
Universidade de Aveiro Departamento de Engenharia Mecânica
2020

Rúben Daniel Ferreira
da Costa

Detection and classification of road and objects in
panoramic images on board the ATLASCAR2 using
Deep Learning

Deteção e classificação de estrada e objetos em imagens
panorâmicas a bordo do ATLASCAR2 usando redes com
Deep Learning





Universidade de Aveiro Departamento de Engenharia Mecânica
2020

Rúben Daniel Ferreira
da Costa

Detection and classification of road and objects in
panoramic images on board the ATLASCAR2 using
Deep Learning

Deteção e classificação de estrada e objetos em imagens
panorâmicas a bordo do ATLASCAR2 usando redes com
Deep Learning

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia
Mecânica, realizada sob orientação cient́ıfica de V́ıtor Manuel Ferreira dos
Santos, Professor Associado com Agregação do Departamento de Engen-
haria Mecânica da Universidade de Aveiro, e de Miguel Armando Riem de
Oliveira, Professor Auxiliar do Departamento de Engenharia Mecânica da
Universidade de Aveiro.





o júri / the jury

presidente / president Prof. Doutor Marco Paulo Soares dos Santos
Professor Auxiliar Convidado da Universidade de Aveiro

vogais / committee Doutor Paulo Jorge Sequeira Gonçalves
Professor Coordenador do Instituto Politécnico de Castelo Branco

Prof. Doutor V́ıtor Manuel Ferreira dos Santos
Professor Associado com Agregação da Universidade de Aveiro (orientador)





agradecimentos /
acknowledgements

Em primeiro lugar, gostaria de agradecer ao professor V́ıtor Santos por me
ter orientado durante este semestre, transmitindo sempre confiança e inter-
esse pelo trabalho desenvolvido, e ao professor Miguel Riem pelo esṕırito
cŕıtico transmitido.
Um agradecimento especial aos meus pais por todo o apoio e motivação
dados ao longo do meu percurso académico e à Margarida pela confiança,
incentivo e também pela paciência demonstrada durante todos estes anos.
Gostaria de agradecer também aos membros do LAR, sobretudo ao Bernardo
e ao Tiago pela ajuda fundamental, conhecimentos transmitidos e disponi-
bilidade demonstrada ao longo da dissertação, ao Diogo pelas conversas e
paciência durante os testes no ATLASCAR2, ao Rui pelas dúvidas tiradas e
ao Engenheiro Rui Heitor por se mostrar sempre prestável a ajudar.
Por fim, mas não menos importante, um agradecimento ao Limas e ao
Rui por todas as aventuras durante estes 5 anos, à Lurdes pela amizade e
sessões de estudo, ao Padrinho por aceitar todos desafios e ao Pedro pelo
rigor incutido.





keywords Autonomous Driving; Deep Learning; Panoramic Images; Image Segmenta-
tion; Road and Object Detection.

abstract The field of autonomous driving has been increasingly explored and the
future of transport partly depends on the use of this type of vehicle. For an
autonomous car to navigate on the public road, it must be able to detect
everything around it, ensuring that the actions taken do not compromise
the safety of any person. Within the Atlas project, this dissertation aims to
create a model that allows the detection of road and objects in panoramic
images, thus increasing the ATLASCAR2 field of view. In view of this
need, a system was developed for the creation of panoramic images through
images acquired by the cameras mounted on the car and, to make the
detection of the road and other objects, deep learning was used to train
the models in order to ensure great accuracy and detail in detection. This
work presents the results obtained with the trained models, presenting a
comparison between the use of different architectures and datasets. In
addition, an evaluation of the capacity of these models was also performed
in the city of Aveiro.





palavras-chave Condução Autónoma; Deep Learning; Imagens Panorâmicas; Segmentação
de Imagem; Deteção de Estrada e Objetos.

resumo A área da condução autónoma tem sido cada vez mais explorada e o fu-
turo dos transportes passa, em parte, pela utilização deste tipo de véıculos.
Para conseguir navegar na via pública, um carro autónomo deve ser capaz
de detetar tudo o que o rodeia, garantindo que as ações tomadas não põem
em causa a segurança de ninguém. No âmbito do projeto Atlas, esta dis-
sertação prevê a criação de um modelo que permita a deteção de estrada e
objetos em imagens panorâmicas, aumentando assim o campo de visão do
ATLASCAR2. Tendo em vista esta necessidade, foi desenvolvido um sis-
tema para a criação de imagens panorâmicas através de imagens adquiridas
pelas câmaras montadas no carro, e para fazer a deteção da estrada e de
outros objetos, recorreu-se a ”deep learning” para treinar os modelos, de
forma a garantir grande precisão e detalhe na deteção. Neste trabalho são
apresentados os resultados obtidos com os modelos treinados, apresentando
uma comparação entre a utilização de diferentes arquiteturas e ”datasets”.
Para além disso, também foi realizada uma avaliação da capacidade destes
modelos na cidade de Aveiro.





Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Atlas Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work and State of the Art 5

2.1 Classic Object Segmentation and Detection . . . . . . . . . . . . . . . . . 5

2.2 General concepts of Deep Learning . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Activation functions . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.3 Loss functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.5 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . 13

2.3 Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Semantic and Instance Segmentation . . . . . . . . . . . . . . . . . 14

2.3.2 Architectures for image segmentation . . . . . . . . . . . . . . . . 15

2.3.3 Datasets for Image Segmentation . . . . . . . . . . . . . . . . . . . 20

2.4 Related Work Developed at LAR . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Related Work Developed in Similar Projects . . . . . . . . . . . . . . . . . 22

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Experimental infrastructure 27

3.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Logitech C270 HD Webcam . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2 LAR Workstation . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.3 Jetson AGX Xavier Developer Kit . . . . . . . . . . . . . . . . . . 28

3.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 ROS - Robot Operating System . . . . . . . . . . . . . . . . . . . 28

3.2.2 JupyterLab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.3 Pytorch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.4 OpenCV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.5 Kornia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.6 Solidworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

i



4 Proposed solution 31
4.1 Solution Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Camera stands and setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Image Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4 Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5 Data Combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Experiments and Results 45
5.1 Panoramic tests and setup positioning . . . . . . . . . . . . . . . . . . . . 45
5.2 Data Gathering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 Training Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4 Performance and Accuracy Evaluation . . . . . . . . . . . . . . . . . . . . 49

5.4.1 Accuracy Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4.2 Accuracy Aveiro Dataset . . . . . . . . . . . . . . . . . . . . . . . 51
5.4.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5 Panoramic Segmentation Evaluation . . . . . . . . . . . . . . . . . . . . . 55
5.6 Real time experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Conclusions and Future Work 61
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

References 62

A Inference Instructions on Jetson AGX Xavier 69
A.1 Packages and preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.1.1 Camera profile calibration . . . . . . . . . . . . . . . . . . . . . . . 69
A.2 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

B Camera Support 71

ii



List of Tables

2.1 Architectures comparision. *validation set of PASCAL VOC 2011 . . . . . 20
2.2 Workstation Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Workstation Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 Results obtained by the models trained in their validation sets. Con-
textNet 2x architecture contains two times the parameters of the standard. 50

5.2 Aveiro Dataset comparision result. . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Performance comparison between models. The values of the frames per

second obtained in three image sizes by the models are presented. Models
with the same architecture were omitted since their performance is similar. 54

5.4 Performance comparison in the creation of the segmented panoramic image. 55

iii



.

Intentionally blank page.



List of Figures

1.1 ATLASCAR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 ATLASCAR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Perceptron model [13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Graphical representation of Logistic Sigmoid function. . . . . . . . . . . . 7

2.3 Graphical representation of Hyperbolic Tangent function. . . . . . . . . . 7

2.4 Graphical representations of different ReLU functions. . . . . . . . . . . . 8

2.5 Graphical representations of Swish function. . . . . . . . . . . . . . . . . . 9

2.6 Comparision between convergence of Gradient Descent and Stochastic
Gradient Descent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.7 Influence of epochs on training process. The dots represent the values to
which an approximation is intended, while the blue line corresponds to
the model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.8 Influence of learning rate on training process. The blue line represents
the function to be minimized, while the arrows represent the steps taken
at each iteration during the training process. . . . . . . . . . . . . . . . . 12

2.9 Representation of the intersection over union formula. . . . . . . . . . . . 13

2.10 Application of a filter in a convolutional layer. . . . . . . . . . . . . . . . . 14

2.11 Comparison between different types of segmentation in an image [20]. . . 15

2.12 Representation of the fully convolutional network architecture [21]. . . . . 16

2.13 Illustration of the encoder-decoder architecture of SegNet [22]. . . . . . . 16

2.14 Representation of ENet initial block at the left image and its bottleneck
module at the right [23]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.15 Bilateral Segmentation Network Architecture representation [25]. . . . . . 18

2.16 Illustration of the ContextNet architecture [26]. . . . . . . . . . . . . . . . 18

2.17 Overview of Fast S-CNN architecture [27]. . . . . . . . . . . . . . . . . . . 19

2.18 Representation of the asymmetric encoder-decoder architecture of LED-
Net [28]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.19 ESNet architecture overview [29]. . . . . . . . . . . . . . . . . . . . . . . . 20

2.20 Combination of classic techniques and modern approaches to road detec-
tion [37]. The upper left image is relative to the application of a classic
method while the one on the right is the result of applying a model that
uses Deep Learning. The lower left image shows the combination of road
detection using the two methods and the right image shows the confidence
map resulting from the combination of the two methods. . . . . . . . . . . 23

2.21 Illustration of the creation of a synthetic dataset by stitching individual
images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

v



2.22 Results of the segmentation of panoramic images presented in [45]. The
first picture is a raw panoramic annular image, the middle one is the
unfolded panoramic image and the last one is a segmentation map. . . . . 24

2.23 Panoramic image segmentation performed in [46]. . . . . . . . . . . . . . . 25

3.1 Logitech C270 HD Webcam. . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 LAR Workstation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 NVIDIA Jetson AGX Xavier. . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 JupyterLab user interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Flowchart of the proposed solution. In the left branch the raw images of
each camera are segmented and published in ROS topics. Later, these
topics are subscribed by the panoramic creation algorithm, which applies
the transformations to the segmented images, originating the segmented
panoramic image. In the other branch the process is done in reverse, where
initially the panoramic image is created through the camera images and
then the panoramic image is given as input to the segmentation network. 32

4.2 Computation graph from panoramic image segmentation. . . . . . . . . . 32

4.3 Computation graph of the creation of the panoramic image through seg-
mented individual images. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Camera mounts on the left and assembly with the camera on the right. . 33

4.5 Study on the positioning of cameras on the ATLASCAR2 roof. The green
rectangle represents the ATLASCAR2 and the triangles represent the field
of view of each camera, using the 60 degrees of Logitech C270. The left
image represents a more central positioning of the cameras, while the
right image represents the positioning of the cameras at the edges of the
support positioned on the ATLASCAR2 roof. . . . . . . . . . . . . . . . . 34

4.6 Cameras support on the left and assembly with Jetson AGX Xavier on
the right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.7 Jetson AGX Xavier and cameras setup in ATLASCAR2. A suction stand
was used to hold the Jetson AGX Xavier setup with the cameras. This
was placed on the dashboard of the car and a small sponge was used on
the top to prevent movement during the images acquisition. . . . . . . . . 35

4.8 Individual images before and after segmentation. . . . . . . . . . . . . . . 37

4.9 The first image shows the panoramic created with the images from the
three cameras, the second image is the panoramic segmentation and the
last one is the mask for the road class. . . . . . . . . . . . . . . . . . . . . 38

4.10 Flowchart of panoramic image creation. Despite the alternatives for cre-
ating the panoramic image, the stage of extracting the features of the
images needs to have raw images as input, whether to create only the
panoramic image or the road mask present in it. . . . . . . . . . . . . . . 39

4.11 Feature matching between images. . . . . . . . . . . . . . . . . . . . . . . 40

4.12 The first two images concern the generation of the polygon that represents
the road class, where the first one represents its contours and the second
one its filling. The last image is the mask created with the coordinates of
the road points extracted from the individual images. . . . . . . . . . . . 43

vi



5.1 Frame of the camera positioning test video. The overlap of the cameras
is too large since the side images are slightly overlapped. . . . . . . . . . . 45

5.2 Poor detection of key points due to discrepancy in brightness intensity
between the two images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Positioning of cameras for data gathering. . . . . . . . . . . . . . . . . . . 47
5.4 Routes taken during image acquisition for the creation of the validation

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.5 Some examples of images selected for the validation set on the left and

the respective labels created in LabelBox on the right. . . . . . . . . . . . 49
5.6 Comparison of segmented images with models trained in CityScapes dataset

and Berkeley Deep Drive dataset. In general, the architecture trained in
the larger dataset achieved better results. . . . . . . . . . . . . . . . . . . 52

5.7 Example of poor model segmentation. In this case the model detects part
of the sidewalk and the wall at the intersection as road or vegetation. In
addition, it is noticeable that the model also fails to do the segmentation
of the fence and the cars correctly. . . . . . . . . . . . . . . . . . . . . . . 53

5.8 This figure presentes two images of roads that are similar to a sidewalk.
In the left image the model correctly identifies a large part of the road,
however in the second case it assumes a driving zone as a ride, although
it is similar to the one in the previous image. . . . . . . . . . . . . . . . . 53

5.9 Example of poor detection of the sidewalk. In this case, the model detects
a part of the sidewalk correctly, however it does not detect the continua-
tion of that sidewalk after the pole. This could lead to a collision, since
the car could assume that it should switch to the lane further to the right. 54

5.10 Segmented panoramic image with argmax. . . . . . . . . . . . . . . . . . . 56
5.11 Segmented panoramic image. On the left is the segmented image gen-

erated from the panoramic image segmentation and on the right is the
image created by combining the individual segmented images. . . . . . . . 56

5.12 The image on the left shows the creation of the panoramic road mask
through the points of this class, and on the right the polygon that best
represents it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.13 Tests performed on board ATLASCAR2. The first image is relative to
the panoramic created by merging the segmented images and the second
image is the result of the segmentation of the panoramic image. . . . . . . 58

vii



.

Intentionally blank page.



Listings

4.1 Launch file for the three cameras . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Image subscription example . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Function to calculate the transformation matrices . . . . . . . . . . . . . . 39
4.4 Feature detector function . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5 Feauture matching function . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.6 Stitching function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.7 Function to determine the coordinates of points in a particular class. . . . 42
4.8 Part of the function that applies the transformations to the points of the

polygons or of the masks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

ix



.

Intentionally blank page.



