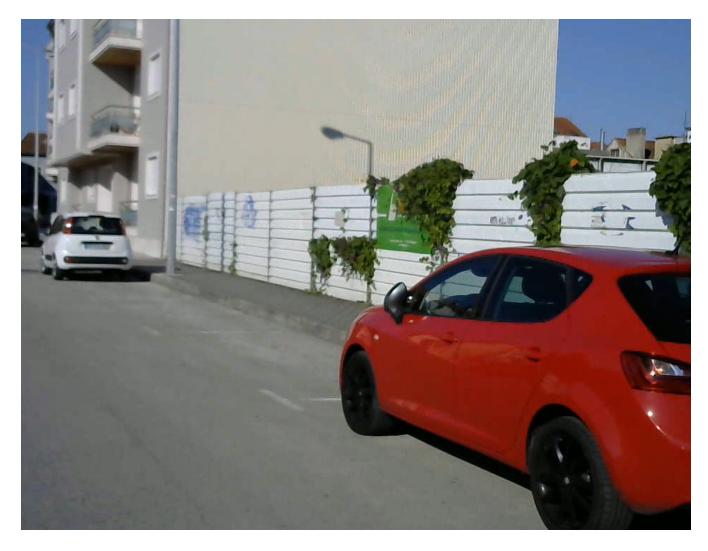


Imagem panorâmica

Deteção de características

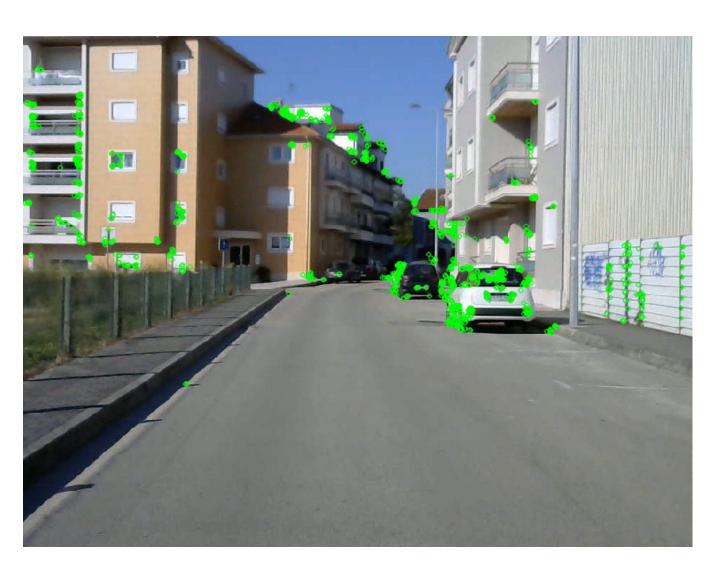


Imagem panorâmica

Imagem panorâmica

Imagem panorâmica

Imagem panorâmica

Imagem panorâmica segmentada

Alternativas para a imagem panorâmica

Máscara dos pontos pertencentes a uma dada classe

Polígono que contém os pontos pertencentes a uma dada classe

Alternativas para a imagem panorâmica

Máscara dos pontos pertencentes a uma dada classe

Alternativas para a imagem panorâmica

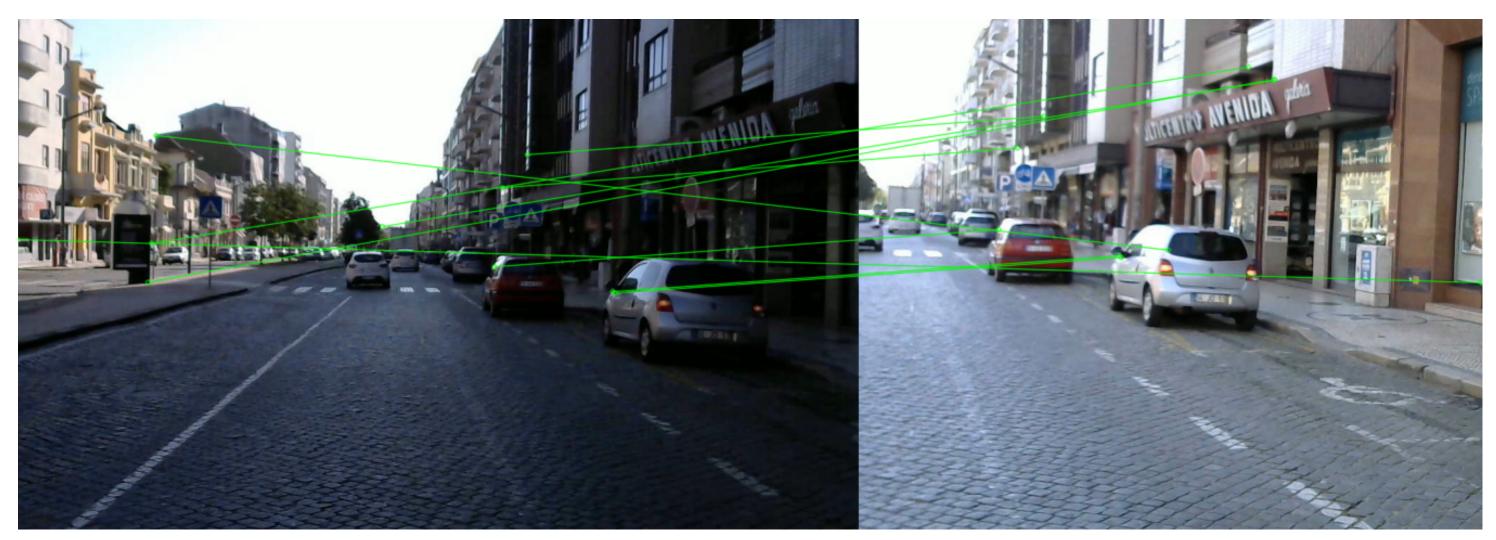
Polígono que contém os pontos pertencentes a uma dada classe

- 1. INTRODUÇÃO
- 2. INFRAESTRUTURA EXPERIMENTAL
- 3. SOLUÇÃO PROPOSTA
- 4. TESTES E RESULTADOS
- 5. CONCLUSÕES E TRABALHO FUTURO

Posicionamento das câmaras e criação da panorâmica

Vídeo das imagens panorâmicas pela cidade de Aveiro

Posicionamento das câmaras e criação da panorâmica



