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Abstract The increase in the diversity of products on sale due to the evolution of technology
and standard of life results in a growing demand for flexible manufacturing that
can meet the necessary production, especially in small companies. Although the
usual solution for these needs is to use human operators, which provide the nec-
essary flexibility and precision, this comes at a greater cost. In contrast, industrial
robots offer a relatively smaller price and show more value in repetitive and heavy
tasks. This is where Human-Robot Collaboration (HRC) comes into action since
it complements the flexibility of a human worker with the strength and lower cost
of the robotic worker in the same workspace. However, to achieve true collabo-
ration it is not enough to react to the partner’s movements and intentions, the
robot must anticipate them. Inside HRC, Action Anticipation is a technique used
to predict the actions of the human workers so that the robot can better plan
its movements, increasing manufacturing efficiency and safety. This dissertation
aims at the development of an anticipatory system that allows to enhance human-
robot collaboration in an industrial setting. The collaborative scenario will be one
in which the robot observes the actions of the human operator, makes predictions
about the human’s intention, and reacts accordingly by executing a physical action.
This document reviews the research in this field, including the commonly used data
sources and algorithms with a particular focus on machine learning methodologies.
The nature of anticipation and the mechanisms that support it remains open ques-
tions in field of HRC. To this extent, this study may have an impact on how to
model, implement and validate anticipatory processes in an assembly task.





Contents

Contents i

List of Figures iii

Acronyms v

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 State of the Art 5

2.1 Background Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Anticipation in Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Machine Learning (ML) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Collaborative Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Data Sources and Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Tools Review 15

3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Robot Operating System (ROS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Machine Learning Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Key Point Detection Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Work Progress 19

5 Planning 21

6 Conclusion 23

References 25

i





List of Figures

1.1 Functional blocks of an anticipatory robotic system considering two alternative approaches:

modules developed separately vs end-to-end learning. . . . . . . . . . . . . . . . . . . . . 3

1.2 Different views of the current workstation used for the manual assemblage of the structure

of a gas boiler for water heating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Interactions between the Agent and the Environment in RL . . . . . . . . . . . . . . . . . 7

2.2 Data sources common in Human-Robot Collaboration . . . . . . . . . . . . . . . . . . . . 9

2.3 The four collaborative operative modes identified by robot safety standards ISO modes

10218-1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Action Anticipation using Supervised Learning diagram . . . . . . . . . . . . . . . . . . . 12

3.1 OpenPose Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 OpenPifPaf Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 BHI260AP Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Development Desktop 2.0 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1 Gantt Diagram of the Second Semester Tasks . . . . . . . . . . . . . . . . . . . . . . . . . 22

iii





Acronyms

AI Artificial Intelligence
CNN Convolutional Neural Network
EMG Electromyography
HRC Human-Robot Collaboration
HRI Human-Robot Interaction
IMU Inertial Measurement Unit
LSTM Long Short-Term Memory
ML Machine Learning
RNN Recurrent Neural Network
RL Reinforcement Learning
ROS Robot Operating System

v





CHAPTER 1
Introduction

1.1 Background

The Third Industrial Revolution was characterized by a focus on automating repetitive and
heavy tasks on the assembly lines. Still, this created a problem: whenever the manufacturers
needed the robots to work in a different assembly process, they needed to be reprogrammed by
an expert. The Fourth Industrial Revolution, also known as Industry 4.0, refers to the current
trend of the manufacturing sector to become more intelligent and achieve greater automation.
This trend takes advantage of the recent developments in artificial intelligence, the Internet of
Things, and autonomous robots to pave the way for more efficient and flexible production
processes. With Industry 4.0, robots are expected to be more adaptable and perform more
actions without constant explicit programming.

The concept of Human-Robot Collaboration (HRC) emerges as part of Industry 4.0 and
involves the research of mechanisms that allow humans and robots to work together to achieve
a shared goal. Some of the most relevant topics in recent research include collision avoidance
and human-aware planning of robot motions. However, to achieve true collaboration, it is not
enough to react to the partner’s movements and intentions, the robot must anticipate them.

Artificial Intelligence (AI) has significantly evolved in the last years. With the increase of
computational power, Machine Learning (ML), a subset of AI, has become an increasingly
promising method to deal with complex data like images and text, heavily contributing to
areas such as visual perception and speech recognition. Machine Learning ’s ability to learn
from data with minimal human intervention and understand new data it has never seen before
makes it a prime candidate to solve many problems in robotics and HRC in particular.

1.2 Problem Definition

The concept of anticipation has been studied in several research fields, such as biology,
psychology, and Artificial Intelligence. In general terms, anticipation is viewed as the impact of
predictions on the current behavior of a system, be it natural or artificial. A prediction model
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provides information about the possible future state of the environment and/or system. This
perspective of looking to the future is related to the purpose of incorporating that information
into a decision-making or planning process. Accordingly, the system becomes anticipatory
when it incorporates such a model and, simultaneously, when it uses the model to change its
current behavior.