Chapter 1

Introduction

1.1 Motivation

Nowadays, more than 90% of accidents in the European Union are caused by human
error [1] and a large part of the population spends more than 20 hours in road conges-
tions each year [2]. In this context, the development of the field of autonomous driving
(AD) is essential to minimize road accidents, increase productivity, reduce congestion
and, consequently, carbon emissions. To achieve all these objectives, vehicles must be
equipped with a diverse set of components that allow them to perceive, detect and make
decisions, taking into account what is happening in their environment.

While for persons their side and rear mirrors help to increase the field of view, in
a stand-alone vehicle it is necessary to ”replace” these with cameras in order to have a
visual perception of all the space around it. In addition, all images must be processed
in real time, so that the vehicle can travel without compromising anyone’s safety. At
the moment, there are only partially autonomous vehicles since the human being has to
supervise all the actions the car takes in order to ensure its own safety.

1.2 The Atlas Project

The study of this dissertation is part of the Atlas project. This project was created by
the Group of Automation and Robotics at the Department of Mechanical Engineering of
the University of Aveiro [3], and aims to develop a system that allows the autonomous
driving of a car on the road. The project started with several participations in the
National Robotics Festival, for which several autonomous robots were developed that
earned several victories in the competition.

After the knowledge and success achieved, the Atlas project decided to start the
development of ATLASCAR1, shown in figure 1.1, by equipping a Ford Escort with
several sensors and making modifications to its hardware, so that it could explore the
environment around it.

After some years of research and development of new sensory systems and algorithms,
the Atlas project replaced the ATLASCAR1 with an electric vehicle, a Mitsubishi i-Miev,
calling it the ATLASCAR2. In figure 1.2 it is possible to see the vehicle with several
sensors mounted such as LIDAR sensors, cameras and GPS.

1



2 1.Introduction

Figure 1.1: ATLASCAR1

Figure 1.2: ATLASCAR2

1.3 Problem Description

With the development of technology, new techniques of road and object detection have
been used, and one of the main methodologies has been the application of Deep Learning
models. In previous years, systems capable of detecting objects and people using these
techniques have been developed within the Atlas project, as well as various systems for
detecting navigable limits using classic image processing techniques or processing data
collected by LIDAR sensors.

Despite all the work that has already been done, there is still a need to expand the
field of view of the ATLASCAR2, making detections on the entire periphery of the car.
A ring of cameras is being developed to mount on the roof of the ATLASCAR2, in order
to get a panoramic view of the environment, and through this hardware it is possible
to make detections on the entire periphery of the car. With panoramic images it is
possible to better define the actions that the car can perform, especially in situations

Rúben Daniel Ferreira da Costa Master Degree



1.Introduction 3

of intersections, where a front camera cannot see the road on the sides or obstacles
coming from them. Another advantage of the panoramic images is the possibility of
following obstacles in motion around the car. Accompanying the need to expand the
field of view, it is also necessary to create a more robust system for detecting road and
obstacles, using models with Deep Learning, being the main challenge of this dissertation
the segmentation of panoramic images.

1.4 Objectives

As mentioned in the previous section, one of the major needs of the project is to increase
the field of view of ATLASCAR2. Thus, the main objective of this dissertation is the
creation of a model that allows the identification of road and objects in panoramic
images. To achieve this purpose, the following intermediate objectives will have to be
achieved:

• Make the acquisition of panoramic images from the camera ring;

• Select and propose architectures and datasets for the network training, road and
targets detection and segmentation in real time;

• Select the suited hardware and software required to run the model;

• Implement the model and test it in a real case.

1.5 Document Structure

This document is divided into 6 chapters. This first chapter presents the context of
the problem, its motivation and the main objectives. Chapter 2 describes the state of
the art of this type of technology and some work developed within the Atlas project or
similar projects. The hardware and software used during this dissertation are presented
in chapter 3 and chapter 4 describes the solution developed during the dissertation.
Chapter 5 discusses the results obtained during the experiments. Finally, chapter 6
presents the conclusions and the work that can be developed in the future.

Rúben Daniel Ferreira da Costa Master Degree



.

Intentionally blank page.



Chapter 2

Related Work and State of the
Art

As technology advances, models for road and object detection have made great progress.
This chapter explores the development of these techniques and what is currently the
state of the art in this area. In addition, related work developed at LAR and other
projects considered interesting in this context are presented.

2.1 Classic Object Segmentation and Detection

Before the appearance of deep learning techniques, object and road detection were based
on machine learning algorithms in which an engineer had to select the best features for
the algorithm. For road detection, methods used classic techniques such as Canny filters
and Hough transforms [4] or through the variations of color existing in the road to detect
edges or lane marks [5]. However, there was great difficulty in detecting the road limits in
situations where there were no markings, or where the pavement was not homogeneous.

In object detection, common methods used were Histogram of Oriented Gradient
(HOG) [6], Scale Invariant Features (SIFT) [7] or Haar-Like features, among others.
However, despite the capacity of these methods, they require feature engineering to
obtain good performance and are very focused for a given context.

In 2012, a convolutional neural network architecture was proposed [8] that obtained
better results than the previous techniques in the ImageNet LSVRC-2012 contest and
since this date, and with the constant technological evolution, the use of deep networks
has been growing more and more. In the next section some general concepts about this
technology will be presented.

2.2 General concepts of Deep Learning

In recent years, deep learning has become the most widely used technique for computer
vision [9], speech recognition [10] or Natural Language Processing [11] problems. Deep
Networks have already shown great performance in this type of challenges, achieving
better performance with larger amounts of data provided to train the network. Before
showing some applications of this type of networks some general concepts are presented
in the next subsections.

5



6 2.Related Work and State of the Art

2.2.1 Artificial Neural Networks

Neural networks were first developed in the 1950s inspired by the behaviour of the human
brain, since they are able to interpret the context of real world situations in a way that
computers cannot. An artificial neural network is an attempt to simulate the network of
neurons that form a human brain so that the computer is able to learn things and make
decisions in a similar way to humans [12].

Typically, an artificial neural network has many of units called perceptrons. A per-
ceptron receives a set of inputs that are multiplied by weights and then added. After
that, a bias is added to this sum and a net weighted sum is obtained, which is given to
an activation function that then produces an output as shown in figure 2.1. These per-
ceptrons are grouped in several layers, giving rise to a network with multiple layers [12].

Figure 2.1: Perceptron model [13].

The input layer receives a data input, which the network must process or learn about.
From the input unit, the data passes through several hidden layers, where neurons receive
a series of inputs from the previous layer and produce an output for the next one. This
process is repeated until the output layer obtains the result for the input that was given
to the neural network.

2.2.2 Activation functions

As mentioned before, the activation function receives the weighted sum of a neuron and
determines the output from it, usually between 0 and 1 or -1 and 1. There are numerous
activation functions, which can be divided into two large groups: linear and non linear
activation functions. Most neural network models use the non-linear activation function,
since they provide the model with the ability to learn and perform more complex tasks
[14]. Some of the most frequently used activation functions are shown next.

Rúben Daniel Ferreira da Costa Master Degree



2.Related Work and State of the Art 7

Sigmoid function

The logistic sigmoid function is commonly used in neural networks trained by back-
propagation algorithms. One of the advantages of this function is its smoothness and
its range is between 0 and 1. The formula for this function is

σ(x) =
1

1 + exp(−x)
(2.1)

and its curve is represented in figure 2.2.

Figure 2.2: Graphical representation of Logistic Sigmoid function.

Hyperbolic Tangent Function

The hyperbolic tangent function, also known as the tangent transfer function, is similar
to the logistic sigmoidal function. The biggest difference from this one to the previ-
ous one is that it is zero centered and its output values are between -1 and 1, giving
better training performance for multi-layer neural networks [14]. Figure 2.3 shows the
hyperbolic tangent function graphical representation.

Figure 2.3: Graphical representation of Hyperbolic Tangent function.

Rúben Daniel Ferreira da Costa Master Degree



8 2.Related Work and State of the Art

Rectified Linear Unit Function

The rectified linear unit activation function has been the most commonly used for Deep
Neural Networks and it has several variations. The ReLU function is computed as shown
in equation 2.2, and in equation 2.3 is presented the formulation of one of its variations,
the Leaky ReLU.

f(x) =

{
x if x > 0
0 if x ≤ 0

(2.2)

f(x) =

{
x if x > 0
αx if x ≤ 0

(2.3)

The main difference between them is the α parameter, which was introduced as a solution
for gradients not to be zero during training. These functions enable a faster training
process and achieves better performance and generalization than the functions mentioned
previously [14].

Parametric rectified linear was proposed in 2015 [15] , with a similar formulation to
Leaky ReLU, but with this new function it is possible to back-propagate and learn the
most appropriate value for α, allowing an improvement of performance when compared
to previous versions. Figure 2.4 shows the graphical representations of these functions.

Figure 2.4: Graphical representations of different ReLU functions.

Normalized Exponential Function

The Normalized Exponential Function, most known as Softmax function, is commonly
used in the output layers of the deep learning architecture to classify inputs into multiple
categories. This function normalizes the outputs for each trained class between 0 and
1, and divides by their sum, giving the probability of the input value being in a specific
class.

Rúben Daniel Ferreira da Costa Master Degree



2.Related Work and State of the Art 9

Swish function

The Swish function was proposed in 2017 [16], and its formulation is as follows:

f(x) = x · σ(x), (2.4)

where σ(x) in this function is the sigmoid function presented earlier. The authors men-
tion as main advantages its smoothness when compared to ReLU and that it does not
suffer vanishing gradient problems. The authors also reported that Swish performs bet-
ter than ReLU with a similar level of computational efficiency, and in some experiments
the replacement of ReLU with Swish units improved top-1 classification accuracy on
ImageNet. The graphic representation of this function is shown in the figure 2.5

Figure 2.5: Graphical representations of Swish function.

2.2.3 Loss functions

The loss functions quantify the difference between reality and predicted into a single
number, where that number is the error from the network’s predictions [12]. The goal
during training is to find the parameters that minimize the “loss”, turning this process
into an optimization problem. In the following functions i represents the pixels in each
image and N the total number of pixels. The variable c represents each class and the
total number of classes are represented with C. The ŷ represents the ground truth and
y the prediction of the model.

Cross Entropy

The Cross Entropy loss is the most commonly used function for multiclass classifica-
tion. First, this function calculates the loss by making a pixel-wise evaluation of the
predicted probabilities of all classes and then averages over all pixels [17]. This function
is computed as follows:

CE(y, ŷ) = − 1

N

N∑
i=1

C∑
c=1

yci log(ŷci ) (2.5)

Rúben Daniel Ferreira da Costa Master Degree



10 2.Related Work and State of the Art

Balanced Cross Entropy

Since in the cross entropy loss function each pixel has the same weight in the loss
calculation, the balanced cross entropy function adds a weight, wc, depending on the
class frequency in the dataset [17]. With this, problems related to class imbalance are
reduced. The loss function is represented in equation 2.6.

BCE(y, ŷ) = − 1

N

N∑
I=1

C∑
c=1

wcy
c
i log(ŷci ) (2.6)

Soft Dice Loss

The soft dice coefficient loss function is commonly used in segmentation problems and
is formulated as:

SD(y, ŷ) = 1−
C∑
c

[
2
∑N

i y
c
i ŷ
c
i∑N

i y
c
i +

∑N
i ŷ

c
i

]
(2.7)

This function is based on the Dice coefficient, which is a measure of overlap between
two samples, in this case between the prediction and groundtruth [18].

Focal Loss

This function aims to eliminate problems related to class imbalance by introducing a
factor to the cross entropy function as presented in equation 2.8. With this factor, the
function increases the impact of miss-classified examples, focusing more on these cases
during training.

FL(y, ŷ) = − 1

N

N∑
i=1

C∑
c=1

(1− yci )γyci log(ŷci ) (2.8)

Online Hard Example Mining Loss

In Online Hard Example Mining, the examples are scored for their loss. After this,
non-maximum suppression (NMS) serialization is applied, which filters the highest loss
examples and builds a mini-batch with them. Like the focal loss, OHEM focuses more
on these difficult examples and forces the network to train on them, ignoring the easy
examples. In the article [19], the influence of different loss functions on the training of
an image segmentation model was compared, and the model trained with this function
obtained good results in classes such as road, car and sidewalk in Cityscapes Validation
set.

2.2.4 Optimization

In the last subsection some loss functions that allow us to calculate the error between
what the model detected and the actual value are presented. However, to reduce this
error as much as possible, it is necessary to make consecutive improvements in each it-
eration, making the training process an optimization problem. This consists in defining

Rúben Daniel Ferreira da Costa Master Degree



2.Related Work and State of the Art 11

which are the best network parameters that give a prediction closest to the real, minimiz-
ing the value of the loss function. Next are presented some algorithms and parameters
that help optimize the training process.

Gradient Descent

Since loss functions depend on a large number of parameters, it is usual to opt for
iterative methods to train the models. In the Gradient Descent method the cost function
parameters are initialized, and each iteration is updated in the opposite direction to the
gradient since this will ensure the greatest possible decrease in the loss [12].

However, the parameters are only updated at the end of each epoch, i.e., after it go
through the whole training dataset, which increases the convergence time when using
very large datasets.

Stochastic Gradient Descent

The Stochastic Gradient Descent is similar to the previous method but instead of going
through the whole training set to update the parameters, only one data point at a time
is considered, cycling through the training data [12]. This method ends up converging
faster than the previous one however its convergence course tends to be more irregular
as shown in figure 2.6.

Figure 2.6: Comparision between convergence of Gradient Descent and Stochastic Gra-
dient Descent.

Besides the optimization functions, there are several parameters that can be changed
so that the training of the network is better and more efficient. Some of these parameters
are described below.

Epoch

An epoch is when the entire dataset is passed through the neural network [12] and to
train a model it is necessary to do it more than once. If the number of epochs is too low
the model will underfit, not being able to adapt to the training dataset, leading to poor
performance. However, if the number of epochs used for network training is too high,
the model will overfit, since it learns to identify only the data for which it was trained,
and is unable to generalize. A graphical comparison of these situations are shown in
figure 2.7.

Rúben Daniel Ferreira da Costa Master Degree



12 2.Related Work and State of the Art

Figure 2.7: Influence of epochs on training process. The dots represent the values to
which an approximation is intended, while the blue line corresponds to the model.

Learning rate

The learning rate affects how fast a network adjusts parameters during the training
process in order to minimize the loss [12]. A high learning rate decreases the time of the
training process but may not converge because the variations the parameters suffer are
too large, while a learning rate that is too low should converge to a minimum but takes
too long to achieve it, being a computationally heavier process. An illustration of these
situations is shown in figure 2.8.

Figure 2.8: Influence of learning rate on training process. The blue line represents the
function to be minimized, while the arrows represent the steps taken at each iteration
during the training process.