Mau matching de pontos entre imagens

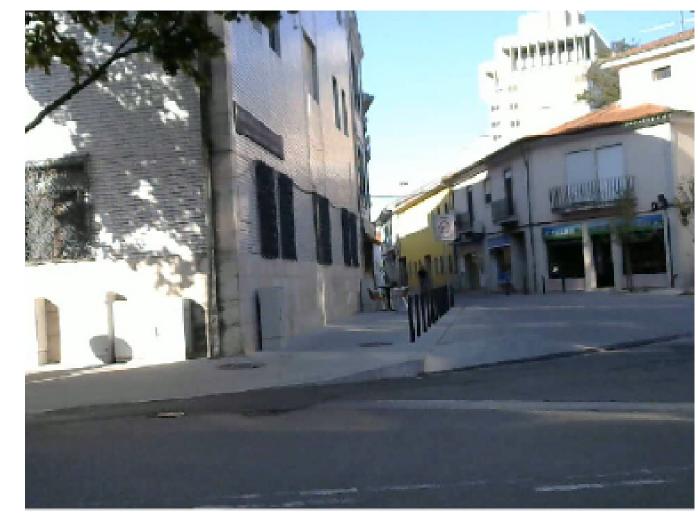
Dataset de Aveiro

Setup das câmaras

Exemplo de rotas percorridas

Dataset de Aveiro

Imagens capturadas



Dataset de Aveiro

Processo de treino

Arquitetura	Dataset de treino	Observações
ContextNet	Cityscapes	
ContextNet	Cityscapes	Knowledge Destilation
ContextNet	Cityscapes	2x
ContextNet	BDD100K	2x
Fast S-CNN	Cityscapes	
SegNet	Cityscapes	
ENet	Cityscapes	

Arquitetura	Dataset de treino	Dataset de validação	mloU [%]	IoU Road [%]	IoU Sidewalk [%]	loU Car [%]
		3				
ContextNet	Cityscapes	Cityscapes	62.42	95.96	74.27	89.32
ContextNet K.D.	Cityscapes	Cityscapes	65.80	96.81	76.63	91.11
ContextNet 2X	Cityscapes	Cityscapes	68.51	97.02	77.96	92.15
ContextNet 2X	BDD100K	BDD100K	51.80	93.32	57.87	87.64
Fast S-CNN	Cityscapes	Cityscapes	65.53	97.05	77.22	91.13
SegNet	Cityscapes	Cityscapes	63.15	94.99	79.62	92.95
ENet	Cityscapes	Cityscapes	56.40	95.06	69.73	87.44