Over the last few decades, experimental evidences of the existence of anticipatory biological
processes at different levels of organization have been reported [1, 2]. The ability to modify
behavior in anticipation of future events offers an adaptive advantage to living organisms with
an impact on behavioral execution and learning. Anticipation is also considered one of the
required abilities of cognitive robots operating in dynamically changing environments. The
role of anticipation is to connect the robot’s action in the present to its final goal, helping the
design of robots with an increased level of autonomy and robustness.

The fundamental aspects of anticipation lie at the intersection of concepts such as time
and information, involving abilities such as perception and prediction. The above definition
of anticipation contains a temporal element that provides a key division between anticipatory
and non-anticipatory robots. Anticipatory robots make decisions based on current states and
predicted future states using predictive models of the environment. At the other extreme of
the spectrum are the robots that live in the present based on the current state of the observed
environment, which are usually called reactive robots (e.g., the Braintenberg’s vehicles [3]).
However, the behavior of a purely reactive robot is limited by its temporal horizon since
they have no memory of the past to build a model of the world. Most of the current robots
present a behavior influenced either by the current perception as well as by the memory of
past perceptions but still lacking a perspective of the future.

Information provides another defining aspect of anticipation since the prediction of a future
state depends on sensory data. The challenge arises from the moment that an anticipatory
system operates based on a potential future state (even before it occurs) that can only
be inferred from past and current information. The inherent uncertainty associated with
prediction process can be reduced through the acquisition of information, namely by using
different sensory modalities. In this context, sensory fusion is a process often adopted to
merge data from multiple sensors such that to reduce the amount of uncertainty that may be
involved to produce more reliable knowledge about the future.

The nature of anticipation and the mechanisms that support it are considered open
questions in AI and robotics. Current research addresses fundamental questions such as:
in which situations is anticipation useful? How can anticipatory processes be modeled and
implemented in robotic systems? What are the impacts that may result from an anticipatory
behavior? In the context of this dissertation proposal, we consider anticipation as a combination
of prediction and decision-making, as illustrated by the blocks diagram in Fig. 1.1. The
prediction model offers the possibility of incorporating action selection in their planning
through a decision-making block, while the planning module relates to the robot’s actions.
These modules can be developed separately, or an end-to-end learning technique could be
used where the model learns the different parts from the perception to the feedback control.
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Figure 1.1: Functional blocks of an anticipatory robotic system considering two alternative approaches:
modules developed separately vs end-to-end learning.

There are different situations in which an anticipatory response seems to be an essential
ability for effective robot behavior. In an attempt to distinguish different types of anticipatory
behaviors, three contexts in which a robot can operate are categorized below and the respective
task requirements are presented as follows:

• Time synchronization. The interception of moving objects is central to several
benchmark robotic tasks such as ball-catching and playing table tennis [4, 5]. These
tasks are challenging due to the demanding spatial–temporal constraints, which require
continuous coordination between visual, planning and control systems. On the one hand,
frequent repredictions of the target location are required as new observations become
available. On the other hand, this progressive refinement imposes an online re-planning
of robot motion such that the goal is achieved in time.

• Preventive safety. Systems that manage risk require some form of anticipatory
mechanism such that the robot can adapt its behavior when an undesired situation
occurs. Autonomous driving is an example of how predicting future events and reacting
properly are important abilities to mitigate risk. Modeling behavior and predicting the
future intentions of pedestrians are core elements to ensure that the driver stops the car
safely or avoids the pedestrian in time.

• Coordinate joint activities in Human-Robot Interaction (HRI). Humans have
the ability to coordinate their actions when carrying out joint tasks with other partners
(Sebanz et al. [6] and Hoffman et al. [7]). In the same line of thought, anticipation can
enhance the ability of a robot in its interaction with a human partner by predicting their
actions (or intentions) before selecting its own action plan. In collaborative contexts
such as those that occur during manufacturing or assembly tasks, the main challenge
is combining anticipation and planning in a context of high uncertainty due to the
variability of human behavior in complex industrial environments. Anticipation seems
to have a significant potential for a more fluid and natural interaction with an impact
on safety and cycle time.

This dissertation aims at the development of an anticipatory system that allows to enhance
human-robot collaboration in industrial settings under the AUGMANITY mobilizing project1.

1AUGMANITY website: https://www.augmanity.pt
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The collaborative scenario will be one in which the robot observes the actions of the human
operator, makes predictions about the human’s intention and reacts accordingly by either
waiting for more observations or executing a physical action. Fig. 1.2 illustrates the real
workstation where the structure of a gas boiler for water heating is manually assembled. The
collaborative robot’s main function will be to assist with the assembly task by placing the
parts in the jig while coordinating its actions with those of the human operator who is focused
on the riveting process.