In addition, it is also common to use learning rate schedulers in order to improve
performance and reduce the training time. Usually higher learning rates are used at the
beginning of the training process, so that the model learns the weights, and then the
learning rate is progressively reduced in order to fine-tune them.

Weight Decay

To solve complex problems networks with a large number of parameters are needed. In
order to have models with a lot of parameters but trying to decrease complexity, weight
decay was introduced.

To penalize the complexity of the model, weight decay is multiplied by the sum of
the squares of all the parameters of the network. This prevents the weights from growing
too much, unless it is really necessary to do so.

Rúben Daniel Ferreira da Costa Master Degree



2.Related Work and State of the Art 13

The aim of the optimization process is to decrease the difference between the reality
and what was detected. To quantify the capacity of a model on a given dataset it is
often used the mean Intersection over Union (mIoU) metric that is presented next

Intersection over Union

Intersect over Union (IoU) is a metric that allows us to assess how similar model pre-
diction and ground truth are. This metric is the ratio between the intersection area of
the prediction and the ground truth and the area of their union. To evaluate the quality
of the models the mean intersection over union (mIoU) is used, which is calculated by
averaging the IoUs obtained in the classes used. In figure 2.9 this metric is presented
more clearly.

Figure 2.9: Representation of the intersection over union formula.

2.2.5 Convolutional Neural Networks

The Convolutional Neural Networks (CNNs) are powering major advances in computer
vision, demonstrating great ability to solve problems like object recognition and image
classification, being also able to solve problems related to natural language processing
and at analyzing sound. This type of neural networks appeared in the 90s, inspired by
the visual cortex in animals. With CNNs it is possible to organize the neurons in three
dimensions, being them the width and height of the image, and the third dimension the
depth of the image, which in this case is associated to the RGB channels of the image [12].
A general architecture of a convolutional neural network has 3 major groups, such as an
input layer, feature extraction layers and classification layers. The input layer receives
the raw input data of the image, the feature extraction layers use convolutional layers
followed by pooling layers in order to find the features of the images and the classification
layers receive these higher-order features and convert them into probabilities of each
class.

Convolutional Layers

Convolutional layers are the core of CNNs since the convolution operation extracts the
features from the images. A convolutional layer receives an input, applies a convolution

Rúben Daniel Ferreira da Costa Master Degree



14 2.Related Work and State of the Art

kernel (or filter) and returns a feature map (or activation map) as output. The applica-
tion of the kernel is made through the width and height of the input volume in a sliding
manner and an activation map unit is activated when the filter detects a feature [12].
Figure 2.10 shows some steps of this process.

Figure 2.10: Application of a filter in a convolutional layer.

Pooling Layers

Generally, pooling layers are used after convolutional layers and are used to reduce
the dimensions of activation maps. These layers apply a filter, usually 2x2 without
overlapping, and store the largest or average of the 4 values multiplied by the filter,
depending on whether it is a max-pooling layer or an average-pooling layer, respectively
[12].

Fully Connected Layers

Fully Connected Layers are used to calculate class scores or probability at the end of a
Convolution Neural Network. These layers take the results of the convolution and pooling
process and convert it into a single probability vector, where each value is relative to a
class [12].

2.3 Image Segmentation

Since one of the objectives of this dissertation is to create a model capable of doing the
segmentation of road and objects in real time, in this subsection we will present this
concept and some architectures and datasets to do it.

2.3.1 Semantic and Instance Segmentation

Image segmentation consists of identifying and classifying every pixel in the image and
associating it to a given class. However, there are two distinct types of segmentation,
semantic segmentation and instance segmentation. The first is to associate all pixels in
the image to a category, representing all objects in the same category by the same color,
while in instance segmentation the model separates objects within the same category,
and there may be pixels that are not associated with any class.

When analyzing figure 2.11 it is easier to understand the differences between these
two types of segmentation, realizing that the second method tends to identify things,

Rúben Daniel Ferreira da Costa Master Degree



2.Related Work and State of the Art 15

objects that it can detect and delimit, while the semantic segmentation studies the stuff,
being this amorphous regions or uncountable regions such as sky, grass and road.

In 2019, Kirilov et al. [20] proposed a new task named panoptic segmentation that
unites the two types of segmentation mentioned above and also presented a simple al-
gorithm based on the combination of an instance model and a semantic segmentation
model as the first approach for this type of task.

(a) Normal image (b) Semantic segmentation

(c) Instance segmentation (d) Panoptic segmentation

Figure 2.11: Comparison between different types of segmentation in an image [20].

2.3.2 Architectures for image segmentation

Fully Convolutional Network

The Fully Convolutional Network proposed by Long [21] was one of the first works for
semantic segmentation using deep learning. This architecture is represented in figure
2.12 and is composed only of convolutional layers and is able to receive an image with
an arbitrary size and return the correspondingly-sized segmentation map. The authors’
architecture combines deeper layer weekly information with more superficial layer ap-
pearance information, thus achieving state-of-the-art segmentation performance when

Rúben Daniel Ferreira da Costa Master Degree



16 2.Related Work and State of the Art

the model was tested on PASCAL VOC, NYUDv2, and SIFT Flow.

Figure 2.12: Representation of the fully convolutional network architecture [21].

SegNet

Segnet’s architecture [22] consists of an encoder-decoder network followed by a pixel
classification layer, as shown in figure 2.13. The encoder network is similar to the 13
convolution layers in VGG16 network and is responsible for the extraction of the features.
On other hand, the decoder part convert the feature maps from the encoder into feature
maps with the same size as the input. In this task, the network uses the pooling indices
computed in the max-pooling layers of the correspondent encoder so it doesn’t need
to learn to upsample. This network can be trained from end to end, since it has few
parameters.

Figure 2.13: Illustration of the encoder-decoder architecture of SegNet [22].

ENet

Efficient Neural Network, as mentioned in the article [23], is based on ResNet architecture
[24] and is composed of a main branch and several branches that separate from it,
which later merge again through the addition of elements. These branches are called
bottlenecks and consist of three convolutional layers, where in the first one a decrease
in size is made, in the second one a main convolution is applied and in the third one an

Rúben Daniel Ferreira da Costa Master Degree



2.Related Work and State of the Art 17

increase in size is made. Between all the convolutions Batch Normalization and PReLU
are positioned and for the regularizer is used Spatial Dropout.

When the bottleneck is downsampling, a max pooling layer is added to the main
branch. The first 1x1 projection is replaced with a non-overlapping 2 x 2 convolution
and the activations are zero padded to match the number of maps of features. In the
decoder, the max pooling is changed to a max unpooling layer and a spatial convolution
without bias is performed instead of padding. The initial block of this network and
the bootleneck are presented in figure 2.14. This network achieved better frame rates
when compared with SegNet under the same conditions and has a similar or better
performance in terms of accuracy.

(a) (b)

Figure 2.14: Representation of ENet initial block at the left image and its bottleneck
module at the right [23].

BiSeNet

Bilateral Segmentation Network was proposed by Yu [25] and has two main parts, a
Spatial Path (SP) and a Context Path (CP). The first one consists of three convolution
layers followed by batch normalization and ReLU and is responsible for preserving spatial
information and generate high resolution features. The latter uses a lightweight model
in order to obtain a large receptive field and global average pooling to provide global
context information to the receptive field.

As these two parts complement each other, since the first one detects low-level fea-
tures and the second one high-level features, the authors used a Feature Fusion Module
in order to combine the features that both parts detect. An overview of this network
is presented in figure 2.15 and obtained a result of 68.4% mIoU in the CityScapes test
data set at 105 FPS surpassing SegNet and ENet at both points.

ContextNet

Similarly to BiSeNet, ContextNet [26] combines a deep network to obtain a global context
of the image with a shallow network that captures high level features. The former

Rúben Daniel Ferreira da Costa Master Degree



18 2.Related Work and State of the Art

Figure 2.15: Bilateral Segmentation Network Architecture representation [25].

receive a low resolution input and its structure combines two layers of convolution and
12 bottleneck residual blocks. The latter uses the full resolution image and consists in
four layers, where the first one uses a standard convolution and the others use depth-wise
separable convolutions. The structure of this architecture is illustrated in figure 2.16.

In order not to increase the runtime, the authors decided to use feature addition to
merge the features from both branches. This network achieved better accuracy in class
and category mIoU than SegNet and ENet with a framerate similar to the latter.

Figure 2.16: Illustration of the ContextNet architecture [26].

Fast S-CNN

Fast Semantic Segmentation Network combines ideas from two-branch and encoder-
decoder networks [27]. This network consists of a learning to downsample module,
followed by a global feature extractor and a feature fusion modules and ending with a
classifier, as presented in figure 2.17.

The former first module has three layers, the first being a standard convolution layer
and the the remaining depth-wise separable convolutional layers. The global feature
extractor consists of inverted residual bottleneck blocks followed by a pyramid pooling
module and captures the global context of the image. Feature Fusion Module combines
high level with low level features just by adding them in a similar way to what is done
in ContextNet and the final module has two depth-wise separable convolutions and an

Rúben Daniel Ferreira da Costa Master Degree



2.Related Work and State of the Art 19

standard convolution.

Fast S-CNN achieved 68.0% in class mIoU, which is better than SegNet, ENet and
ContexNet and close to 71.4% of BiSeNet. Relatively to runtime this network outper-
formed all the others.

Figure 2.17: Overview of Fast S-CNN architecture [27].

LEDNet

LedNet is a lightweight network with an asymmetric encoder-decoder architecture with
less than 1 million parameters [28]. The encoder network is based in ResNet network
adding to this one a channel split and shuffle in each residual block to decrease the
computation cost. In order not to increase the complexity of the network, the authors
used an attention pyramid network(APN) as decoder. An illustration of this architecture
is presented in figure 2.18.

The authors achieved a score of 70.6% mIoU in terms of class and 87.1% in category
mIoU and were able to run the model at 71 FPS. This network is 30x smaller than
SegNet.

Figure 2.18: Representation of the asymmetric encoder-decoder architecture of LEDNet
[28].

ESNet

The Efficient Symmetric Network is a nearly symmetric encoder-decoder network with
around 1.6M parameters [29]. This networks is presented in figure 2.19 and the encoder
of this network contains 3 blocks, where each one consists of a down-sampling unit and
several Factorised Convolution units or Parallel Factorised Convolution Units in the case

Rúben Daniel Ferreira da Costa Master Degree



20 2.Related Work and State of the Art

of the third block. The decoder is similar, consisting of two blocks, identical to the first
two of the encoder, however the down-sampling is replaced by an up-sampling unit.

In terms of segmentation accuracy, this network showed better results than SegNet
and ENet while approaching the frame rate achieved by the latter, even having about 5
times more parameters.

Figure 2.19: ESNet architecture overview [29].

Table 2.1: Architectures comparision. *validation set of PASCAL VOC 2011

Architecture
Parameters
(millions)

Class mIoU (% on
CityScapes Validation Set)

FCN 134.5 56.0*

ENet 0.4 58.3

SegNet 29.5 56.1

BiSeNet 49.0 74.7

ContextNet 0.9 66.1

Fast S-CNN 1.1 68.0

LedNet 0.9 70.6

ESNet 1.6 70.7

2.3.3 Datasets for Image Segmentation

Camvid

CamVid is a dataset for road segmentation that consists of 700 per-pixel labelled images
with a resolution of 960x720 . There are 32 semantic classes but normally only eleven
classes are used such as building, road or car [30] The main disadvantages of this dataset
is that it is too small, the images are low resolution and there is not much variation of
environments and weather conditions.

Rúben Daniel Ferreira da Costa Master Degree



2.Related Work and State of the Art 21

CityScapes

The CityScapes dataset is larger than the previous dataset, with 5000 annotated images
with fine annotations and a resolution of 2048x1024. This data set has 19 classes and
the images were captured in different cities of Germany during different seasons [31].

ApolloScape

The ApolloScape dataset features about 140K pixel-level semantic labelling images col-
lected in 4 regions of China. This dataset also has about 90K images with instance-level
annotations and its images have a resolution of 3384x2710 [32].

Berkeley DeepDrive

Berkeley DeepDrive, as known as BDD100K, is one of the largest datasets with 100k
videos with a resolution of 720p. Similarly to the previous datasets, the images were
recorded through different weather conditions and provides fine-grained pixel level an-
notations for 10k images, where 7K are for the training process, 1K for validation and
2K for testing [33].

Mapillary Vistas

This dataset consists of images from almost all continents with a minimum resolution of
1920×1080. It has 25K images in different conditions, where about 90% of the images
are from urban areas and the rest from highways, rural areas or off-road [34].

Audi Autonomous Driving Dataset

Similar to some of the datasets mentioned above, this dataset contains images collected
in various road scenarios and weather conditions. It was collected in southern German
cities and contains more than 41K of segmented images with a resolution of 1920×1208
pixels, where about 31K come from the front camera of the car and the rest are similarly
distributed to the other cameras present in the car [35].

2.4 Related Work Developed at LAR

ATLASCAR2 is part of a project that has been under development during the last years,
and different types of classifiers have already been developed.

One of them [36] tried to take advantage of networks with Deep Learning and focused
on the detection of pedestrians and cars on the public road. Taking into account the need
to do the classification in real time, the author opted for a SqueezeNet-based architecture,
and compared his model with other detectors such as the SSD and YOLO. The author
made a separate car and pedestrian detection evaluation, and subsequently merged both,
in which the model achieved an average accuracy of 43.2% using the KITTI evaluation
method.

Another of the most recent works [37] has focused on detecting the limits of the
road. Two cameras mounted on the car were used, a multi-camera and multi-algorithm
architecture was developed, and the author created a ROS package to detect road lines,

Rúben Daniel Ferreira da Costa Master Degree



22 2.Related Work and State of the Art

Table 2.2: Workstation Specifications.

Dataset Image resolution
No. images

for segmentation
Different Scenarious

CamVid 960x720 700 No

CityScapes 2048x1024 5k Yes

ApolloScape 3384x2710 140k Yes

BDD100K 1280x720 100k Yes

Mapillary Vistas 1920x1080 25k Yes

A2D2 1920x1208 41k Yes

where the detection of lines is done through the application of a colour threshold and a
Sobel Edge Detector.

In addition, some deep learning models were explored for the detection of road lines
and road segmentation, where very interesting results were obtained, especially concern-
ing the depth of detection of road lines. A combination of classic techniques and modern
approaches explored by the author is presented in figure 2.20.

As mentioned in 2.2.3, the influence of several training parameters on the perfor-
mance of the final model was also studied by members of LAR. Among the experiments
performed, the authors highlighted that changes in datasets, loss functions, optimizers or
the application of other techniques such as data augmentation can have a great impact
on the accuracy of a segmentation model.