Arquitetura	Dataset de treino	Dataset de validação	mloU [%]	IoU Road [%]	IoU Sidewalk [%]	IoU Car [%]
ContextNet	Cityscapes	Cityscapes	62.42	95.96	74.27	89.32
ContextNet K.D.	Cityscapes	Cityscapes	65.80	96.81	76.63	91.11
ContextNet 2X	Cityscapes	Cityscapes	68.51	97.02	77.96	92.15
ContextNet 2X	BDD100K	BDD100K	51.80	93.32	57.87	87.64
Fast S-CNN	Cityscapes	Cityscapes	65.53	97.05	77.22	91.13
SegNet	Cityscapes	Cityscapes	63.15	94.99	79.62	92.95
ENet	Cityscapes	Cityscapes	56.40	95.06	69.73	87.44

Arquitetura	Dataset de treino	Dataset de validação	mloU [%]	IoU Road [%]	IoU Sidewalk [%]	IoU Car [%]
ContextNet	Cityscapes	Aveiro	77.91	89.57	55.13	89.20
ContextNet K.D.	Cityscapes	Aveiro	79.20	90.84	54.47	92.30
ContextNet 2X	Cityscapes	Aveiro	79.98	91.20	56.88	91.87
ContextNet 2X	BDD100K	Aveiro	83.05	92.22	62.75	94.18
Fast S-CNN	Cityscapes	Aveiro	77.52	89.89	54.67	88.01
SegNet	Cityscapes	Aveiro	72.03	82.62	48.73	84.74
ENet	Cityscapes	Aveiro	71.17	85.59	48.05	79.87

Arquitetura	Dataset de treino	Dataset de validação	mloU [%]	IoU Road [%]	IoU Sidewalk [%]	loU Car [%]
ContextNet	Cityscapes	Aveiro	77.91	89.57	55.13	89.20
ContextNet K.D.	•	Aveiro	79.20	90.84	54.47	92.30
ContextNet 2X	Cityscapes	Aveiro	79.98	91.20	56.88	91.87
ContextNet 2X	BDD100K	Aveiro	83.05	92.22	62.75	94.18
Fast S-CNN	Cityscapes	Aveiro	77.52	89.89	54.67	88.01
SegNet	Cityscapes	Aveiro	72.03	82.62	48.73	84.74
ENet	Cityscapes	Aveiro	71.17	85.59	48.05	79.87

Arquitetura	Dataset de treino	Dataset de validação	mloU [%]	IoU Road [%]	IoU Sidewalk [%]	loU Car [%]
ContextNet	Cityscapes	Aveiro	77.91	89.57	55.13	89.20
ContextNet K.D.	Cityscapes	Aveiro	79.20	90.84	54.47	92.30
ContextNet 2X	Cityscapes	Aveiro	79.98	91.20	56.88	91.87
ContextNet 2X	BDD100K	Aveiro	83.05	92.22	62.75	94.18
Fast S-CNN	Cityscapes	Aveiro	77.52	89.89	54.67	88.01
SegNet	Cityscapes	Aveiro	72.03	82.62	48.73	84.74
ENet	Cityscapes	Aveiro	71.17	85.59	48.05	79.87