Figure 1.2: Different views of the current workstation used for the manual assemblage of the structure
of a gas boiler for water heating.

1.3 Document Structure

The remainder of the document is organized into five chapters. Chapter 2 contains
background material about anticipation, Machine Learning and collaborative robotics and
a review of previous work on Action Anticipation in HRC including sensors and methods.
Chapter 3 reviews tools that can be useful in the future implementation. Chapter 4 describes
the progress made in the first semester. Chapter 5 portrays the planning of the second semester
work and illustrates its calendarization. Chapter 6 concludes the document by restating the
objectives of the work and the plan to achieve them.
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CHAPTER 2
State of the Art

This chapter starts by covering background concepts about anticipation in biology, Machine
Learning and collaborative robotics and then reviews previous work related to the dissertation
theme, including sensors and methods.

2.1 Background Material

2.1.1 Anticipation in Biology

Anticipation is a research topic in many areas, such as biology, brain studies, psychology,
social sciences, artificial intelligence, and engineering. One of the most cited definitions in the
last decades and across the various fields is Rosen’s [8]:

An anticipatory system is a system containing a predictive model of itself and/or
its environment, which allows it to change state at an instant in accord with the
model’s predictions pertaining to a later instant.

In the field of biology, Louie [9] claims that “Much, if not most, biological behavior
is model-based ...” with the referred models being the “... internal predictive models of
themselves and their environments ...”. Poli [2] further claims that “... given that anticipatory
behavior dramatically enhances the chances of survival, evolution itself may have found how
to give anticipatory capacities to organisms, or to at least some of them.”. For example, we
can consider an animal predicting that it will be attacked by its predator and dodging said
attack to survive.

In the case of humans, Louie [9] also stated, “We typically decide what to do now in terms
of what we perceive will be the consequences of our action at some later time.” alluding to
our anticipatory behavior. Therefore, human actions can result from reactive behavior when
they are based on the past, from anticipatory behavior when they are based on predictions of
the future, or from a mix of both.

In particular, sports is a field where, according to Smith [10], “Proficiency in action
anticipation is relevant in many performance contexts such as anticipating the direction of a
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shot (in soccer, hockey, tennis, volleyball, badminton, etc.), the deceptive movement of an
opponent (in soccer, basketball, rugby, football, boxing, etc.), or the movement of a partner
(in figure skating, dancing, etc.).”.

2.1.2 Machine Learning (ML)

Machine Learning algorithms have been increasingly more common in the last years due
to, for example, their ability to deal with multidimensional data. These algorithms can
automatically learn from data and make predictions or decisions, which makes them a prime
candidate to use in the context of human action anticipation in collaborative environments.
The most common strategies in ML are Supervised Learning, Unsupervised Learning, and
Reinforcement Learning.

Supervised Learning

In Supervised Learning, the models are trained using a dataset of labeled data. According
to Sarker [11], these models must generalize the knowledge from the dataset’s input-output
pairs to correctly deal with a new input they have never seen before. The models from this
group are further divided into classification, where the new input is assigned a discrete output
class, and Regression, where it is returned a real number from the continuous output space.
Currently, RNNs and CNNs are two of the most common classification approaches.

A Recurrent Neural Network (RNN) is a type of neural network where the output of each
time step is fed back into the input at the next time step, allowing the network to remember
and incorporate information from previous time steps into its processing of current and future
data. This characteristic makes RNNs particularly well-suited to processing sequential data,
such as text, speech, or time series data which require context or temporal dependencies.
In particular, according to [12], Long Short-Term Memory (LSTM) is an RNN with a more
complex architecture that gives it an improved ability to backpropagate the error, making it
better to train a model that classifies sequences with several time steps.

A Convolutional Neural Network (CNN) is a type of neural network made up of several
convolutional layers which apply a sliding filter over the input reducing its dimension and
obtaining its features. Typically, these layers are followed by one or more fully connected
layers that perform the prediction using the mentioned features. This architecture makes
CNNs an excellent choice to deal with data in a matrix structure such as an image because
this input is too massive for manual feature engineering.

In Supervised Learning, transfer learning is a technique that makes use of a trained
external model. Depending on the goal of its use, these models can be entirely or partially
used; optionally, they can also be trained partially or fully. A common use case for this
technique is when a small dataset of images is used to obtain a classifier, and a standard
model cannot generalize from that reduced amount of data. In this case, a model such as
VGG-16 and ResNet-50 can be used partially to extract the features with one or more fully
connected layers in the end, to perform the desired classification from those features.
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Unsupervised Learning

In Unsupervised Learning, the datasets involved have no labels. According to Sarker [11],
these algorithms aim to find patterns and structure in the data. This makes them valuable
in tasks such as clustering based on common characteristics, density estimation, identifying
anomalies and outliers, dimensionality reduction, feature learning and finding association
rules.