2.5 Related Work Developed in Similar Projects

While for a driver rear and side-view mirrors are essential for safer driving, cameras are
the most accurate way to create a visual representation of the environment around a
car. Waymo [38], the company from Google’s autonomous car project, uses in its cars
a series of peripheral cameras and a 360 vision system that allows the vehicle to have
the perception of what is around it by detecting pedestrians and traffic signs up to 500
meters away.

The purpose of this dissertation is to create a system that allows ATLASCAR2 to
perceive everything around it. In order to be able to visualize the environment, it is
intended to take advantage of a ring of cameras that is currently under development,
which will consist of a set of cameras with a field of view of 60 degrees each. As
mentioned in [39], the use of several cameras instead of single front cameras is much
safer for autonomous driving since that, to drive safely, a car needs to be aware of
everything around it. Brown et al. [40] presented a way to create panoramic images
through individual images using Invariant Features. The authors initially extract SIFT
features from all images and calculate which images have most features in common.
After these tasks the RANSAC is used to obtain the homography, and a probabilistic

Rúben Daniel Ferreira da Costa Master Degree



2.Related Work and State of the Art 23

Figure 2.20: Combination of classic techniques and modern approaches to road detection
[37]. The upper left image is relative to the application of a classic method while the
one on the right is the result of applying a model that uses Deep Learning. The lower
left image shows the combination of road detection using the two methods and the right
image shows the confidence map resulting from the combination of the two methods.

model is used to find consistent image matches. A process similar to this was also used
in [41] and in [42] different ways of performing image stitching are discussed. In chapter
4 the system developed for the creation of our panoramic images is presented.

In article [43], a system was created in order to detect the obstacles around the
car using stereo vision. Two Ricoh Theta cameras were used to create a spherical
panoramic image and the authors proposed an obstacle detection algorithm using depth
estimation. However, in this work, the type of obstacles was not differentiated and the
authors pointed out as possible improvements the inclusion of the detection of road
marks, traffic signs and road detection.

In [39], the authors presented the sensor setup that allowed them to acquire data
about driving, the environment around the car and the driving route to the destination.
Through the developed setup, a dataset with 60 hours of driving data was created on
Swiss roads. The Drive360 dataset contains images of the 8 GoPro Hero 5 cameras
positioned on the roof of the car rotated 45º, map data for navigation and driving
manoeuvres captured via the CAN bus. The authors also created their driving model
and made the comparison between single and surround view, with the second method
performing better overall.

It was also studied in [44] the effect of the use of panoramic images in the process
of segmentation on board autonomous cars. For that, a dataset of panoramic images
was created with images generated by computer graphics previously combined as can be
seen in figure 2.21 .The authors found that there was a need to train the model with

Rúben Daniel Ferreira da Costa Master Degree



24 2.Related Work and State of the Art

panoramic images to achieve better results, the images with a 180 degree field of view
having the greatest benefit.

Figure 2.21: Illustration of the creation of a synthetic dataset by stitching individual
images.

A Panoramic Annular Semantic Segmentation framework were presented in [45].
The authors used Mapillary Vistas dataset making small changes in the images so that
the model could generalize to the panoramic images. For validation, the authors used
the Mapillary Vistas Validation set and a panoramic testing set, which was created
by collecting the images with a Panoramic Annular Lens system with about 400 finely
annotated images for 4 classes. For validation, the authors used the Mapillary Vistas
Validation set and a panoramic testing set, which was created by collecting the images
with a Panoramic Annular Lens system[11] with about 400 finely annotated images for 4
classes. In the deployment phase, the panoramic image obtained is unfolded and divided
into several segments that are given as input to the model. The resulting features maps
are put together later in order to obtain a final panorama segmentation map. The
authors studied the influence of the image division on these segments and realised that
smaller classes needed more segments. Some examples of segmentation of the panoramic
images are presented in figure 2.22.

Figure 2.22: Results of the segmentation of panoramic images presented in [45]. The
first picture is a raw panoramic annular image, the middle one is the unfolded panoramic
image and the last one is a segmentation map.

Rúben Daniel Ferreira da Costa Master Degree



2.Related Work and State of the Art 25

Authors in [46] evaluated the influence of data augmentation techniques related to
skew and gamma correction, in order to create a more robust model to light variations
and to the perspectives of the collected images. The authors used images from three
NVIDIA GMSL 100º cameras and generated the panoramic images by stitching the
individual images. ENet architecture was adopted and the models were first trained on
the Cityscapes dataset and then fine-tuned in a dataset created by the authors. The
Gamma correction was most noticeable when the validation dataset was the one created
by the authors as it has more shadows with an improvement of up to 3.5% on mIoU, while
the skew corrections were more relevant to the images collected by the side cameras. An
example of the type of results obtained by the authors can be seen in figure 2.23

Figure 2.23: Panoramic image segmentation performed in [46].

In [47], the authors created a dataset of spherical panoramic images, collected by a
ladybug5, to detect cars, people, lines or traffic signs present on the public road. With
the creation of this dataset, the authors tried to evaluate how some of the main networks
used in the detection of objects performed when trained with the Pano-RSOD, and the
algorithm that obtained the best results was the YOLOv3. After this evaluation, the
authors compared how the training with the created dataset had an influence on the
results obtained and compared the performance of nets trained in other datasets, and
none of them was close to the results obtained with the RSOD-textit.

2.6 Summary

Throughout this chapter the main areas of development in this dissertation were pre-
sented. The state of the art in image detection was described, introducing some general
concepts about deep learning and exploring the field of image segmentation, referring
to some architectures and datasets that allow us to create models for it. Finally, some
works related to the Atlas project were mentioned and other projects that use panoramic
images for road segmentation and objects on board autonomous vehicles were also pre-
sented.

Rúben Daniel Ferreira da Costa Master Degree



.

Intentionally blank page.



Chapter 3

Experimental infrastructure

This chapter describes in detail the hardware and software used in this dissertation.
Regarding the hardware, the cameras used, the server where the models were trained
and also one of the GPU options to make the model inference are presented. In the second
section, the software used to create the panoramic images and to train and process the
models is introduced.

3.1 Hardware

3.1.1 Logitech C270 HD Webcam

The cameras chosen for this dissertation were the Logitech C270 and can capture video
at a resolution of 1280x720 at 30fps with a 60º Field of View. These cameras have been
selected for their quality/price ratio and their small size, allowing their use in the camera
ring being developed also within the atlas project. A picture of this camera is shown in
figure 3.1.

Figure 3.1: Logitech C270 HD Webcam.

3.1.2 LAR Workstation

For the training process of the models was used the new workstation of LAR (Laboratório
de Automação e Robótica), which was developed for deep learning. The access to this
workstation is done remotely by SSH and some characteristics of this computer as well
as a picture of it are presented in table 3.1 and figure 3.2, respectively.

27



28 3.Experimental infrastructure

Table 3.1: Workstation Specifications.

Processor AMD Threadripper 2850 Extreme
Graphic Board 4 x NVIDIA RTX2080TI
Memory 28GB DDR4 RAM
Storage 512GB SSD + 4TB HDD + 4TB SSD

Figure 3.2: LAR Workstation.

3.1.3 Jetson AGX Xavier Developer Kit

One of the objectives of this dissertation is the selection of a hardware that allows us to
make the inference of our models. Jetson AGX Xavier Developer Kit was chosen for this
task, since this hardware was recently used in a data matrix identification project [48]
using Deep Learning networks by one of the LAR researchers and is currently available.
The NVIDIA Jetson AGX Xavier, presented in figure 3.3, enables the performance of a
GPU workstation in an embedded module under 30W and with a very small size, being
ideal for robots or other autonomous projects.

3.2 Software

3.2.1 ROS - Robot Operating System

Robot Operating System is an open source framework that enables the development
of collaborative software for robots [49]. In the ROS environment there are different
modules, called nodes, that communicate with each other through messages and for
communication it is necessary that the messages are published in topics. In addition,
two nodes can communicate synchronously via ROS services, where there is a request
message from one node to which a reply message is sent by the other.

ROS presents the possibility of recording topics in rosbags during data acquisition,

Rúben Daniel Ferreira da Costa Master Degree



3.Experimental infrastructure 29

Figure 3.3: NVIDIA Jetson AGX Xavier.

and the user can define which topics are recorded. With this tool it is possible to re-run
the topics acquired during the recording as if data was being collected in real time.

3.2.2 JupyterLab

JupyterLab is an interactive interface that allows working with different types of docu-
ments such as Jupyter notebooks or a simple text file [50]. JupyterLab works in a remote
machine, in this case in the LAR Workstation, and is accessed through a web browser,
having been used to create and train the selected models. In figure 3.4 its interface is
shown.

Figure 3.4: JupyterLab user interface.

Rúben Daniel Ferreira da Costa Master Degree



30 3.Experimental infrastructure

3.2.3 Pytorch

PyTorch is an open source library based on Python that facilitates the creation of deep
learning models. PyTorch takes advantage from Tensors, a multidimensional array simi-
lar to Numpy arrays, thus allowing them and their related operations to take advantage
of GPU processing speed [51].

Other major advantages of PyTorch is the automatic differentiation for building or
training neural networks and no need to pre-define the computational graph of the model.

3.2.4 OpenCV

OpenCV is an open source computer vision library that has different modules for image
processing [52]. These modules contain different algorithms for image processing, either
classic or machine learning algorithms, so that a programmer can implement them in
real-time vision applications. Although OpenCV is written in C++, it has also Python,
Java and MATLAB interfaces and is capable of running on different operating systems.
In this work, this library was initially used for the creation of the panoramic image.

3.2.5 Kornia

Kornia is a computer vision library for PyTorch inspired by OpenCv. This library is
composed of a series of packages with different types of operators for generic computer
vision problems that can operate directly on tensors [53].

This library has been used since it offers a very easy integration with Pytorch, and
its main use in the dissertation was in the creation of the panoramic image, that is
explained in the following chapter.

3.2.6 Solidworks

SolidWorks is a Computer-Aided Design (CAD) software that allows the creation and
modeling of 3D parts. This program was used to develop the camera supports, since
they need to be well fixed to achieve a high-quality panoramic image.

Rúben Daniel Ferreira da Costa Master Degree



Chapter 4

Proposed solution

This chapter discusses the proposed solution for the segmentation of road and obstacles
on board ATLASCAR2. Initially, an overview of the proposed solution is presented,
detailing the link between each element and the solution workflow. Next, the positioning
of the cameras is explained and the supports that have been created are presented. The
third section discusses the way the images are acquired and the last two sections explain
the process of segmentation and the combination of the results obtained through the
application of the networks.

4.1 Solution Overview

In order to have an easy integration in ATLASCAR2, the proposed solution is based on
a ROS-based architecture, where initially the images are acquired through the cameras
and are published in ROS topics. The previously published raw images topics are then
subscribed and the panoramic image creation algorithm or the segmentation network is
applied, depending on how the segmented panoramic image is to be created.

As represented in figure 4.1, the two branches of the proposed solution are quite sim-
ilar. If the panoramic image has to be segmented, the algorithm to create the panoramic
image runs first, and then the panoramic image is segmented by the segmentation net-
work. Figure 4.2 shows the computation graph for this way of generating the segmented
panoramic image. As shown in this graph, the nodes corresponding to the three cameras
publish the raw images on three different topics. These topics are then subscribed to
by the panoramic image creation node which applies the transformations to the images
and publishes the panoramic image in the panoramic image node. Subsequently, the
node for the segmentation network subscribes this image and publishes the result of the
segmentation in a new topic.

In the second case, the segmentation network is applied to each image individually
and then the segmented images are provided to the panoramic image creation algorithm
and for this case, the computation graph is represented in figure 4.3. Similarly to the
first case, the nodes corresponding to the three cameras also publish the raw images on
the three different topics. However, in this second method these images are subscribed
by the segmentation network node as can be seen in the computational graph. After the
segmentation of the images from each camera, this node publishes the segmented images
in new topics, which are then subscribed by the node that creates the panoramic image.

31



32 4.Proposed solution

Figure 4.1: Flowchart of the proposed solution. In the left branch the raw images of each
camera are segmented and published in ROS topics. Later, these topics are subscribed by
the panoramic creation algorithm, which applies the transformations to the segmented
images, originating the segmented panoramic image. In the other branch the process
is done in reverse, where initially the panoramic image is created through the camera
images and then the panoramic image is given as input to the segmentation network.

This node also subscribes the images from the cameras to calculate the transformation
matrices and only then creates the panoramic image with the segmented images.

Figure 4.2: Computation graph from panoramic image segmentation.

Rúben Daniel Ferreira da Costa Master Degree



4.Proposed solution 33

Figure 4.3: Computation graph of the creation of the panoramic image through seg-
mented individual images.

4.2 Camera stands and setup

In order to create the panoramic image and to segment it, it is necessary to have the
cameras fixed and properly positioned. Initially, the positioning of the cameras would
be done through a camera ring that is being developed for ATLASCAR2, however, and
as it was not ready to be used for this dissertation, it was necessary to create supports
for the selected cameras.

During the development of the supports presented in figure 4.4 there was a focus on
the importance of creating a way to easily adjust the position and orientation, while at
the same time a robust design was necessary.

(a) Developed parts (b) Assembly with the camera

Figure 4.4: Camera mounts on the left and assembly with the camera on the right.

Rúben Daniel Ferreira da Costa Master Degree



34 4.Proposed solution

For this, and taking into account that the cameras have to be positioned on the
structures positioned on the roof of the car, two parts were developed which, together
with the connection piece suitable for these profiles, ensures the possibility of adjustment
with three degrees of freedom. In addition, the necessity of making a stand that is simple
to assemble and that allows an adjustment of the position and direction of the cameras
easily has been also considered. In the first image of figure 4.4 are represented the two
components that have been developed and in the second the assembly of this set with
the camera.

In addition to these stands, it was necessary to check the positioning and number
of cameras needed to create the panoramic image on board the car, and having initially
selected Logitech C270 cameras, the field of view of these cameras had to be taken into
account. To be able to create a panoramic image, as explained later in this chapter, the
cameras had to overlap with each other. Therefore, to create a 360 degrees panoramic
image more than 6 cameras are needed to have this overlap, and a study of their posi-
tioning has been done as shown in figure 4.5. As can be seen, with the variation of the
positioning of cameras there is a change in the field of view. For a more central position-
ing, there is a decrease in dead zones and an increase in the overlap of the cameras while
for a positioning of the cameras more at the edges of the vehicle the opposite happens.
Besides this study, during the testing and data gathering only three cameras were used
to create the panoramic images.

Figure 4.5: Study on the positioning of cameras on the ATLASCAR2 roof. The green
rectangle represents the ATLASCAR2 and the triangles represent the field of view of
each camera, using the 60 degrees of Logitech C270. The left image represents a more
central positioning of the cameras, while the right image represents the positioning of
the cameras at the edges of the support positioned on the ATLASCAR2 roof.