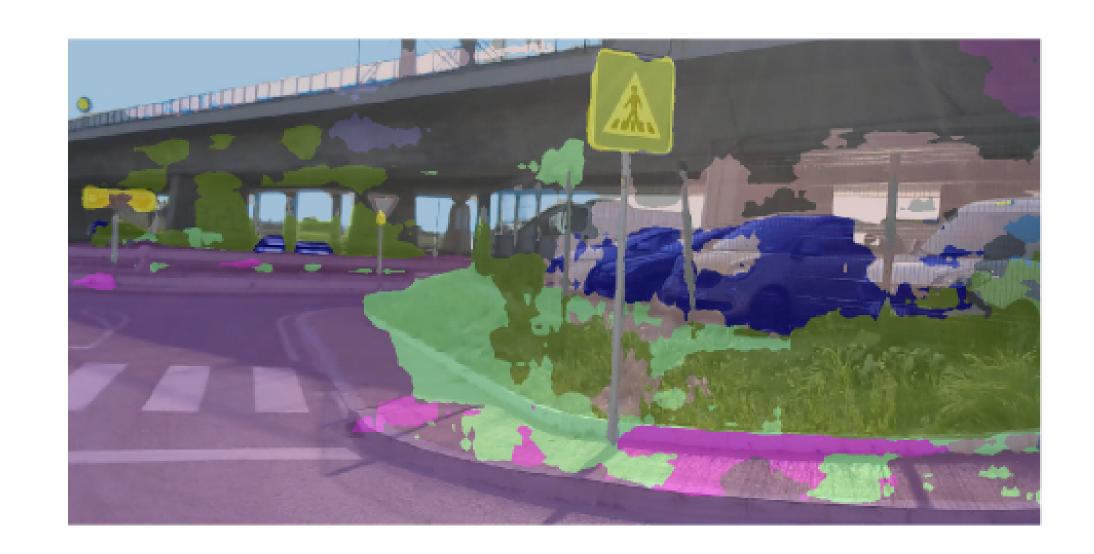
Modelo treinado com o CityScapes

Modelo treinado com o BDD100K

Modelo treinado com o CityScapes

Modelo treinado com o BDD100K

Resultados de segmentação com o modelo treinado no BDD100K



Resultados de segmentação com o modelo treinado no BDD100K

Perfomance dos modelos

Arquitetura	FPS para 2048x1024 px	FPS para 1024x512 px	FPS para 640x480 px
ContextNet	124.00	221.75	223.39
ContextNet 2X	59.30	205.88	218.42
Fast S-CNN	140.60	245.23	248.68
SegNet	6.87	27.22	43.53
ENet	28.11	71.73	78.67

Perfomance dos modelos

Arquitetura	FPS para 2048x1024 px	FPS para 1024x512 px	FPS para 640x480 px
	2040ΧΙΟ24 ΡΧ		040x400 px
ContextNet	124.00	221.75	223.39
ContextNet 2X	59.30	205.88	218.42
Fast S-CNN	140.60	245.23	248.68
SegNet	6.87	27.22	43.53
ENet	28.11	71.73	78.67

Método de criação da panorâmica	Tempo [s]
Imagem panorâmica	1.80
Segmentada com argmax	31.05
Panorâmica segmentada	2.23
Panorâmica através de imagens segmentadas	2.74
Máscara panorâmica com pontos	1.13
Máscara panorâmica com polígono	0.96
Máscara panorâmica com linhas do polígono	1.14

Método de criação da panorâmica	Tempo [s]
Imagem panorâmica	1.80
Segmentada com argmax	31.05
Panorâmica segmentada	2.23
Panorâmica através de imagens segmentadas	2.74
Máscara panorâmica com pontos	1.13
Máscara panorâmica com polígono	0.96
Máscara panorâmica com linhas do polígono	1.14

Imagem panorâmica

Imagem panorâmica segmentada com argmax

Imagem panorâmica segmentada

Imagem panorâmica segmentada através de imagens individuais

Máscara panorâmica da estrada com pontos

Máscara panorâmica da estrada com polígono

Testes no ATLASCAR2

Setup montado no ATLASCAR2

Testes no ATLASCAR2

Testes no ATLASCAR2

- 1. INTRODUÇÃO
- 2. INFRAESTRUTURA EXPERIMENTAL
- 3. SOLUÇÃO PROPOSTA
- 4. TESTES E RESULTADOS
- 5. CONCLUSÕES E TRABALHO FUTURO

Conclusões

Bons resultados na criação da imagem panorâmica segmentada

Conclusões

Bons resultados na criação da imagem panorâmica segmentada

Seleção de modelos capazes de fazer a segmentação em tempo real

Conclusões

Bons resultados na criação da imagem panorâmica segmentada

Seleção de modelos capazes de fazer a segmentação em tempo real

Alternativas para criação da imagem panorâmica apresentadas com boa performance, e que podem ser utilizadas para planeamento da navegação

Trabalho futuro

Necessidade de melhorias na criação da imagem panorâmica, de modo a que se consiga obtê-la em tempo real

Trabalho futuro

Necessidade de melhorias na criação da imagem panorâmica, de modo a que se consiga obtê-la em tempo real

Implementação dos modelos treinados no Jetson AGX Xavier

Trabalho futuro

Necessidade de melhorias na criação da imagem panorâmica, de modo a que se consiga obtê-la em tempo real

Implementação dos modelos treinados no Jetson AGX Xavier

Realizar o treino de modelos com datasets maiores e explorar o campo da panoptic segmentation

Trabalho futuro

Necessidade de melhorias na criação da imagem panorâmica, de modo a que se consiga obtê-la em tempo real

Implementação dos modelos treinados no Jetson AGX Xavier

Realizar o treino de modelos com datasets maiores e explorar o campo da panoptic segmentation

Refinar alternativas para criação da imagem panorâmica apresentadas

Obrigado.