Clustering is a technique used to create groups of points representing instances of the
dataset to discover relevant trends or patterns. K-means clustering is one of the most common
and simple clustering algorithms. It starts by creating k random centroids and assigns each
instance of the data to the closest centroid by squared distance. This process can be repeated
to achieve better results. This algorithm works well when the points from different sets are
considerably separated from each other.

Dimensionality reduction is a technique that aims to reduce the number of features by
selecting a subset of the original ones using algorithms such as Chi-squared test or extracting
new features from the originals using algorithms such as Principal Component Analysis (PCA).

Reinforcement Learning (RL)

Reinforcement Learning is different from the previous approaches because it does not
need a dataset. According to Alom et al. [13], the agent learns how to act in an unknown
environment by interacting with it. After the agent’s action, the environment returns an
observation and a certain reward to the agent depending on the quality of the action. The agent
uses the reward to update its internal model named policy improving its future performance
and the cycle repeats, as shown in Fig. 2.1. This type of learning by trial and error has a
certain resemblance to how humans gain knowledge, and it is useful when there is a need
for an agent to make decisions in an environment that has considerable complexity, such as
controlling a robot or playing a game.

Intelligent
Agent

Environment

Reward ActionObservation

Figure 2.1: Interactions between the Agent and the Environment in RL [13]

In the workflow of Reinforcement Learning, the agent must associate an observation to
an environment state. This is a simple process in a small discrete environment since there
are fewer states. However, if the environment has many variables or it is not discrete then it
becomes challenging to associate states with an observation. In these cases, it is necessary to
use deep Reinforcement Learning, which is able to extract the relevant information from the
observation and use it to associate the observation with a state.
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Given that to train a Reinforcement Learning model, it is necessary for the agent to
interact with the environment thousands of times, this process ends up needing a simulator.
According to Li et al. [14], one of the major challenges in RL is transferring the knowledge
learned in the simulator to a real-life environment. There may be a gap between the real
and the simulated environment because the real world has more or less observable variables
causing a drop in performance. Ahmed et al. [15] also claims that this may be due to an
incorrect design of the reward function leading to over-fitting and sub-optimal policies.

2.1.3 Collaborative Robotics

Human-Robot Collaboration (HRC) consists of robots and humans working in the same
workspace towards a common goal. Classical industrial robots are usually automated to
perform repetitive tasks that require high physical strength. On the other hand, tasks that
require cognitive knowledge, flexibility, and precision are better suited for humans, even if they
are physically weaker. HRC aims to take advantage of both of their strengths and complement
each others’ weaknesses to increase manufacturing efficiency.

In a HRC scenario, robots need to be different from the traditional ones, given that they
will work in the same workspace as humans. According to Castro et al. [16], “Collaborative
robots need to be endowed with a set of abilities that enable them to act in close contact with
humans, such as sensing, reasoning, and learning. In turn, the human must be placed at the
centre of a careful design where safety aspects and intuitive physical interaction need to be
addressed as well.”. In [17], it is stated that nowadays, collaborative robots are developed to
be compact, easy to install and program, flexible, mobile, consistent and precise. Additionally,
they positively impact employees since they are responsible for monotonous and dangerous
actions and reduce the production cost for the company.

Human-Robot Communication

Humans and robots can communicate through several methods, which can be direct such
as using a console or a remote, or indirect, resulting from data captured from sensors. Based
on [16, 18, 19], the main methods for indirect communication can be seen in the diagram in
Fig. 2.2 and can be described as follows:

• Gestures: these are one of the main ways humans communicate, whether through
simple movements or formal sign language. In the literature about HRC, gestures
can also commonly be found since they have the advantage of resisting ambient noise.
Usually, gestures are captured with vision-based methods with either an RGB or RGB-D
camera, so there is no need for unnatural movements. With vision, it is possible to
include markers, but these may lead to occlusions and hinder the worker’s movements.
Consequently, there is also work in the literature that uses markerless vision to allow
more unrestricted movements. Another way to capture the movements of the human
worker would be to use wearable inertial sensors, which contain accelerometers and
gyroscopes, but, once again, wearables can hinder the worker’s movements. Finally,
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Figure 2.2: Data sources common in Human-Robot Collaboration

capturing point clouds using a LIDAR presents another possibility of capturing gestures
without restricting the worker’s motion.

• Voice Commands: Talking is the most intuitive way for humans to communicate
with each other. The advances in voice recognition and natural language processing
make this a possible communication solution with robots. However, despite being
intuitive, simple, effective, and even robust against lighting variations, when it comes to
an industrial setting that contains significant sound noise, it becomes less valuable than
the alternatives.