A second setup was used to perform the tests with a Jetson Xavier unit on board the
ATLASCAR2. This setup has three 4K cameras with a field of view of 132 degrees each,
and the positioning of the cameras between them was designed for another project [37]
and is represented in the first image of figure 4.6.

Rúben Daniel Ferreira da Costa Master Degree



4.Proposed solution 35

(a) Camera positioning support (b) Jetson AGX Xavier with cameras mounted

Figure 4.6: Cameras support on the left and assembly with Jetson AGX Xavier on the
right.

In order to properly position the cameras and the Jetson Xavier system in the AT-
LASCAR2, both were grouped as shown in the right image of figure 4.6 and the setup
was assembled inside the car as shown in figure 4.7. The choice of the assembly inside the
vehicle was due to the restriction on the length of the connecting cables of the cameras
that only allow a distance of up to 20 centimetres between the Jetson and the cameras.

Figure 4.7: Jetson AGX Xavier and cameras setup in ATLASCAR2. A suction stand
was used to hold the Jetson AGX Xavier setup with the cameras. This was placed on
the dashboard of the car and a small sponge was used on the top to prevent movement
during the images acquisition.

Rúben Daniel Ferreira da Costa Master Degree



36 4.Proposed solution

4.3 Image Acquisition

In the first step of the proposed solution, the acquisition of individual images and their
publication on ROS topics is done. Initially, it was intended to create the panoramic
image after this acquisition, but as mentioned in the first section of this chapter, the
creation of this can be done through the already segmented images.

This option was presented since in the different tests performed it was only possible
to obtain a panoramic image at a frame rate of 6 FPS. Despite the alternatives presented,
in all of them the images of each camera are necessary to create the segmented panoramic
image.

To start publishing the images in the topics it is necessary to run the launch file
presented in isting 4.1 and to subscription of the image topics is according to the listing
4.2.

1 <launch >

2

3 <node pkg="cv_camera" type="cv_camera_node" name="FL_camera">

4 <param name="device_id" value="4"/>

5 <param name="frame_id" value="FL_camera"/>

6 <param name="set_camera_fps" value="30"/>

7 <param name="camera_info_url" value="file ://$(env HOME)/.ros/

camera_info/FL_camera.yaml" />

8 </node >

9

10 <node pkg="cv_camera" type="cv_camera_node" name="FM_camera">

11 <param name="device_id" value="2"/>

12 <param name="frame_id" value="FM_camera"/>

13 <param name="set_camera_fps" value="30"/>

14 <param name="camera_info_url" value="file ://$(env HOME)/.ros/

camera_info/FM_camera.yaml" />

15 </node >

16

17 <node pkg="cv_camera" type="cv_camera_node" name="FR_camera">

18 <param name="device_id" value="0"/>

19 <param name="frame_id" value="FR_camera"/>

20 <param name="set_camera_fps" value="30"/>

21 <param name="camera_info_url" value="file ://$(env HOME)/.ros/

camera_info/FR_camera.yaml" />

22 </node >

23 </launch >

Listing 4.1: Launch file for the three cameras

1 image_sub_FL = rospy.Subscriber("/FL_camera/image_raw",Image ,self.

callback_FL_image)

2

3 def callback_FL_image(self ,data):

4 try:

5 cv_image = self.bridge.imgmsg_to_cv2(data , "bgr8")

6 self.FL_image = cv_image

7 except CvBridgeError as e:

8 print(e)

Listing 4.2: Image subscription example

Rúben Daniel Ferreira da Costa Master Degree



4.Proposed solution 37

4.4 Image Segmentation

One of the key points of the proposed solution is the segmentation of images. In order to
integrate image segmentation models to make inference in Jetson AGX Xavier, a library
from NVIDIA was used. In addition to this library, a ROS package called Panoramic
Segmentation was created based on a repository for ROS deep learning [54] to perform
image segmentation.

In this package the images are subscribed and the segmentation node uses the model
that is specified to segment them, publishing in different topics the channel mask, the
colour mask and the overlay of the individual images and the panoramic if applicable.
In figure 4.8 three images are shown before and after their segmentation, and in figure
4.9 are represented the normal overview image, its segmentation and its road mask.

(a) Left image (b) Central image (c) Right image

(d) Left image segmented (e) Center image segmented (f) Right image segmented

Figure 4.8: Individual images before and after segmentation.

Apart from the use of the segmentation models already existing in the Jetson Infer-
ence library [55], some models were trained in the LAR workstation. Before training the
models, we defined the architectures to train and which datasets to use. Regarding the
architectures, some of the selected were ENet, ContextNet and Fast S-CNN. Most of the
selected architectures were chosen due to the low number of parameters which allows a
faster inference process.

For the training process of these networks, two datasets were chosen, CityScapes
and BDD100K. The first dataset is often used for image segmentation and most of the
chosen architectures usually present their performance in its validation set. The choice
of the second dataset was due to the fact that it has a larger amount of images that end
up having the same resolution as the images acquired by our cameras. The process of
training these architectures is discussed in more detail in the next chapter.

Rúben Daniel Ferreira da Costa Master Degree



38 4.Proposed solution

(a)

(b)

(c)

Figure 4.9: The first image shows the panoramic created with the images from the three
cameras, the second image is the panoramic segmentation and the last one is the mask
for the road class.

Rúben Daniel Ferreira da Costa Master Degree



4.Proposed solution 39

4.5 Data Combination

After the segmentation of the images it is necessary to combine them in order to obtain
a panoramic image, and this process can be done in two ways, as mentioned previously.
In the first, method can combine the segmented images and only then proceed to the
extraction of the binary masks of the classes that are intended to be analyzed. Another
option is to extract the binary masks from each image individually and then conjugate
them in order to create the panorama. Although these two approaches are distinct, the
creation of the panorama is done in the same way, and figure 4.10 shows the flowchart
of this process.

Figure 4.10: Flowchart of panoramic image creation. Despite the alternatives for creating
the panoramic image, the stage of extracting the features of the images needs to have
raw images as input, whether to create only the panoramic image or the road mask
present in it.

To create the panoramic image it is necessary to know the transformations between
each image. To do this, a first function was created to calculate the necessary trans-
formations to apply, and this function (Listing 4.3) is only used each time the camera
positions are changed. To calculate these transformations, the images to be calibrated
are provided, applying a detector feature to each one, and then the homogeneous matrix
between each pair of images is obtained.

1 def transformationsCalculator(self ,images ,ratio =0.8, reprojThresh =4.0):

2 (image_left , image_center , image_right) = images

3

4 (kpsLeft , featuresLeft) = self.detectAndDescribe(image_left)

5 (kpsCenter , featuresCenter) = self.detectAndDescribe(image_center)

6 (kpsRight , featuresRight) = self.detectAndDescribe(image_right)

7

8 if kpsLeft is None or kpsCenter is None or kpsRight is None:

9 print("It was not possible to extract the keypoints")

10 return None

11

12 M_left_center = self.matchKeypoints(kpsLeft , kpsCenter ,featuresLeft ,

featuresCenter , ratio , reprojThresh)

13 M_right_center = self.matchKeypoints(kpsRight , kpsCenter ,

featuresRight , featuresCenter , ratio , reprojThresh)

14

15 if M_left_center is None or M_right_center is None:

16 print("At least one of the matrices was not calculated!")

17 return None

18

19 return (M_left_center [1], M_right_center [1])

Listing 4.3: Function to calculate the transformation matrices

Two sub-functions are used are used in this function, the first one is responsible for
extracting the features from each image by applying a feature detector (Listing 4.4) as
shown in figure 4.11.

Rúben Daniel Ferreira da Costa Master Degree



40 4.Proposed solution

Figure 4.11: Feature matching between images.

The most commonly used feature detectors in this kind of tasks are the SIFT and
SURF, however the ORB, Oriented FAST and Rotated Brief was tested, since to use the
other two it is necessary to install the OpenCV Contrib package. This detector computes
less key points than the two mentioned detectors, but it is an efficient alternative to the
previous two.

1 def detectAndDescribe(self , image):

2 gray = cv2.cvtColor(image , cv2.COLOR_BGR2GRAY)

3 detector = cv2.ORB_create ()

4 kps = detector.detect(gray , None)

5 (kps ,features) = detector.compute(gray , kps)

6 kps = np.float32 ([kp.pt for kp in kps])

7 return (kps ,features)

Listing 4.4: Feature detector function

Once all the key points in the image have been detected, the second function (Listing
4.5) is used to identify which points are common to each pair of images. A Brute Force
Matcher [56] is used to combine an image with all the other features of another image
and returns the match based on distance. Although this method is slow, there won’t
be much of a problem since this task is performed only in the calibration task. If the
number of matches found is greater than 15, the homography is calculated and returned.

1 def matchKeypoints(self , kpsA , kpsB , featuresA , featuresB , ratio ,

reprojThresh):

2 matcher = cv2.DescriptorMatcher_create("BruteForce")

3 rawMatches = matcher.knnMatch(featuresA , featuresB , 2)

4 matches = []

5 for m in rawMatches:

6 if len(m) == 2 and m[0]. distance < m[1]. distance * ratio:

7 matches.append ((m[0]. trainIdx , m[0]. queryIdx))

8 if len(matches) > 15:

9 ptsA = np.float32 ([kpsA[i] for (_, i) in matches ])

10 ptsB = np.float32 ([kpsB[i] for (i, _) in matches ])

11 (H, status) = cv2.findHomography(ptsA , ptsB , cv2.RANSAC ,

reprojThresh)

12 return (matches , H, status)

13 return None

Listing 4.5: Feauture matching function

After this calculation is done for all pairs of images, it is then possible to make the
panoramic image and for this the transformations are applied to each mask or segmented

Rúben Daniel Ferreira da Costa Master Degree



4.Proposed solution 41

image. The left image or mask suffers the transformation relative to the homogeneous
matrix between this image and the central one, while the right one suffers the transfor-
mation relative to the homogeneous matrix between the right image and the central one.
In this part of the code (Listing 4.6), unlike the previous one, the Kornia library [53]
was used to replace the OpenCV since this task will be constantly repeated, and so we
can take full advantage of the GPU used in the inference of our model.

1 def stitch(self ,Masks ,result_width ,M_left_center ,M_center_right):

2 (Maskleft_image , Maskcenter_image , Maskright_image) = Masks

3

4 self.cachedHlc = M_left_center

5 self.cachedHrc = M_center_right

6

7 T = np.array ([[1.0 , 0.0, (result_width /2) -(Masks [0]. shape [3]/2)],

8 [0.0, 1.0, 0.0],

9 [0.0, 0.0, 1.0]]).astype(dtype=np.float32)

10

11

12 transformations = [self.cachedHlc , np.identity(3, dtype=np.float32),

self.cachedHrc]

13 result = np.zeros ((Masks [0]. shape [0],Masks [0]. shape [1], result_width))

.astype(np.float32)

14 weights = np.zeros_like(result)

15

16 for i in range(len(Masks)):

17 warp = kornia.warp_perspective(Masks[i],torch.tensor(np.dot(T,

transformations[i]),dtype=torch.float32),(Masks[i]. shape

[2], result_width))

18 weight = kornia.warp_perspective(torch.tensor(np.ones_like(

Masks[i])),torch.tensor(np.dot(T,transformations[i]),

dtype=torch.float32),(Masks[i]. shape[2], result_width))

19

20 result = kornia.color.add_weighted(torch.tensor(result) ,1.0,

warp ,1.0 ,0.0)

21 weights = kornia.color.add_weighted(torch.tensor(weights) ,1.0,

weight ,1.0 ,0.0)

22

23 return np.uint8(kornia.tensor_to_image(result) / kornia.

tensor_to_image(weights))

Listing 4.6: Stitching function

As an alternative to the two panoramic image creation techniques presented, other
techniques using polygons or points present in a segmented mask of a given class were
explored. For this, two subfunctions were created, the first responsible for extracting
the points of a class and the second for creating the panoramic image.

To extract the points relative to a given class, the function 4.7 takes as input the
representative binary image of the class and calculates the coordinates of the points
belonging to the mask. In this operation, it is possible to calculate the coordinates of
all the points of the mask or only the coordinates of its outline(border).

Once this calculation has been made, the function 4.7 is responsible for applying the
transformations to the previously calculated points and subsequently representing them
as defined. If the desired representation is in the form of a polygon, this can be done
either by the delimiting line of the polygon or by the polygon filled in as shown in the
first and second images of figure 4.12, respectively.

Rúben Daniel Ferreira da Costa Master Degree



42 4.Proposed solution

1 def polygonGenerator(image ,hullMode):

2

3 if hullMode ==False:

4 #Get coordinates where road was detected

5 points = np.column_stack(np.where ((image)==1))

6 else:

7 #Convert the image to grayscale & find edges

8 img = np.uint8(np.float32(image))

9 edges = cv2.Canny(img ,3,3)

10 coords = np.column_stack(np.where(edges ==255))

11 points = np.zeros ((len(coords)+1, 2))

12 points [:len(coords) ,:]= coords

13 points[len(coords) ,0]= 736

14

15 return points

Listing 4.7: Function to determine the coordinates of points in a particular class.

1 def polygonStitcher(Points ,img_height ,img_width ,M_left_center ,

M_center_right ,result_width ,hullMode ,Lines=False):

2 (PointsE , PointsM , PointsD) = Points

3

4 d = np.array([ pointsD.astype(’float32 ’)])

5 m = np.array([ pointsM.astype(’float32 ’)])

6 e = np.array([ pointsE.astype(’float32 ’)])

7

8 T = np.array ([[1.0 , 0.0, (result_width /2) -(img_width /2)],

9 [0.0, 1.0, 0.0],

10 [0.0, 0.0, 1.0]]).astype(dtype=np.float32)

11

12

13 pointsOutD = cv2.perspectiveTransform(d, np.dot(T,M_center_right))

14 pointsOutM = cv2.perspectiveTransform(m, T)

15 pointsOutE = cv2.perspectiveTransform(e, np.dot(T,M_left_center))

16

17

18 imagemPoints = np.zeros ([img_height ,result_width ])

19

20 pointList=np.concatenate (( pointsOutE ,pointsOutM ,pointsOutD))

21

22 return pointList

Listing 4.8: Part of the function that applies the transformations to the points of the
polygons or of the masks.

As an option to these two shapes, the function can also represent the road mask as
illustrated in the last image of figure 4.12. The latter generates a result similar to that
shown in the third image of figure 4.9, however only the transformations are applied to
the coordinates of the points representing the class, contrary to what is done in figure
4.9 where the transformations are applied to all points of the individual images.