• Semantics: semantic information about the objects can also help the global workflow.
For example, suppose the robot is trained to recognize certain features in objects related
to how it can pick them up. In this case, the robot can pick up a new object it has
never seen before if it has a similar structure. Human actions can also be represented
semantically by obtaining the poses of the human as a specific set of limbs, even if only
partially. During action recognition, this can be used to know which objects the worker
can interact with. Having semantic information about the pose of the human body also
helps in the path-planning phase of the robot since it can use this information to avoid
the worker and prevent collisions.

• Gaze: this can be used to determine where the user’s attention resides, giving a
considerable amount of information that can trigger some action. There are two options
to obtain the user’s gaze. Wearable sensors can provide better results but are expensive
and intrusive. On the other hand, algorithms that detect head pose and assume the
gaze from it can also be used, which is a cheaper and non-intrusive solution.
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• Emotions: although this is a relatively new idea, some applications analyze the user’s
emotions from his facial expressions to have even more information in the algorithms.

• Biometrics: Electromyography (EMG) sensors can measure electrical signals generated
by muscle contractions, while electroencephalography (EEG) signals are commonly used
in brain-computer interfaces (BCIs).

Safety

Safety is one of the most critical topics in collaborative robotics and the first step toward
establishing a collaborative environment. According to [17], collaborative robots are able
to safely work with people because they have sensitive sensors that can detect the human
interrupting them, causing them to stop their actions, while traditional robots would potentially
injure the worker. However, given that there are tasks that require the robot to move very
close to the worker, some norms were implemented: ISO 10218-1 and 10218-2. From these
two standards, Castro et al. [16] and Villani et al. [20] describe the four criteria from which at
least one must be met as:

1. Safety-rated monitored stop: when a human enters the cobot’s workspace, it
completely stops;

2. Hand guiding: when an operator manually moves the cobot, it is compliant;
3. Speed and separation monitoring: as the human moves closer to the cobot, it

becomes gradually slower;
4. Power and force limiting: the cobot has its operation restricted in terms of force

and torque.

Figure 2.3: The four collaborative operative modes identified by robot safety standards ISO modes
10218-1/2 [20]
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2.2 Data Sources and Sensors

The first step to anticipating the following action is to know which sensors should be used.
Previously, several forms of communication between humans and robots were described. Still,
these work in a more active way, and not all of them can be applied to action anticipation,
where the user should not need to do anything for the robot to act. Essentially, there is a need
to capture the human’s body language or, in other words, his involuntary pose, gestures and
gaze, which became some of the most commonly used data to perform action anticipation.

Regarding the sensors used to capture the raw data, most literature suggests using an
RGB camera. However, the captured images may be used in the following different ways:

• directly used as input to models which can extract features from the images;
• used as input to frameworks that receive an image, process it, and return the key points,

such as the skeleton joints of the person in the image; these key points can also then be
used to assume the gaze of the human in the image such as in Canuto et al. [21] where
the authors used OpenPose (explored in detail in Section 3.4) to obtain not only the
skeleton joints but also the worker’s gaze;

• used to process the optical flow[22, 23, 24, 25];
• if the human was wearing markers, the image can be used to obtain the positions of the

markers obtaining gestures from the sequence of those positions [26];

Besides RBG cameras, some works, such as the one described in Moutinho et al. [27],
indicate the use of an RGB-D camera to capture both the color and the depth images, which
contain the gestures and pose of the worker. Other than cameras, in Tortora et al. [28] IMU
and EMG data was used as input to capture the gestures and anticipate the worker’s action.
When it comes to obtaining the worker’s gaze, it is possible to do so from the RGB images
as mentioned above, but it is also possible to use wearable sensors to capture it, such as in
Schydlo et al. [29].

2.3 Methods

After knowing which data is usually captured and provided to an algorithm, this section
explores possible algorithmic solutions present in previous work starting by those that are
only about predicting the action of the human worker and then those that go a step further
and reference how to go from a prediction to the action that the robot must execute as a
response.

Predictive Modeling Techniques

Predicting the next action of the worker can be represented as a classification problem
since it is possible to use a sequence of images that must be classified as a particular future
action class. Using Fig. 2.4 as an example, the high-five action should be predicted before the
frames that contain it are captured. The previous work with this kind of algorithm mainly
includes CNNs and RNNs, with the latter being the most common.
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Figure 2.4: Action Anticipation using Supervised Learning diagram[22]

In Furnari et al. [25], the authors aimed to predict the subsequent actions that someone
wearing a camera would perform and the objects he would interact with. They used three
datasets containing RBG frames from which they derived the optical flow and the objects
in the environment. This data is then passed on to a Rolling-Unrolling LSTM. The Rolling
LSTM (R-LSTM) is a network that continuously encodes the received observations and keeps
an updated summary of the past. When it is time to make predictions about future actions,
the Unrolling LSTM (U-LSTM) is used with its hidden and cell states equal to the current
ones of the R-LSTM.