4.6 Summary

Throughout this chapter, the proposed solution for the segmentation of road and ob-
jects on board ATLASCAR2 was introduced. Initially an overview of the solution was

Rúben Daniel Ferreira da Costa Master Degree



4.Proposed solution 43

(a)

(b)

(c)

Figure 4.12: The first two images concern the generation of the polygon that represents
the road class, where the first one represents its contours and the second one its filling.
The last image is the mask created with the coordinates of the road points extracted
from the individual images.

presented, mentioning the two approaches used to create the segmented panoramic im-
age. After that, the camera supports developed and the study of their positioning on
the roof of the car were explained. The image segmentation process was also presented,
specifying which libraries were used for the inference process in the Jetson Xavier unit.
Finally the process of creating the panoramic image was detailed and three solutions in
addition to those mentioned in the first section were proposed.

Rúben Daniel Ferreira da Costa Master Degree



.

Intentionally blank page.



Chapter 5

Experiments and Results

This chapter describes all the tests performed throughout this dissertation, as well as
the results obtained from them. Initially, some tests are detailed regarding panoramic
images and data gathering. The process of training the models and the results obtained,
both in terms of performance and accuracy, are presented next.

5.1 Panoramic tests and setup positioning

One of the first steps of this dissertation was to explore the field of panoramic images.
As a first step, and after having a program to create the panoramic images similar to
the one presented in the previous chapter, it was decided to perform some road tests to
understand what difficulties might exist during navigation.

Initially, several tests1 were performed on camera positioning, using what had already
been explored in a more theoretical way in section 4.2. With these tests it was confirmed
that for a setup with cameras closer and in a more central position of the car, the
panoramic images generated were better, since there was less variation of brightness
between the cameras and a greater overlap between the images that made the initial
calibration easier. Nevertheless, and as can be seen on image 5.1, the overlap between
the images during these tests was too big, which meant that the gain in terms of field
of view was not significative enough.

Figure 5.1: Frame of the camera positioning test video. The overlap of the cameras is
too large since the side images are slightly overlapped.

1Camera positioning test video in Aveiro https://www.youtube.com/watch?v=69jH8Cza7gg.

45

https://www.youtube.com/watch?v=69jH8Cza7gg


46 5.Experiments and Results

This is due to the fact that in the space where the initial calibration of the cameras
was made, i.e., the identification of the key points and the respective calculation of
the transformation matrices for the lateral images, the calibration program could not
find enough common points in each pair of images and for this the overlap between the
images had to be increased in order to obtain the panoramic image. One solution to this
problem is to use an environment with a greater diversity of objects or by positioning
some objects in the overlapping zones of the images in order to facilitate the identification
of key-points.

Another adversity found during the calibration process was the difference in light
intensity in each image, which sometimes led to the panoramic image not being obtained
since, as shown in figure 5.2, the feature detector has difficulty in identifying key points
in a pair of images.

Figure 5.2: Poor detection of key points due to discrepancy in brightness intensity
between the two images.

After defining a positioning for the cameras, some tests were carried out on board in
order to check whether the frame rate with which the panoramic image was published
was sufficient for navigation. During this stage, a laptop was used to perform the tests,
and a frame rate of 6 FPS was obtained in the ROS topic regarding the panoramic image.
With this, we tried to identify which operation took the longest time to be performed,
having identified that the task that took the longest time to be performed was the
application of the transformations to the images with WarpPerspective. One of the
possible solutions for this problem is the creation of the panoramic image by combining
the individual segmented images or through the representation of the polygons that best
represent a specific class. These solutions will be evaluated and compared in section 1.5
of this chapter.

5.2 Data Gathering

After performing the tests mentioned in the previous section, a collection of images was
made for the city of Aveiro. The main reason for this collection was the creation of a
small validation set that served to verify which model had the best results in the streets
of Aveiro, as demonstrated later in this chapter.

As before, the Logitech C270 cameras were positioned on a grid placed on the roof of
a car, as shown in figure 5.3, and some streets of Aveiro were covered, being presented
two of the routes traveled in figure 5.4, collecting more than 26 minutes of videos with
a resolution of 1280x720 on each camera.

Rúben Daniel Ferreira da Costa Master Degree



5.Experiments and Results 47

Figure 5.3: Positioning of cameras for data gathering.

Figure 5.4: Routes taken during image acquisition for the creation of the validation
dataset.

To create the validation set, it was necessary to choose the most representative images
of Aveiro since the labelling process takes some time. Initially, an automatic selection
of the images was idealized, extracting the embeddings of each image and making its

Rúben Daniel Ferreira da Costa Master Degree



48 5.Experiments and Results

representation in order to understand which set of images is more distinct. Through this
representation it would be possible to define the best set of images of Aveiro to make
the labelling. However, taking into account the time this selection would take to be
implemented, a manual selection was chosen, based on a first selection of images with
10 seconds between them, later suffering a refinement, where a total of 120 images were
selected, 40 from each camera. In this selection an attempt to select the images that
covered more areas of the city was made, while also selecting images of characteristic
points of the city.

After selecting the images to create the validation set, LabelBox [57] was used as the
platform to label the images. Before starting the labelling process, a small introduction
was made to this platform in order to get to know the tools available for the labelling
and to understand how long it would take to create the validation set. With this process
of setting up LabelBox and after making an estimate of the time it would take to do the
complete labelling of the images, it was defined that only the labelling of road, sidewalks
and cars present in the images would be done. The choice of these specific classes is due
to the fact that they are important for navigation, since the road is the main element to
be detected in order to carry out a route planning, cars are usually the main obstacles
in traffic and the sidewalk is due to the fact that it is one of the classes that can be
mistakenly detected as road.

In figure 5.5 are represented some images with the respective labels of the selected
classes, and this process took about 18 hours of manual work to be completed for the
120 images. Regarding the presence of the classes in the images, all images have the
class relative to the road and about 92% and 88% contain cars or sidewalks, respectively.

5.3 Training Process

As mentioned earlier, it is necessary to have a model capable of segmenting the images
in real time. For this purpose, some of the architectures mentioned in section 2.3.2
were selected, and this selection was based on the implementation feasibility of the
architectures and the training of the models.

For the training process, models were trained with CityScapes dataset, and Con-
textNet was also trained with Berkeley Deep Drive dataset to prove the benefits to be
expected from training with a larger dataset. The training process was similar in al-
most all models. The most used loss function for the training process was OHEM Loss,
although cross entropy loss was also used for ENet training. Regarding optimization,
AdamW was chosen for ContextNet and ENet training and SGD for Fast S CNN and
SegNet. For the learning rate schedulers, the Cossine Anealing Scheduler was used in
all architectures.

For the training, all models were trained with 19 classes, were applied random scale
factors between 0.5 and 2.0 to the training images and random crop of 768 pixels in each
sizes. Horizontal flip transformations or saturation changes have also been applied. In
this way, the models are less susceptible to variations of image sizes, making the model
more robust. Apart from using different datasets for ContextNet training, a model with
twice the parameters was trained in the CityScapes dataset and the training was also
explored with the knowledge distillation method. In this last method, a smaller model is
trained to replicate a larger model, often making the analogy of this method to a teacher

Rúben Daniel Ferreira da Costa Master Degree



5.Experiments and Results 49

Figure 5.5: Some examples of images selected for the validation set on the left and the
respective labels created in LabelBox on the right.

teaching a student.

5.4 Performance and Accuracy Evaluation

In this section the trained models are evaluated both in terms of performance and ac-
curacy. For the accuracy evaluation, the results are compared with the values obtained
by the authors of the architectures in the respective dataset, the models are evaluated
in the dataset created with images of the city of Aveiro and a qualitative analysis is
made taking into account the results obtained in images of the city of Aveiro. Regarding
the performance, all models are evaluated in one GPU of the computer of LAR and
compared with each other the processing speed.

Rúben Daniel Ferreira da Costa Master Degree



50 5.Experiments and Results

5.4.1 Accuracy Datasets

Table 5.1 shows the results of all trained models, as well as the mIoU values obtained in
the architectures’ papers for the CityScapes validation set for the 19 trained classes.

Table 5.1: Results obtained by the models trained in their validation sets. ContextNet
2x architecture contains two times the parameters of the standard.

Architecture
Training
Dataset

Validation
Dataset

mIoU
[%]

IoU
Road
[%]

IoU
Sidewalk

[%]

IoU
Car
[%]

ContextNet CityScapes CityScapes 62.42 95.96 74.27 89.32

ContextNet
Knowledge
Destillation

CityScapes CityScapes 65.80 96.81 76.63 91.11

ContextNet 2x CityScapes CityScapes 68.51 97.02 77.96 92.15

ContextNet 2x BDD100K BDD100K 51.80 93.32 57.87 87.64

Fast S-CNN CityScapes CityScapes 65.53 97.05 77.22 91.13

SegNet CityScapes CityScapes 63.15 94.99 79.62 92.95

ENet CityScapes CityScapes 56.40 95.06 69.73 92.95

The architectures in which the value was closer to what the authors reached were
ContextNet and Fast S-CNN, and for the former, when trained with knowledge distilla-
tion, the result was only 0.3% below the value of the paper. Still for the first architecture,
when trained with the double of parameters it obtained the best result in the CityScapes
validation set, surpassing the previous one by 2.7%.

Regarding ENet, the results obtained with the training were slightly lower than the
value of the authors, and it was with this architecture that the lowest value of mIoU was
obtained. The largest architecture tested was SegNet, however the trained architecture
had a small variation in its format. This variation occurred in the decoder part of the
network and led to a reduction in the number of parameters used by the network. In
spite of that, it ended up obtaining a result superior to the one presented by the authors,
surpassing this one by about 7%.

Taking into account the results obtained after training all these models, it was decided
to train the ContextNet architecture which has double the parameters of the regular
architecture in the Berkeley Deep Drive dataset, since it was the model that had achieved
the best result among the previous ones, having obtained a value of 51.80% of mIoU.
Although in the ContextNet article there is no evaluation in the BDD100K, the value
achieved in the validation defined in the article of this dataset was 56.9% for the semantic
segmentation task, so it is noted that there is still room for improvement.

Rúben Daniel Ferreira da Costa Master Degree



5.Experiments and Results 51

5.4.2 Accuracy Aveiro Dataset

To make a better comparison between the trained models, and to understand with which
training dataset the best results were obtained, the result of the evaluation of the models
in the Aveiro dataset is presented in table 5.2. The values of mIoU were obtained through
validation in the 3 classes for which the labelling was done.

Table 5.2: Aveiro Dataset comparision result.

Architecture
Training
Dataset

Validation
Dataset

mIoU
[%]

IoU
Road
[%]

IoU
Sidewalk

[%]

IoU
Car
[%]

ContextNet CityScapes Aveiro Dataset 77.91 89.57 55.13 89.20

ContextNet
Knowledge
Destillation

CityScapes Aveiro Dataset 79.20 90.84 54.47 92.30

ContextNet 2x CityScapes Aveiro Dataset 79.98 91.20 56.88 91.87

ContextNet 2x BDD100K Aveiro Dataset 83.05 92.22 62.75 94.18

Fast S-CNN CityScapes Aveiro Dataset 77.52 89.89 54.67 88.01

SegNet CityScapes Aveiro Dataset 72.03 82.62 48.73 84.74

ENet CityScapes Aveiro Dataset 71.17 85.59 48.05 79.87

Comparing the mIoU values obtained in this dataset, and making a comparison with
the previous results, we noticed that SegNet, despite being the network with the largest
number of parameters obtained only the second worst result in Aveiro’s dataset, achiev-
ing only 72%, only ahead of ENet which reached 71.17%. The best values were obtained
by the Fast and ContextNet models, with the models trained in CityScapes achieving
very similar results, all of them obtaining more than 77% of mIoU. The ContextNet
model trained on the BDD100K was the one that obtained the best result, having ob-
tained 83% of mIoU, which was expected since this dataset has a higher number of
images even being from another continent.

When analyzing in more detail some images segmented by the models trained in
the two datasets, it can be perceived that the gain that was added when training with
a larger dataset. In the first pair of images in figure 5.6, the model trained with the
BDD100K detects the sidewalk with more precision, while the detection of the other
model has much more noise. The middle images, where the image was captured while
driving in a very characteristic area of the city, the network trained on CityScapes shows
again a lot of noise compared to the other model. The gain obtained with the training
on the Berkeley Deep Drive dataset is notorious once again when analyzing the last two
images, where the ContextNet model trained on the BDD100K showed again better and
smoother results.

Regarding the results obtained in the classes in these last two architectures, it was

Rúben Daniel Ferreira da Costa Master Degree



52 5.Experiments and Results

(a) Segmented image with ContextNet 2x model
trained on CityScapes

(b) Segmented image with ContextNet 2x model
trained on BDD100K

(c) Segmented image with ContextNet 2x model
trained on CityScapes

(d) Segmented image with ContextNet 2x model
trained on BDD100K

(e) Segmented image with ContextNet 2x model
trained on CityScapes

(f) Segmented image with ContextNet 2x model
trained on BDD100K

Figure 5.6: Comparison of segmented images with models trained in CityScapes dataset
and Berkeley Deep Drive dataset. In general, the architecture trained in the larger
dataset achieved better results.

the class of cars that maintained the most similar results, which is understandable since
it is the element that has less variation globally. As for the road, this class dropped
about 6% in each model and the sidewalk ended up being the class with the biggest
drop, about 18%. These results are due to the fact that some roads and pedestrian

Rúben Daniel Ferreira da Costa Master Degree



5.Experiments and Results 53

areas in the city of Aveiro are not so common or even because of the presence of small
vegetation in some of them, which makes it difficult to detect for models.

Despite the accuracy gain when the model was trained with the BDD100K, there are
certain situations where it presents some difficulties in identifying the analyzed classes.
One of them is identified in figure 5.7, where the model can not correctly identify the
sidewalks and identifies this as vegetation or road. Furthermore, in this image the
network mistakenly assumes that the wall at the junction is road.

Figure 5.7: Example of poor model segmentation. In this case the model detects part
of the sidewalk and the wall at the intersection as road or vegetation. In addition, it
is noticeable that the model also fails to do the segmentation of the fence and the cars
correctly.

Something that allows to understand that there is still a need for progression of these
models is the situation presented in figure 5.8. In the first image of this figure the model
correctly identifies a circulation area similar to a sidewalk as a road however, in the
second image, the model assumes an area of the same type as a sidewalk.

(a) Well segmented road (b) Partially well segmented road

Figure 5.8: This figure presentes two images of roads that are similar to a sidewalk. In
the left image the model correctly identifies a large part of the road, however in the
second case it assumes a driving zone as a ride, although it is similar to the one in the
previous image.

Rúben Daniel Ferreira da Costa Master Degree



54 5.Experiments and Results

Another situation that may become critical is presented in figure 5.9, where the
model does not detect the sidewalk, and in a planning situation the car could assume
that should change lanes, causing an accident.

Figure 5.9: Example of poor detection of the sidewalk. In this case, the model detects
a part of the sidewalk correctly, however it does not detect the continuation of that
sidewalk after the pole. This could lead to a collision, since the car could assume that
it should switch to the lane further to the right.

5.4.3 Performance Evaluation

To evaluate the performance of the trained architectures one of the GPU’s of the LAR
workstation was used. In table 5.3 the results are presented for different sizes of images
in all architectures.

Table 5.3: Performance comparison between models. The values of the frames per
second obtained in three image sizes by the models are presented. Models with the same
architecture were omitted since their performance is similar.

Architecture
Training
Dataset

FPS for
2048x1024px

FPS for
1024x512px

FPS for
640x480px

ContextNet CityScapes 124.00 221.75 223.39

ContextNet 2x CityScapes 59.30 205.88 218.42

Fast S-CNN CityScapes 140.60 245.23 248.68

SegNet CityScapes 6.87 27.22 43.53

ENet CityScapes 28.11 71.73 78.67

The architecture that got the worst frame rate was SegNet with 6.87 frames-per-
second for a 2048x1024 pixels image, 20 times slower than Fast S-CNN. Although ENet
is an architecture with few parameters, it presented the second worst inference result in
all tests, achieving up to 78 FPS in images with a size of 640x480. The architectures

Rúben Daniel Ferreira da Costa Master Degree



5.Experiments and Results 55

that showed the most identical results were ContextNet and Fast S-CNN that reached
more than 120 FPS for all image sizes, the latter achieving a maximum of 248 FPS for
the smallest image size. The ContexNet model with twice the parameters reached a
minimum of 59 FPS for the largest image size, about half of what was achieved by the
normal architecture, and approximated for a smaller image size.

By making an overall analysis of what was the performance and accuracy of the
architectures used, we can conclude that ENet and SegNet achieved the least satisfactory
results on both sides, while ContextNet and Fast S-CNN achieved quite interesting
results.

5.5 Panoramic Segmentation Evaluation

The way of creating the segmented panoramic image was also evaluated in order to under-
stand which form has the best balance between performance and quality. As mentioned
in the previous chapter, some solutions were explored that would allow the creation of
the segmented panoramic image to be more efficient, including a representation through
polygons or the points present in the masks of a given class.

Table 5.4 shows the results of the times obtained during the creation of the panoramic
images in the different ways, and having this test been performed in a Jupyter Notebook,
the time of creation of the panoramic image is presented in order to have a time for
comparison.

Table 5.4: Performance comparison in the creation of the segmented panoramic image.

Panoramic image method Time per image [s]

Panoramic image 1.80

Segmentation with argmax 31.05

Panoramic segmentation 2.23

Panoramic from segmented images 2.74

Panoramic mask with points 1.13

Panoramic mask with polygon lines 1.14

Panoramic mask with polygon 0.96

Before comparing the results of the several ways of creating the segmented panorama,
and looking at the time values of image creation presented, it can be seen that these
values are not of the same magnitude as those obtained in some of the tests performed
previously. This disparity is due to the fact that these tests were executed on the LAR
workstation and PyTorch was used in the task of creating the panoramic image, however
this will not be the operational environment in a solution on board ATLASCAR2. This
library is slower than Numpy to perform simpler operations but, having performed the
tests under the same conditions, the values obtained allow some conclusions.

Rúben Daniel Ferreira da Costa Master Degree



56 5.Experiments and Results

Of all forms presented, the slowest is the creation of the segmented panoramic image
with agrmax, in which only the class of each pixel is calculated at the end of the junction
of the images, thus having to apply the transformations to all classes. This means that
the program for creating the panoramic image takes an image with the dimension of
C ×H ×W , where H and W represent the height and width of the image respectively,
and C represents the number of classes, and the transformations are applied C times.
In this case, the transformations were applied 19 times and then the maximum value
of each pixel in the C layers was calculated, determining to which class each pixel
belongs. Although the processing time is too high, qualitatively, this way of creating the
segmentation of the panoramic image presents good results as seen in figure 5.10.

Figure 5.10: Segmented panoramic image with argmax.

The times achieved by the segmentation of the panoramic image or by the creation of
the panoramic through the segmented individual images were similar, and although the
former has a better processing time, the segmentation is quite weak as shown in the first
image of figure 5.11. This is due to the fact that the colours of the panoramic image are
not rectified. The segmented panorama created through the individual images presents
a better segmentation than the previous one as can be seen in the second image of figure
5.11, and although when compared with the image 5.10 the results are not so good, the
ratio between quality and time of segmentation is better.

(a) Panoramic image segmentation (b) Panoramic image from segmented single images

Figure 5.11: Segmented panoramic image. On the left is the segmented image gener-
ated from the panoramic image segmentation and on the right is the image created by
combining the individual segmented images.

Rúben Daniel Ferreira da Costa Master Degree



5.Experiments and Results 57

The alternatives presented to these methods of panoramic image segmentation proved
to be much more efficient, with the representation of a given class by polygons reaching
almost half of the processing time of the panoramic image. Among these options, the
one that presents the best result in terms of representation of a given class is the creation
of the panoramic mask using all the points of the individual images belonging to that
class and applies the transformations to them. The other two ways create a polygon
through the set of points that allow it to contain the class mask inside and with this
introduce small image segments that do not belong to the evaluated class, which can
create some kind of navigation problems. In figure 5.12 are represented two of the
alternatives proposed for the creation of the panoramic mask of a class.

(a) Road mask through points (b) Road mask through polygon

Figure 5.12: The image on the left shows the creation of the panoramic road mask
through the points of this class, and on the right the polygon that best represents it.

5.6 Real time experiments

As mentioned in the first chapter of this dissertation, one of the objectives was to perform
inference tests in a real case. For that, and having chosen Jetson Xavier as hardware to
implement the model in ATLASCAR2, we started by exporting the trained models and
inserting them into the Jetson Inference library so that our ROS package could locate
and use them.

When starting the inference tests of our models on the selected hardware it was
noticed that there was an incompatibility between the version of TensorRT needed to
run the trained models and the one installed on the hardware, so there was a need to
install a new version of TensorRT on Jetson AGX Xavier. Since it is necessary to flash
the device in order to do this update and the cameras that are currently connected to it
require some time for configuration, it was decided to use the segmentation models that
are available in the Jetson Inference library in order to perform the road tests.

During the circulation through the streets of Aveiro two videos were recorded2, where
the first is related to the creation of the panoramic image through the segmented single
images and the second is the segmentation of the panoramic image. In these tests, the
images were acquired by the cameras with a size of 640x480x or 1280x720 pixels and the
library model used for the tests was the FCN trained in CityScapes. It was found that

2Panoramic image segmentation on board the ATLASCAR2. https://www.youtube.com/watch?v=

ggD8k_pGEh4&t.

Rúben Daniel Ferreira da Costa Master Degree

https://www.youtube.com/watch?v=ggD8k_pGEh4&t
https://www.youtube.com/watch?v=ggD8k_pGEh4&t


58 5.Experiments and Results

this model was able to segment the 3 images at a frame rate of 30 FPS to the smallest
image size and 20 FPS when the images were larger.

Regarding the process of creating the panoramic image, it was only possible to achieve
a publication in the ROS 10 FPS topics either in the creation of the panoramic image
through the individual segmented images or in the segmentation of the panoramic image.
The other segmentation options of the panoramic image presented in this dissertation
were not implemented due to the lack of some necessary libraries. However, and although
the images pick up some part of the car interior and there is some reflection on the
windscreen, we can see in figure 5.13 that the creation of the panoramic image through
the segmentation of the individual images, excluding the noise caused by the car interior,
shows again better results than the segmentation of the panoramic image. This result
is in line with the previous section where the segmentation of the panoramic image also
showed the poorer results.

Figure 5.13: Tests performed on board ATLASCAR2. The first image is relative to the
panoramic created by merging the segmented images and the second image is the result
of the segmentation of the panoramic image.

5.7 Summary

In this chapter the tests that were performed throughout the dissertation were presented.
Firstly, a small evaluation of the creation of the panoramic image was made, which
defined the need to explore new approaches to its creation. In addition, the work carried
out in the development of the validation dataset of the city of Aveiro was presented,
which was very important for the evaluation process of the trained models. The process
of training the architectures was briefly explained and the models were evaluated taking

Rúben Daniel Ferreira da Costa Master Degree



5.Experiments and Results 59

into account their accuracy and performance. Finally some solutions for the creation of
the segmented panoramic image were presented and the tests performed on board the
ATLASCAR2 were evaluated.

Rúben Daniel Ferreira da Costa Master Degree



.

Intentionally blank page.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

For an autonomous vehicle to drive safely, it is essential that the vehicle has perception
of its surroundings. The main objective of this dissertation was the creation of a model
capable of identifying road or other objects in this environment. For this, panoramic
images were used and to segment them, models trained with Deep Learning were used.

To acquire the panoramic images on board the ATLASCAR2, and since the camera
ring for the car was not yet developed, it was necessary to study the creation of this
type of images. Therefore, the positioning of the cameras was studied and a function
was developed for the creation of this type of image, enabling a panoramic image to be
obtained at 10 FPS on board the ATLASCAR2.

The biggest challenge of this dissertation was the creation of segmentation models
using Deep Learning, and so there was the need to explore this area in order to be able to
propose datasets and architectures that were suitable for the segmentation of images in
real time. The training of the proposed models was performed in two different datasets
and four different architectures were explored, with a validation in a dataset created
with images of the city of Aveiro, where positive results were obtained in terms of road
and car segmentation. The performance of the proposed models was also evaluated,
obtaining up to 140 FPS in a 2048x1024 pixels image, during inference.

For the inference process, a ROS package was developed which allowed the segmen-
tation of the panoramic image or its creation through the individual segmented images.
Considering the testing process on board the ATLASCAR2, it can be concluded that the
segmented panoramic image has higher quality when choosing to create it through the
segmented individual images. Three distinct ways of representing the panoramic mask
of a given class were also presented with the objective of reducing the processing time
in the creation of the panoramic image.

Finally, the best solution found in this dissertation combines ContextNet with twice
the size trained on the BDD100K and the formation of the panoramic image through
the individual segmented images, if all classes have to be visualized, or through the use
of polygons, if only one class representation is required.

The whole process of the work developed during this dissertation is available on the
dissertation blog, https://rubendfcosta.github.io/MasterThesisBlog/, and the code
is documented at https://github.com/lardemua/AtlasCar2PanoramicDetection.

61

https://rubendfcosta.github.io/MasterThesisBlog/
https://github.com/lardemua/AtlasCar2PanoramicDetection


62 6.Conclusions and Future Work

6.2 Future Work

The work developed during this dissertation combined different contents that can be
further developed. The field of creating the panoramic image can be explored in order
to decrease the time needed for this task and consequently increase the frame rate with
which the image is published, which would make the ATLASCAR2 motion planning
process more secure. Also related to the panoramic image, the calibration of the camera
ring that is under development will be fundamental for the creation of a panoramic
image with higher quality than those used in this dissertation.

Regarding the use of Deep Learning, it is necessary to train architectures with larger
datasets than the selected ones, as observed with the model trained with Berkeley Deep-
Drive dataset, which presented better results in this dissertation. The task of panoptic
segmentation presented in the second chapter of the dissertation can also be explored.

The three proposed solutions for viewing the panoramic masks can be improved, es-
pecially in the representation of the masks through polygons, as they showed a reduction
in the time needed to create the panoramic image and can be useful for the task of route
planning.

Rúben Daniel Ferreira da Costa Master Degree



References

[1] “Road Mobility and Transport.” https://ec.europa.eu/transport/themes/

its/road_it Acessed: 2020-05-11.

[2] “Hours spent in road congestion annually,” Oct. 2016. https://ec.europa.eu/

transport/facts-fundings/scoreboard/compare/energy-union-innovation/

road-congestion_en Acessed: 2020-05-11.

[3] “ATLAS project.” http://atlas.web.ua.pt/index.html Acessed:2020-05-07.

[4] T. Birdal and A. Erçil, “Real-time automated road, lane and car detection for
autonomous driving,” in DSPincars, Istanbul, 2007.

[5] T.-Y. Sun, S.-J. Tsai, and V. Chan, “HSI color model based lane-marking detec-
tion,” in 2006 IEEE Intelligent Transportation Systems Conference, pp. 1168–1172,
Sept. 2006. ISSN: 2153-0017.

[6] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition (CVPR’05), vol. 1, pp. 886–893 vol. 1, June 2005. ISSN: 1063-6919.

[7] D. Lowe, “Object Recognition from Local Scale-Invariant Features,” Proceedings of
the IEEE International Conference on Computer Vision, vol. 2, Jan. 2001.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep
Convolutional Neural Networks,” in Advances in Neural Information Processing
Systems 25 (F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, eds.),
pp. 1097–1105, Curran Associates, Inc., 2012.

[9] N. O. Mahony, S. Campbell, A. Carvalho, S. Harapanahalli, G. Velasco-Hernandez,
L. Krpalkova, D. Riordan, and J. Walsh, “Deep Learning vs. Traditional Computer
Vision,” arXiv:1910.13796 [cs], vol. 943, 2020. arXiv: 1910.13796.

[10] A. Nassif, I. Shahin, I. Attili, M. Azzeh, and K. Shaalan, “Speech Recognition Using
Deep Neural Networks: A Systematic Review,” IEEE Access, vol. PP, pp. 1–1, Feb.
2019.

[11] D. W. Otter, J. R. Medina, and J. K. Kalita, “A Survey of the Usages of Deep
Learning in Natural Language Processing,” arXiv:1807.10854 [cs], Dec. 2019. arXiv:
1807.10854.

[12] J. Patterson and A. Gibson, Deep Learning: A Practitioner’s Approach. Beijing:
O’Reilly, 2017.

63

https://ec.europa.eu/transport/themes/its/road_it
https://ec.europa.eu/transport/themes/its/road_it
https://ec.europa.eu/transport/facts-fundings/scoreboard/compare/energy-union-innovation/road-congestion_en
https://ec.europa.eu/transport/facts-fundings/scoreboard/compare/energy-union-innovation/road-congestion_en
https://ec.europa.eu/transport/facts-fundings/scoreboard/compare/energy-union-innovation/road-congestion_en
http://atlas.web.ua.pt/index.html


64 REFERENCES

[13] “Complete Guide to Artificial Neural Network Concepts & Mod-
els.” https://missinglink.ai/guides/neural-network-concepts/

complete-guide-artificial-neural-networks/ Acessed: 2020-06-12.

[14] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation Func-
tions: Comparison of trends in Practice and Research for Deep Learning,”
arXiv:1811.03378 [cs], Nov. 2018. arXiv: 1811.03378.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification,” arXiv:1502.01852 [cs], Feb.
2015. arXiv: 1502.01852.