In Schydlo et al. [29], the authors used an encoder-decoder recurrent neural network
topology to predict human actions and intent where the encoder and the decoder are both
LSTM cells. At each step, the decoder returns a discrete distribution of the possible actions
making this algorithm able to consider multiple action sequences, which are then subject to
a pruning method that reduces them to obtain the right action finally. In their work, these
algorithms were tested in two different datasets, one containing RGB images with optical
markers and gaze information from wearable sensors and another with RGB-D images.

In Moutinho et al. [27], the authors aimed to increase the natural collaboration between
the robot and the human in an assembly station by interpreting implicit communication cues.
The data related to the environment was captured using an RGB-D camera. This data was
then passed on to a ResNet-34, a pre-trained neural network that extracted the features
from the images. These features are used as the input to a LSTM to perform human action
recognition.

In Gammulle et al. [22], the authors aimed to predict future frames while at the same
time predicting the following action. In their implementation, they used public datasets with
videos from which they obtained RGB images and optical flow streams. To consider both data
sources, they also used two ResNet-50’s, which are pre-trained networks, one to get the input
features from the image and another from the optical flow, and 2 LSTMs to take into account
both sequences of inputs. Then the two results are merged into a final classification. They
also used two Generative Adversarial Networks (GAN) to generate the subsequent frames,
but this is different from the focus of the analysis.

In Wang et al. [30], the authors used video datasets to train a model that would predict a
future action from the observed frames. They used three pre-trained neural networks in their

12



work: VGG-16, TS, and ConvNet, to extract features from the images. Then these features
were aggregated using a Temporal Transformer module (TTM), and finally, a progressive
prediction module (PPM) would anticipate the worker’s future action. This article also
addresses the issue of specifying what the algorithm should consider as an action. Although
most of the literature often implies that the last frames captured by the camera are considered
an action, given that those are the frames that contain the last action made by the user, the
authors of this article go into greater detail. They tested and evaluated how many frames
should be considered as the last action to obtain the best results using a metric from Geest
et al. [31] named per-frame calibrated average precision (cAP) calculated with (2.1). In [30] it
is defined with

cAP =
∑

k cPrec(k) ∗ I(k)
P

, (2.1)

“... where calibrated precision cPrec = T P
T P +F P/w , I(k) is an indicator function that is equal

to 1 if the cut-off frame k is a true positive, P denotes the total number of true positives,
and w is the ratio between negative and positive frames. The mean cAP over all classes is
reported for final performance.”.

In Rodriguez et al. [24], the authors aimed to predict the following action by first predicting
the following motion images. They used datasets containing videos and then processed them to
obtain motion images. These motion images become the input of a convolutional autoencoder
network that generates the following motion images. These images are then passed to a CNN
that processes them and makes action predictions for the future. The final action prediction is
obtained from the results of the previous network and those of a second CNN, which analyzes
the original RGB images.

In Wu et al. [23], the author’s goal was to predict the following action someone wearing
a camera would perform after some time. Initially, the optical flow was obtained from the
captured images, and both were used as input to the model. The model is comprised of a
Temporal Segment Networks (TSN), a CNN, and a LSTM to predict the future frame features
and then use them to perform the required classification.

From Prediction to Planning

After predicting the next action of the worker, the robot must execute some action as a
response to complete the anticipation process. This subsubsection contains articles that go
beyond the predictive model and have relevant details for the integration of the model in a
controller.

In Canuto et al. [21], the authors aimed to predict the following action using a LSTM,
one of the most common RNNs. In their work, they used a dataset captured with an RGB
camera. From these images, they obtained the objects in the environment, the human skeleton
joints extracted over time using OpenPose, and the gaze derived from the joints. Then the
three data sources were given to the LSTM as input to perform the desired classification. In
this process, the authors use an adaptive threshold on the uncertainty of the recurrent neural
network, which makes the model need a certain level of certainty to classify the action as a
particular class. This creates a more robust solution since a standard supervised learning
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algorithm would predict the class with the highest probability even if the model has low
certainty about every category.

In Maeda et al. [26], the authors aimed to reduce the delay in the robot’s response by
anticipating the human worker and providing a screw or a plate accordingly. They captured
the environment using an RGB camera and tracked the hand using optical markers. Then
they predicted the following human action using a look-up table containing different orders for
assembly actions. With the nearest neighbor algorithm, the actions of the human would be
matched with a particular order. The limitation of this method is that all possible sequences
need to be on the table because if they are not there, then the robot will match with a different
order which may be undesirable. If the robot eventually notices that it did the wrong action, it
would then follow a hard-coded contingency trajectory to return to the pre-grasping position.
When performing a handover action, the previously captured data is used to generate possible
trajectories and this is given to the feedback controller as a reference.