[16] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for Activation Functions,”
arXiv:1710.05941 [cs], Oct. 2017. arXiv: 1710.05941 version: 1.

[17] Y. Ho and S. Wookey, “The Real-World-Weight Cross-Entropy Loss Function: Mod-
eling the Costs of Mislabeling,” IEEE Access, vol. 8, pp. 4806–4813, 2020. arXiv:
2001.00570.

[18] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-Net: Fully Convolutional Neural
Networks for Volumetric Medical Image Segmentation,” arXiv:1606.04797 [cs], June
2016. arXiv: 1606.04797.

[19] B. Lourenço, V. Santos, M. Oliveira, and T. Almeida, “Performance Analysis on
Deep Learning Semantic Segmentation with multivariate Training Procedures,”
pp. 89–95, Apr. 2020.

[20] A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollár, “Panoptic Segmentation,”
arXiv:1801.00868 [cs], Apr. 2019. arXiv: 1801.00868.

[21] J. Long, E. Shelhamer, and T. Darrell, “Fully Convolutional Networks for Semantic
Segmentation,” arXiv:1411.4038 [cs], Mar. 2015. arXiv: 1411.4038.

[22] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A Deep Convolutional
Encoder-Decoder Architecture for Image Segmentation,” arXiv:1511.00561 [cs],
Oct. 2016. arXiv: 1511.00561.

[23] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “ENet: A Deep Neural Net-
work Architecture for Real-Time Semantic Segmentation,” arXiv:1606.02147 [cs],
June 2016. arXiv: 1606.02147.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recogni-
tion,” arXiv:1512.03385 [cs], Dec. 2015. arXiv: 1512.03385.

[25] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang, “BiSeNet: Bilateral Seg-
mentation Network for Real-time Semantic Segmentation,” arXiv:1808.00897 [cs],
Aug. 2018. arXiv: 1808.00897.

[26] R. P. K. Poudel, U. Bonde, S. Liwicki, and C. Zach, “ContextNet: Exploring Con-
text and Detail for Semantic Segmentation in Real-time,” arXiv:1805.04554 [cs],
Nov. 2018. arXiv: 1805.04554.

Rúben Daniel Ferreira da Costa Master Degree

https://missinglink.ai/guides/neural-network-concepts/complete-guide-artificial-neural-networks/
https://missinglink.ai/guides/neural-network-concepts/complete-guide-artificial-neural-networks/


REFERENCES 65

[27] R. P. K. Poudel, S. Liwicki, and R. Cipolla, “Fast-SCNN: Fast Semantic Segmen-
tation Network,” arXiv:1902.04502 [cs], Feb. 2019. arXiv: 1902.04502.

[28] Y. Wang, Q. Zhou, J. Liu, J. Xiong, G. Gao, X. Wu, and L. J. Latecki, “LEDNet:
A Lightweight Encoder-Decoder Network for Real-Time Semantic Segmentation,”
arXiv:1905.02423 [cs], May 2019. arXiv: 1905.02423.

[29] Y. Wang, Q. Zhou, and X. Wu, “ESNet: An Efficient Symmetric Network for
Real-time Semantic Segmentation,” arXiv:1906.09826 [cs], June 2019. arXiv:
1906.09826.

[30] G. J. Brostow, J. Fauqueur, and R. Cipolla, “Semantic object classes in video: A
high-definition ground truth database,” Pattern Recognition Letters, vol. 30, pp. 88–
97, Jan. 2009.

[31] “Cityscapes Dataset.” Library Catalog: www.cityscapes-dataset.com Acessed:
2020-05-26.

[32] X. Huang, P. Wang, X. Cheng, D. Zhou, Q. Geng, and R. Yang, “The ApolloScape
Open Dataset for Autonomous Driving and its Application,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, pp. 1–1, 2020. arXiv: 1803.06184.

[33] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan, and T. Darrell,
“BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning,”
arXiv:1805.04687 [cs], Apr. 2020. arXiv: 1805.04687.

[34] G. Neuhold, T. Ollmann, S. R. Bulo, and P. Kontschieder, “The Mapillary Vistas
Dataset for Semantic Understanding of Street Scenes,” in 2017 IEEE International
Conference on Computer Vision (ICCV), (Venice), pp. 5000–5009, IEEE, Oct. 2017.

[35] J. Geyer, Y. Kassahun, M. Mahmudi, X. Ricou, R. Durgesh, A. S. Chung,
L. Hauswald, V. H. Pham, M. Mühlegg, S. Dorn, T. Fernandez, M. Jänicke, S. Mi-
rashi, C. Savani, M. Sturm, O. Vorobiov, M. Oelker, S. Garreis, and P. Schuberth,
“A2D2: Audi Autonomous Driving Dataset,” arXiv:2004.06320 [cs, eess], Apr.
2020. arXiv: 2004.06320.

[36] T. Osório, “Deteção de Objectos para Carros e Pedestres Através de Deep Learn-
ing,” Master’s thesis, Universidade de Aveiro, Aveiro, 2018.

[37] T. Almeida, “Arquitetura Multi-Câmara e Multi-Algoritmo para Perceção Visual
a Bordo do ATLASCAR2,” Master’s thesis, Universidade de Aveiro, Aveiro, July
2019.

[38] “Waypoint - The official Waymo blog: Introducing the 5th-generation
Waymo Driver: Informed by experience, designed for scale, engineered
to tackle more environments.” https://blog.waymo.com/2020/03/

introducing-5th-generation-waymo-driver.html Acessed: 2020-05-26.

[39] S. Hecker, D. Dai, and L. Van Gool, “End-to-End Learning of Driving Models with
Surround-View Cameras and Route Planners,” arXiv:1803.10158 [cs], Aug. 2018.
arXiv: 1803.10158.

Rúben Daniel Ferreira da Costa Master Degree

www.cityscapes-dataset.com
https://blog.waymo.com/2020/03/introducing-5th-generation-waymo-driver.html
https://blog.waymo.com/2020/03/introducing-5th-generation-waymo-driver.html


66 REFERENCES

[40] M. Brown and D. G. Lowe, “Automatic Panoramic Image Stitching using Invariant
Features,” International Journal of Computer Vision, vol. 74, pp. 59–73, Apr. 2007.

[41] H. Chau and R. Karol, “Robust Panoramic Image Stitching,” tech. rep., Department
of Aeronautics and Astronautics, Stanford University, 2015. CS231A Course Final
Report.

[42] P. Kale and K. R. Singh, “A Technical Analysis of Image Stitching Algorithm,”
International Journal of Computer Science and Information Technologies, vol. 6,
p. 5, 2015.

[43] N. Appiah and N. Bandaru, “Obstacle detection using stereo vision for self-driving
cars,” tech. rep., Department of Mechanical Engineering, Stanford University, 2016.
CS232 Course Final Report.

[44] Y. Xu, K. Wang, K. Yang, D. Sun, and J. Fu, “Semantic segmentation of panoramic
images using a synthetic dataset,” in Artificial Intelligence and Machine Learning
in Defense Applications (J. Dijk, ed.), (Strasbourg, France), p. 9, SPIE, Sept. 2019.

[45] K. Yang, X. Hu, L. M. Bergasa, E. Romera, X. Huang, D. Sun, and K. Wang, “Can
we PASS beyond the Field of View? Panoramic Annular Semantic Segmentation for
Real-World Surrounding Perception,” in 2019 IEEE Intelligent Vehicles Symposium
(IV), (Paris, France), pp. 446–453, IEEE, June 2019.

[46] W. Zhou, A. Zyner, S. Worrall, and E. Nebot, “Adapting Semantic Segmentation
Models for Changes in Illumination and Camera Perspective,” IEEE Robotics and
Automation Letters, vol. 4, pp. 461–468, Apr. 2019. arXiv: 1809.04730.

[47] Y. Li, G. Tong, H. Gao, Y. Wang, L. Zhang, and H. Chen, “Pano-RSOD: A Dataset
and Benchmark for Panoramic Road Scene Object Detection,” Electronics, vol. 8,
p. 329, Mar. 2019. Number: 3 Publisher: Multidisciplinary Digital Publishing
Institute.

[48] T. Almeida, V. Santos, B. Lourenço, and P. Fonseca, “Detection of data matrix
encoded landmarks in unstructured environments using deep learning,” in 2020
IEEE International Conference on Autonomous Robot Systems and Competitions
(ICARSC), pp. 74–80, 2020.

[49] “ROS.org | About ROS.” https://www.ros.org/about-ros/ Acessed: 2020-06-03.

[50] “Overview — JupyterLab 2.1.0 documentation.” https://jupyterlab.

readthedocs.io/en/latest/getting_started/overview.html Acessed: 2020-
06-03.

[51] E. Stevens and L. Antiga, “Deep Learning with PyTorch,” p. 141.

[52] “OpenCV.” https://opencv.org/about/ Acessed: 2020-06-03.

[53] “Introduction — Kornia documentation.” https://kornia.readthedocs.io/en/

latest/introduction.html Acessed: 2020-06-03.

Rúben Daniel Ferreira da Costa Master Degree

https://www.ros.org/about-ros/
https://jupyterlab.readthedocs.io/en/latest/getting_started/overview.html
https://jupyterlab.readthedocs.io/en/latest/getting_started/overview.html
https://opencv.org/about/
https://kornia.readthedocs.io/en/latest/introduction.html
https://kornia.readthedocs.io/en/latest/introduction.html


REFERENCES 67

[54] D. Franklin, “dusty-nv/ros deep learning.” https://github.com/dusty-nv/ros_

deep_learning Acessed: 2020-07-05.

[55] “dusty-nv/jetson-inference: Hello AI World guide to deploying deep-learning infer-
ence networks and deep vision primitives with TensorRT and NVIDIA Jetson..”
https://github.com/dusty-nv/jetson-inference Acessed: 2020-07-05.

[56] “Feature Matching — OpenCV-Python Tutorials 1 documentation.” https:

//opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_

feature2d/py_matcher/py_matcher.html Acessed: 2020-06-04.

[57] “Image segmentation with Labelbox.” https://labelbox.com/product/

image-segmentation Acessed: 2020-05-06.

Rúben Daniel Ferreira da Costa Master Degree

https://github.com/dusty-nv/ros_deep_learning
https://github.com/dusty-nv/ros_deep_learning
https://github.com/dusty-nv/jetson-inference
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_matcher/py_matcher.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_matcher/py_matcher.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_matcher/py_matcher.html
https://labelbox.com/product/image-segmentation
https://labelbox.com/product/image-segmentation


.

Intentionally blank page.



Appendix A

Inference Instructions on Jetson
AGX Xavier

A.1 Packages and preparation

To make the inference on Jetson AGX Xavier the following packages are required:

• Panoramic segmentation package

• Jetson Inference package

To run the panoramic segmentation package it is necessary to install ROS Melodic.
It can be done by running the following command on terminal:

sudo apt install ros-melodic-desktop-full

After this the installation steps present in http://wiki.ros.org/melodic/Installation/

Ubuntu must be followed to configure the catkin workspace. The first package can be
found in https://github.com/lardemua/AtlasCar2PanoramicDetection and must be
under the catkin ws folder. The latter package can be found in https://github.com/

dusty-nv/jetson-inference and must be place in the home folder.
If the multi-camera board for the Jetson AGX Xavier is used, the calibration shown

in the next sub-section must be made, otherwise this process is not necessary.

A.1.1 Camera profile calibration

To proceed with the calibration of the cameras, a terminal should be opened and the
following commands should be followed:

• cd /

• cd usr/local/ecam tk1/bin

• ./ecam tk1 gucview -d /dev/video*, where * is the number of the camera to
be calibrated

After running these commands in the terminal, simply configure the camera with one
of the profiles already created or create a new one with the help of the user interface.
This process should be performed for all cameras.

69

http://wiki.ros.org/melodic/Installation/Ubuntu
http://wiki.ros.org/melodic/Installation/Ubuntu
https://github.com/lardemua/AtlasCar2PanoramicDetection
https://github.com/dusty-nv/jetson-inference
https://github.com/dusty-nv/jetson-inference


70 A.Inference Instructions on Jetson AGX Xavier

A.2 Inference

To launch the packages the following commands must be run on different terminals:

• roscore so that the ROS nodes can communicate

• roslaunch panoramic segmentation run.launch to start acquiring images with
the cameras

• rosrun panoramic segmentation segnet model name:=FCN-ResNet18-

Cityscapes-1024x512 to launch the program that will create the segmented panoramic
image

In this last command, the model name chosen can be another one as long as it
is present inside the jetson-inference/data/networks folder. The images topics can be
viewed by launching rqt in the terminal.

Rúben Daniel Ferreira da Costa Master Degree



Appendix B

Camera Support

71



72 B.Camera Support

Rúben Daniel Ferreira da Costa Master Degree



B.Camera Support 73

Rúben Daniel Ferreira da Costa Master Degree



74 B.Camera Support

Rúben Daniel Ferreira da Costa Master Degree



B.Camera Support 75

Rúben Daniel Ferreira da Costa Master Degree



76 B.Camera Support

Rúben Daniel Ferreira da Costa Master Degree



B.Camera Support 77

Rúben Daniel Ferreira da Costa Master Degree



78 B.Camera Support

Rúben Daniel Ferreira da Costa Master Degree



B.Camera Support 79

Rúben Daniel Ferreira da Costa Master Degree


	Introduction
	Motivation
	The Atlas Project
	Problem Description
	Objectives
	Document Structure

	Related Work and State of the Art
	Classic Object Segmentation and Detection
	General concepts of Deep Learning
	Artificial Neural Networks
	Activation functions
	Loss functions
	Optimization
	Convolutional Neural Networks

	Image Segmentation
	Semantic and Instance Segmentation
	Architectures for image segmentation
	Datasets for Image Segmentation

	Related Work Developed at LAR
	Related Work Developed in Similar Projects
	Summary

	Experimental infrastructure
	Hardware
	Logitech C270 HD Webcam
	LAR Workstation
	Jetson AGX Xavier Developer Kit

	Software
	 ROS - Robot Operating System
	JupyterLab
	Pytorch
	OpenCV
	Kornia
	Solidworks


	Proposed solution
	Solution Overview
	Camera stands and setup
	Image Acquisition
	Image Segmentation
	Data Combination
	Summary

	Experiments and Results
	Panoramic tests and setup positioning
	Data Gathering
	Training Process
	Performance and Accuracy Evaluation
	Accuracy Datasets
	Accuracy Aveiro Dataset
	Performance Evaluation

	Panoramic Segmentation Evaluation
	Real time experiments
	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	References
	Inference Instructions on Jetson AGX Xavier
	Packages and preparation
	Camera profile calibration

	Inference

	Camera Support