In Zhang et al. [32], the authors aimed to predict the intention of the human worker to
provide him with the required piece. To achieve this, they used an RGB camera to capture
the data from the environment. Then the images are given to a convLSTM framework where
the CNN part is in charge of extracting features from the input images, and these features
are then passed on to the LSTM to predict the intention. This article also tackles the issue
of having several possible assembly orders. It solves it by creating a phase at the beginning
of the collaboration in which the robot learns the assembly actions and their order from a
demonstration. After the prediction of the intention of the worker, the robot proceeds to fetch
the required piece. It uses a CNN to recognize said piece and ROS Open Motion Planning
Library (OMPL) to handle the trajectory planning jobs. In terms of safety, the authors
defined speed limits for the robot and ensured that the robot would avoid the workspace of
the human. Then when it needs to move closer to the user, its speed is reduced to guarantee
the user’s safety.

In Huang et al. [33], the authors’ goal is to make the robot use the anticipated actions of
the worker to decide its tasks. It monitors the worker’s gaze using a wearable device and uses
it to predict his intent using SVM. After predicting it, the robot uses an anticipatory motion
planner named “MoveIt!” to plan its motion according to a certain confidence threshold. This
means that while it is unsure of what the human wants, the robot starts to move towards the
item it thinks he wants but only really moves completely when it surpasses the threshold.
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CHAPTER 3
Tools Review

This chapter covers a review of the experimental setup and relevant software tools that
may be helpful in developing the final solution.

3.1 Experimental Setup

The experimental part of this thesis will be developed using the setup available at the
Laboratory for Automation and Robotics (LAR) located in the Department of Mechanical
Engineering at the University of Aveiro. The available setup contains a collaborative robot
surrounded by several sensors and a powerful computer that can be used to train machine
learning models.

3.2 Robot Operating System (ROS)

ROS[34]1,2 is an open-source collection of tools and software libraries used to develop a
robotics application. Its main features are:

• message broker: every process in the project is a node in the ROS network and com-
municates with the other nodes mainly through topics (asynchronous publish/subscribe
streaming of data) or services (synchronous RPC-style communication);

• code reuse: executables and packages are written to be as independent as possible,
making the developer able to reuse them in another project;

• rich ecosystem: there are several open-source packages available to the developer that
can be easily integrated;

• scalability: given that the nodes are so loosely coupled, it allows for node distribution;
• language independence: nodes can be written in any language since communication

is established through well-defined objects;
• data visualization: there are tools to visualize the data in real-time, such as Rviz;
1ROS 1 documentation: https://wiki.ros.org
2ROS 2 documentation: https://docs.ros.org/en/humble
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• simulator support: ROS has support for simulators with Gazebo being the most
common;

• hardware abstraction: contains driver packages to deal with some hardware devices;

ROS can be used by installing on Ubuntu or Mac OS X systems, and then nodes can be
launched from existing repositories or can be programmed in Python, C++ or Lisp with more
languages still under development.

3.3 Machine Learning Frameworks

This section contains a review of Tensorflow and Pytorch, which are two of the most
popular machine learning frameworks that can be helpful in pre-processing data, building
machine learning models and deploying said models.

Tensorflow

Tensorflow3 is a platform that can be used for all steps of a machine learning project. Its
main features are:

• prepare data: load data, data pre-processing and data augmentation;
• build models: design and train custom models with little code or use pre-trained ones

(transfer learning);
• deploy models: helps using models in different platforms such as locally, in the cloud,

in a browser, or in mobile;
• implement MLOps: run models in production, tracking their performance and

identifying issues.
Tensorflow can be used through its APIs in several languages to adapt to every project

but the Python API is recommended since it is the most stable.

Pytorch

Pytorch4 is an open-source framework that can be used for all steps of a machine learning
project. Its main features are:

• distributed model training: takes advantage of some Python and C++ features to
optimize the performance in both research and production phases;

• robust ecosystem: there are tools and libraries that extend PyTorch to include features
related to, for example, computer vision and natural language processing;

• ready for production: it has tools to deploy models with scalability in environments
such as the cloud;

• cloud support: it has good support in the most common cloud platforms allowing an
easier deployment in a production environment.

Pytorch can be used through its APIs in Python, Java, or C++.
3Tensorflow documentation: https://www.tensorflow.org/api_docs
4Pytorch documentation: https://pytorch.org/docs
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3.4 Key Point Detection Frameworks

This section reviews OpenPose and OpenPifPaf which are two projects containing models
to detect key points in images, such as the human skeleton joints.

OpenPose

OpenPose[35, 36, 37, 38]5 is an open-source project that aims to detect key points in the
human body, face, hands, and feet from images. Its main features are:

• 2D real-time key point detection based on the body/foot, the hand, or the face of
multiple people;

• 3D real-time key point detection based on images from multiple cameras of one person;
• estimation of camera calibration parameters;
• single-person tracking.

OpenPose can be used through the command-line or using an API for Python or C++.

Figure 3.1: OpenPose Examples [35, 36]

OpenPifPaf

OpenPifPaf[39, 40]6 is an open-source project that aims to detect, associate and track
semantic key points. Detecting human joints is an example of its usage but it is also able to
generalize this detection to other classes such as cars and animals. It can be installed as a
python package which can then be imported.

Figure 3.2: OpenPifPaf Example [39]

5OpenPose documentation: https://cmu-perceptual-computing-lab.github.io/openpose
6OpenPifPaf documentation: https://openpifpaf.github.io
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CHAPTER 4
Work Progress

This chapter covers the work made in the first semester related to the testing of a smart
inertial sensor, which is a common type sensor in HRC as seen in Subsection 2.1.3.

In the context of this dissertation, the idea was to take advantage of the features of this
sensor as another possible source of data. This data can then be used to help detect gestures
with the end goal of helping and automating the labeling of the model training data.

BHI260AP1 is a smart sensor with integrated Inertial Measurement Unit (IMU) from
Bosch Sensortec. According to [41], it includes several software functionalities, a 32-bit
customer programmable microcontroller, and a 6-axis IMU. It is designed for always-on sensor
applications such as fitness tracking, navigation, machine learning analytics and orientation
estimation.

Figure 4.1: BHI260AP Sensor [42]

1Product Page: https://www.bosch-sensortec.com/products/smart-sensors/bhi260ap
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During the testing of this sensor, three approaches were attempted:

• Python API: there was an attempt to use the Python library to communicate with the
sensor but although communication was established, there was a lack of documentation
and examples that allowed to create code that collected data;

• C++ API: there was also an attempt to use the C++ library to communicate with
the sensor but the instructions available resulted in a compilation error;

• Development Desktop 2.0: this is a desktop application for Windows that allows
communication with all Bosch Sensortec sensors and using it, it was possible to collect
data to a file or display it in graphs such as in Fig. 4.2.

Figure 4.2: Development Desktop 2.0 Interface [43]

Therefore, collecting data was only possible with the Development Desktop 2.0. However,
using the Python or the C++ APIs would be ideal since, as they work in Linux, it would be
possible to integrate their usage with ROS.
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CHAPTER 5
Planning

This chapter covers the planning of the work and the task scheduling to be accomplished
during the second semester to achieve the proposed objectives. The main tasks to be carried
out are described below (the Gantt diagram in Fig. 5.1 shows these activities displayed against
time):

1. Overview of the Experimental Setup. Familiarization with the robot and tools
that will be used throughout the dissertation.

2. Development of Action Anticipation Models. To formally define how to anticipate
an action in the context of the collaborative task under study using RGB-D images as
input. ML models, such as Recurrent Neural Networks (RNNs), are at the forefront of
the algorithms to explore.

3. Development of an Anticipatory Controller. To develop robot controllers that
consider the human partner’s movements and intentions and use these inferences to
make appropriate decisions during the execution of a sequential assembly task.

4. Metrics and performance evaluation. To provide performance metrics used to
evaluate the action anticipation models and the add-value of the anticipatory controller
(e.g., in terms of cycle time).

5. Thesis Writing. Writing the master dissertation and other detailed documentation.
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CHAPTER 6
Conclusion

This document presented the problem of anticipating human actions in collaborative
environments with the goal of developing an anticipatory robot controller for an assembly task.
Looking at previous work found in the literature, there is a clear predominance of perception
using RGB cameras with different ways of preprocessing the captured images. When it comes
to the methods, Machine Learning and, in particular, supervised learning techniques are
predominant, given that most work nowadays takes advantage of the progress made in that
field. With the continuous evolution of ML, it is expected that the algorithms related to the
topic in this paper also evolve and, consequently, give rise to even better solutions.

To complete the study of previous work, some relevant tools were reviewed with a particular
emphasis on two libraries that can detect key points in an image, such as skeleton joints which
are very important to detect human poses. Regarding the practical side of the dissertation,
an inertial sensor was tested in other to evaluate its inclusion as another source of data.
Although it was possible to capture data, an additional effort will be required to demonstrate
its usefulness for the proposed study. Furthermore, as a result of this work, the tasks for the
second semester were delineated and scheduled.

In summary, the results of this study demonstrate that Action Anticipation is still a
relatively new concept, but it has much potential to increase the efficiency and safety of
collaborative tasks, revolutionizing the world of Human-Robot Collaboration.
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